首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nitrogen Fixation in the Canopy of Temperate Forest Trees: A Re-examination   总被引:1,自引:0,他引:1  
JONES  K. 《Annals of botany》1982,50(3):329-334
15N2 studies and acetylene reduction assays of leaves and shootsof Douglas fir and other forest trees do not confirm previousreports that extensive nitrogen fixation occurs on leaf surfacesand it is concluded that the importance of nitrogen fixationin the canopy of forest trees has been exaggerated. The presenceof nitrogen-fixing bacteria on the leaves of trees is confirmed,however, and they have been identified as Enterobacter agglomerans,Clostridium butyricum and Bacillus sp. Their distribution onleaves is fortuitous since dead oak leaves and artificial leavesbecome colonized to the same extent as living oak leaves. nitrogen fixation, acetylene reduction, Enterobacter agglomerans, Clostridium butyricum, Bacillus sp, Douglas fir, Pseudotsuga menziensii, larch, Larix x oak, Quercus petraea.  相似文献   

2.
Abstract

Colonization of plant roots by arbuscular mycorrhizal fungi can greatly increase the plant uptake of phosphorus and nitrogen. The most prominent contribution of arbuscular mycorrhizal fungi to plant growth is due to uptake of nutrients by extraradical mycorrhizal hyphae. Quantification of hyphal nutrient uptake has become possible by the use of soil boxes with separated growing zones for roots and hyphae. Many (but not all) tested fungal isolates increased phosphorus and nitrogen uptake of the plant by absorbing phosphate, ammonium, and nitrate from soil. However, compared with the nutrient demand of the plant for growth, the contribution of arbuscular mycorrhizal fungi to plant phosphorus uptake is usually much larger than the contribution to plant nitrogen uptake. The utilization of soil nutrients may depend more on efficient uptake of phosphate, nitrate, and ammonium from the soil solution even at low supply concentrations than on mobilization processes in the hyphosphere. In contrast to ectomycorrhizal fungi, nonsoluble nutrient sources in soil are used only to a limited extent by hyphae of arbuscular mycorrhizal fungi. Side effects of mycorrhizal colonization on, for example, plant health or root activity may also influence plant nutrient uptake.  相似文献   

3.
This study was designed to examine saprophytic fungi diversity under different tree species situated in the same ecological context. Further, the link between the diversity and decomposition rate of two broadleaved, two coniferous and two mixed broadleaved-coniferous litter types was targeted. Litter material was decomposed in litter bags for 4 and 24 months to target both early and late stages of the decomposition. Fungal diversity of L and F layers were also investigated as a parallel to the litter bag method. Temperature gradient gel electrophoresis fingerprinting was used to assess fungal diversity in the samples. Mass loss values and organic and nutrient composition of the litter were also measured. The results showed that the species richness was not strongly affected by the change of the tree species. Nevertheless, the community compositions differed within tree species and decomposition stages. The most important shift was found in the mixed litters from the litter bag treatment for both variables. Both mixed litters displayed the highest species richness (13.3 species both) and the most different community composition as compared to pure litters (6.3–10.7 species) after 24 months. The mass loss after 24 months was similar or greater in the mixed litter (70.5% beech–spruce, 76.2% oak–Douglas-fir litter) than in both original pure litter types. This was probably due to higher niche variability and to the synergistic effect of nutrient transfer between litter types. Concerning pure litter, mass loss values were the highest in oak and beech litter (72.8% and 69.8%) compared to spruce and D. fir (59.4% and 66.5%, respectively). That was probably caused by a more favourable microclimate and litter composition in broadleaved than in coniferous plantations. These variables also seemed to be more important to pure litter decomposition rates than were fungal species richness or community structure.  相似文献   

4.
Generally, soils in Pakistan are deficient in P and N. Due to intensive cropping and irrigation, Pakistani soils have also become deficient in micronutrients such as Zn, Fe, Cu, and Mn. Arbuscular mycorrhizal fungi, which form symbiotic associations with roots of most land plants, are known to enhance uptake of P and trace elements such as Cu, Ni, Pb, and Zn. The present study was conducted to investigate the role of arbuscular mycorrhizae (AM) in uptake of nickel (Ni) and zinc (Zn) by crops viz. soybean (Glycine max (L.) Merrill) and lentil (Lens culinaris Medic). Zn and Ni were applied as ZnSO4 7H2O and NiCl2 respectively, in four concentrations (0.0, 1.0, 3.0, and 5.0 g kg-1 soil). AM inoculum consisted of sand containing sporocarps, spores, and AMF infected root pieces from a pot culture of Glomus mosseae. Control plants received pot culture filtrate containing soil microflora minus AM fungal propagules. A significant difference (p < 0.05) was observed in the dry weights of roots and shoots of the mycorrhizal (M) and nonmycorrhizal (NM) cereal plants. The sievate-amended treatments did not stimulate plant growth to the same extent as the AM fungal amended treatments. Trace metals inhibited the extent of mycorrhizal colonization of the cereal roots. The concentrations of the trace metals in the plant tissues of 12-week old cereal plants were found significantly (p < 0.05) higher in M than NM plants. These results indicate that mycorrhize can be used as effective tools to supply sufficient Zn in generally Zn-deficient Pakistani soils and to ameliorate the toxicity of trace metals in polluted soils. The contents of Ni in mycorrhizal soybean plant tissues were higher than those in the mycorrhizal lentil plant tissues. The implications of these results in mycorrhizo remediation of agricultural soils are discussed.  相似文献   

5.
6.
ABSTRACT Using a compartmentalized treatment technique, the role of arbuscular mycorrhizal fungi (AMF; Acaulospora scrobiculata) on arsenic (As) uptake and translocation in Brachiaria decumbens. Treatments consisted of a factorial arrangement of three As doses (0, 50, and 100 mg kg?1) and the presence/absence of AMF inoculates. In the absence of AMF, B. decumbens did not show As accumulation, indicating the probable presence of tolerance mechanism via As exclusion by the roots. B. decumbens plants showed high AMF colonization levels, especially in the arsenic treatments, with AMF improving shoot and root growth independent of As concentrations. Arsenic accumulation occurred only with AMF inoculation. Phosphorous uptake was reduced in B. decumbens roots in the presence of arsenic with and without inoculation of AMF. Results suggest that B. decumbens can be used in phytoremediation procedures when inoculated with A. scrobiculata, although pasture formation should be strictly avoided in contaminated sites.  相似文献   

7.
8.
Introduced mammalian herbivores can significantly affect ecosystems. Here, I review evidence on effects of introduced mammalian herbivores in the temperate forest of the southern Andes. Available data suggest that introduced herbivores decrease the abundance of seedlings and saplings of dominant tree species in some forest types, which could impair forest regeneration. They also affect understory species composition. The mechanisms of the effects of introduced herbivores are complex, and include direct effects of browsing or trampling and more complex interactions such as indirect effects through other species. Some native mammalian and avian predators may benefit from increased food availability resulting from high densities of some introduced mammalian herbivores. In turn, enhanced populations of predators may have resulted in increased predation on native prey. Competition for resources and disease transmission have also been proposed as possible negative effects of introduced herbivores on native herbivores, but little evidence supports this claim. Little is known about effects on invertebrates.  相似文献   

9.
Mycorrhizal associations play a key role in the life cycle and evolutionary history of orchids. Although most orchid species are tropical and epiphytic, their mycorrhizae are poorly understood compared with those of temperate, terrestrial orchids. To investigate the influences of such fungi on photosynthetic, epiphytic orchids, we inoculated seedlings of Dendrobium nobile with Epulorhiza sp. (S1) or Tulasnella sp. (S3). These fungi had been identified based on their morphological and molecular characters. Both S1 and S3 formed symbiotic associations with our seedlings, promoting their growth and development to various degrees. Results from signature experiments with the 15N stable isotope suggested that the utilization of organic nitrogen by orchid seedlings was significantly improved by S1, but not by S3. Dendrobine contents were significantly higher in all inoculated seedlings. Our findings demonstrate that these mycorrhizal fungi enhance plant growth, their utilization of organic nitrogen, and the accumulation of secondary metabolites in this epiphytic orchid species.  相似文献   

10.
The aim of this study was to analyze the performance of Acaena elongata colonized by arbuscular mycorrhizal fungi (AMF) to different phosphorus (P) concentrations, as a measure of AMF dependency. A. elongata, is a species from soils where P availability is limited, such as temperate forests. Our research questions were: 1) How do different P concentrations affect the AMF association in Acaena elongata, and 2) How does the AMF association influence A. elongata’s growth under different P concentrations? A. elongata’s growth, P content in plant tissue, AMF colonization and dependency were measured under four P concentrations: control (0 g P kg−1 ), low (0.05 g P kg−1 ), intermediate (0.2 g P kg−1 ) and high (2 g P kg−1 ) in different harvests. A complete randomized block design was applied. A. elongata’s growth was higher under -AMF in intermediate and high P concentrations, and the lowest growth corresponded to +AMF in the low and intermediate P concentration. We observed a negative effect on the root biomass under +AMF in intermediate P concentration, while the P concentration had a positive effect on the leaf area ratio. The AMF colonization in A. elongata decreased in the highest P concentration and it was favored under intermediate P concentration; while the low and the high concentrations generated a cost-benefit imbalance. Our results suggest that the performance of some plant species in soils with low P availability may not be favored by their association with AMF, but a synergy between AMF and intermediate P concentrations might drive A. elongata’s growth.  相似文献   

11.
The environmental changes arising from nitrogen (N) deposition and precipitation influence soil ecological processes in forest ecosystems. However, the corresponding effects of environmental changes on soil biota are poorly known. Soil nematodes are the important bioindicator of soil environmental change, and their responses play a key role in the feedbacks of terrestrial ecosystems to climate change. Therefore, to explore the responsive mechanisms of soil biota to N deposition and precipitation, soil nematode communities were studied after 3 years of environmental changes by water and/or N addition in a temperate forest of Changbai Mountain, Northeast China. The results showed that water combined with N addition treatment decreased the total nematode abundance in the organic horizon (O), while the opposite trend was found in the mineral horizon (A). Significant reductions in the abundances of fungivores, plant-parasites and omnivores-predators were also found in the water combined with N addition treatment. The significant effect of water interacted with N on the total nematode abundance and trophic groups indicated that the impacts of N on soil nematode communities were mediated by water availability. The synergistic effect of precipitation and N deposition on soil nematode communities was stronger than each effect alone. Structural equation modeling suggested water and N additions had direct effects on soil nematode communities. The feedback of soil nematodes to water and nitrogen addition was highly sensitive and our results indicate that minimal variations in soil properties such as those caused by climate changes can lead to severe changes in soil nematode communities.  相似文献   

12.
In many temperate terrestrial forest ecosystems, both natural human disturbances drive the reestablishment of forests. Succession in plant communities, in addition to reforestation following the creation of open sites through harvesting or natural disturbances, can affect forest faunal assemblages. Wild bees perform an important ecosystem function in human-altered and natural or seminatural ecosystems, as they are essential pollinators for both crops and wild flowering plants. To maintain high abundance and species richness for pollination services, it is important to conserve and create seminatural and natural land cover with optimal successional stages for wild bees. We examined the effects of forest succession on wild bees. In particular, we evaluated the importance of early successional stages for bees, which has been suspected but not previously demonstrated. A range of successional stages, between 1 and 178 years old, were examined in naturally regenerated and planted forests. In total 4465 wild bee individuals, representing 113 species, were captured. Results for total bees, solitary bees, and cleptoparasitic bees in both naturally regenerated and planted conifer forests indicated a higher abundance and species richness in the early successional stages. However, higher abundance and species richness of social bees in naturally regenerated forest were observed as the successional stages progressed, whereas the abundance of social bees in conifer planted forest showed a concave-shaped relationship when plotted. The results suggest that early successional stages of both naturally regenerated and conifer planted forest maintain a high abundance and species richness of solitary bees and their cleptoparasitic bees, although social bees respond differently in the early successional stages. This may imply that, in some cases, active forest stand management policies, such as the clear-cutting of planted forests for timber production, would create early successional habitats, leading to significant positive effects for bees in general.  相似文献   

13.
Anthropogenic nitrogen (N) enrichment can alter N dynamics associated with decomposing plant litter. However, it is unclear to what extent these alterations occur via microbial effects (e.g., changes in gene regulation, physiology, or community composition) versus plant litter effects (e.g., changes in composition of N and C compounds). To isolate microbial effects from plant litter effects, we collected plant litter from long-term N fertilized and control plots, reciprocally inoculated it with microbes from the two treatments, and incubated it in a common field setting for three months. We used quantum dots (QDs) to track fungal uptake of glycine and chitosan. Glycine is a relatively simple organic N compound; chitosan is more complex. We found that microbial and litter origins each contributed to a shift in fungal uptake capacities under N fertilization. Specifically, N fungi preferred glycine over chitosan, but control fungi did not. In comparison, litter effects were more subtle, and manifested as a three-way interaction between litter origin, microbial origin, and type of organic N (glycine versus chitosan). In particular, control fungi tended to target chitosan only when incubated with control litter, while N fungi targeted glycine regardless of litter type. Overall, microbial effects may mediate how N dynamics respond to anthropogenic N enrichment in ecosystems.  相似文献   

14.
15.
Increased nitrogen (N) deposition caused by human activities has altered ecosystem functioning and biodiversity. To understand the effects of altered N availability, we measured the abundance of arbuscular mycorrhizal fungi (AMF) and the microbial community in northern hardwood forests exposed to long-term (12 years) simulated N deposition (30 kg N ha−1 y−1) using phospholipid fatty acid (PLFA) analysis and hyphal in-growth bags. Intra- and extraradical AMF biomass and total microbial biomass were significantly decreased by simulated N deposition by 36, 41, and 24%, respectively. Both methods of extraradical AMF biomass estimation (soil PLFA 16:1ω5c and hyphal in-growth bags) showed comparable treatment responses, and extraradical biomass represented the majority of total (intra-plus extraradical) AMF biomass. N deposition also significantly affected the microbial community structure, leading to a 10% decrease in fungal to bacterial biomass ratios. Our observed decline in AMF and total microbial biomass together with changes in microbial community structure could have substantial impacts on the nutrient and carbon cycling within northern hardwood forest ecosystems.  相似文献   

16.
Greenhouse and field experiments were conducted to test the effect of a P-solubilizing isolate of Penicillium bilaji on the availability of Idaho rock phosphate (RP) in a calcareous soil. Under controlled greenhouse conditions, inoculation of soils with P. bilaji along with RP at 45 μg of P per g of soil resulted in plant dry matter production and P uptake by wheat (Triticum aestivum) and beans (Phaseolus vulgaris) that were not significantly different from the increases in dry matter production and P uptake caused by the addition of 15 μg of P per g of soil as triple superphosphate. Addition of RP alone had no effect on plant growth. Addition of vesicular-arbuscular mycorrhizal fungi was necessary for maximum effect in the sterilized soil in the greenhouse experiment. Under field conditions, a treatment consisting of RP (20 kg of P per ha of soil) plus P. bilaji plus straw resulted in wheat yields and P uptake equivalent to increases due to the addition of monoammonium phosphate added at an equivalent rate of P. RP added alone had no effect on wheat growth or P uptake. The results indicate that a biological system of RP solubilization can be used to increase the availability of RP added to calcareous soils.  相似文献   

17.
Tang  Bo  Man  Jing  Jia  Ruoyu  Wang  Yang  Bai  Yongfei 《Ecosystems》2021,24(5):1171-1183
Ecosystems - Grazing and arbuscular mycorrhizal fungi (AMF) influence soil nitrogen (N) cycling in grassland ecosystems. However, it remains unclear whether AMF mediate grazing effects on soil N...  相似文献   

18.
Yan  Guoyong  Xing  Yajuan  Liu  Guancheng  Huang  Binbin  Wang  Qinggui 《Ecosystems》2021,24(7):1608-1623
Ecosystems - Changes in precipitation frequency and intensity are predicted to be more intense and frequent accompanying climate change and may have immediate or potentially prolonged effects on...  相似文献   

19.
As nitrogen is known to be a limiting factor for plant growth, we were interested in the relationship between soil microbial activity and the nitrogen assimilation of 5 different halophytes from 4 saline sites near the lake “Neusiedlersee”, Austria. The following were studied between May and October 1985: nitrogen fixation (15N2 and acetylene reduction): N-mineralization; several soil characteristics and in vivo nitrate reductase activity of roots and shoots of these plants. NO?3, org. N- and carboxylate contents of both roots and shoots, as well as the effect of NO?3-fertilization on the amounts of these substances, were determined on plants growing in the field during a 3-day period in September 1985. Fertilization led to a decrease in acetylene reduction activity at most sites, and an increase in the nitrate reductase activity of the shoots of all plants. Overall, carboxylate and organic nitrogen contents of these halophytes did not change in response to fertilization. Only in the roots of Aster tripolium and Atriplex hastata was there a marked increase in the nitrate reductase activity in response to fertilization. Species growing at the same site, such as Plantago maritima and Lepidium crassifolium showed contrasting levels of assimilatory activity. Apparent low rates of ammonification and nitrification were detected in soils from the 4 sites. The results are discussed in relation to the nitrogen and carbon economies of the microorganisms and plants.  相似文献   

20.
Zheng  Mianhai  Zhang  Wei  Luo  Yiqi  Wan  Shiqiang  Fu  Shenglei  Wang  Senhao  Liu  Nan  Ye  Qing  Yan  Junhua  Zou  Bi  Fang  Chengliang  Ju  Yuxi  Ha  Denglong  Zhu  Liwei  Mo  Jiangming 《Ecosystems》2019,22(5):955-967
Ecosystems - Asymbiotic nitrogen (N) fixation (ANF) is an important source of N in pristine forests and is predicted to decrease with N deposition. Previous studies revealing N fixation in response...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号