首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcium entry through Ca(2+)-permeable AMPA/kainate receptors may activate signaling cascades controlling neuronal development. Using the fluorescent Ca(2+)-indicator Calcium Green 1-AM we showed that the application of kainate or AMPA produced an increase of intracellular [Ca(2+)] in embryonic chick retina from day 6 (E6) onwards. This Ca(2+) increase is due to entry through AMPA-preferring receptors, because it was blocked by the AMPA receptor antagonist GYKI 52466 but not by the N-methyl-D-aspartic acid (NMDA) receptor antagonist AP5, the voltage-gated Ca(2+) channel blockers diltiazem or nifedipine, or by the substitution of Na+ for choline in the extracellular solution to prevent the depolarizing action of kainate and AMPA. In dissociated E8 retinal cultures, application of glutamate, kainate, or AMPA reduced the number of neurites arising from these cells. The effect of kainate was prevented by the AMPA/kainate receptor antagonist CNQX and by GYKI 52466 but not by AP5, indicating that the reduction in neurite outgrowth resulted from the activation of AMPA receptors. Blocking Ca(2+) influx through L-type voltage-gated Ca(2+) channels with diltiazem and nifedipine prevented the effect of 10-100 microM kainate but not that of 500 microM kainate. In addition, joro spider toxin-3, a blocker of Ca(2+)-conducting AMPA receptors, prevented the effect of all doses of kainate. Neither GABA, which is depolarizing at this age in the retina, nor the activation of metabotropic glutamate receptors with tACPD mimicked the effects of AMPA receptor activation. Calcium entry via AMPA receptor channels themselves may therefore be important in the regulation of neurite outgrowth in developing chick retinal cells.  相似文献   

2.
Kainate receptors are ionotropic glutamate receptors located postsynaptically, mediating frequency-dependent transmission, and presynaptically, modulating transmitter release. In contrast to the excitatory postsynaptic kainate receptors, presynaptic kainate receptor can also be inhibitory and their effects may involve a metabotropic action. Arachidonic acid (AA) modulates most ionotropic receptors, in particular postsynaptic kainate receptor-mediated currents. To further explore differences between pre- and postsynaptic kainate receptors, we tested if presynaptic kainate receptors are affected by AA. Kainate (0.3-3 microM) and the kainate receptor agonist, domoate (60-300 nM), inhibited by 19-54% the field excitatory postsynaptic potential (fEPSP) slope in rat CA1 hippocampus, and increased by 12-32% paired-pulse facilitation (PPF). AA (10 microM) attenuated by 37-72% and by 62-66% the domoate (60-300 nM)-induced fEPSP inhibition and paired-pulse facilitation increase, respectively. This inhibition by AA was unaffected by cyclo- and lipo-oxygenase inhibitors, indomethacin (20 microM) and nordihydroguaiaretic acid (NDGA, 50 microM) or by the free radical scavenger, N-acetyl-L-cysteine (0.5 mM). The K+ (20 mM)-evoked release of [3H]glutamate from superfused hippocampal synaptosomes was inhibited by 18-39% by domoate (1-10 microM), an effect attenuated by 35-63% by AA (10 microM). Finally, the KD (40-55 nM) of the kainate receptor agonist [3H]-(2S,4R)-4-methylglutamate ([3H]MGA) (0.3-120 nM) binding to hippocampal synaptosomal membranes was increased by 151-329% by AA (1-10 microM). These results indicate that AA directly inhibits presynaptic kainate receptor controlling glutamate release in the CA1 area of the rat hippocampus.  相似文献   

3.
A contribution of necrosis and apoptotis as well as the particular apoptosis pathways in neuro-degeneration induced by glutamate and selective glutamate receptor agonists, NMDA and kainate, were studied. In experiments on primary neuron cultures of 7 days in vitro from embryonic rat cortex, the necrosis and apoptosis were recognized using vital fluorescence acridine orange and ethidium bromide staining. Immunostaining was used to visualize apoptotic peptides such as P53, Cas-3 and AIF. Death of neurons occurred by both necrosis and apoptosis following 240 min 3 mM glutamate, 30 microM NMDA and 30 microM kainate exposure. Quantities of necrotic neurons in the presence of NMDA and kainate were substantially reduced when compared to the glutamate action. The glutamate effects were realized through predominant activation of AMPA- and kainate receptors, since it could be greatly suppressed by 30 microM CNQX. AIF but not Cas-3, was found in a large amount of neurons when apoptosis was evoked by the selective NMDA receptor activation. On the contrary, during apoptosis induced by glutamate and kainate, many cells contained Cas-3 in nuclei rather than the AIF. The data suggest that apoptosis induced by the NMDA receptor activation develops through the caspase-3-independent pathway that involves direct AIF accumulation in nuclei. The AMPA/kainate receptor mediated apoptosis includes the caspase-3-dependent mechanism.  相似文献   

4.
We cultured a P19 mouse teratocarcinoma cell line and induced its neuronal differentiation to study the function of ionotropic glutamate receptors (GluRs) in early neuronal development. Immunocytochemical studies showed 85% neuronal population at 5 days in vitro (DIV) with microtubule-associated protein 2-positive staining. Thirty percent and 50% of the cells expressed the alpha-amino-3-hydroxy-5-methyl-4-isopropinonate (AMPA) receptor subunit, GluR2/3, and the kainate (kainic acid; KA) receptor subunit, GluR5/6/7, respectively. In Western blot analysis, the temporal expression of GluR2/3 began to appear at 3 DIV, whereas GluR5/6/7 was already expressed in the undifferentiated cells. P19-derived neurons began to respond to glutamate, AMPA and KA, but not to the metabotropic GluR agonist trans-1-aminocyclopentane-1,3-decarboxylic acid, by 5 DIV in terms of increases in intracellular calcium and phospholipase C-mediated poly-phosphoinositide turnover. Furthermore, KA reduced cell death of P19-derived neurons in both atmospheric and hypobaric conditions in a phospholipase C-dependent manner. The common AMPA/KA receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione, but not the AMPA receptor antagonist, 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide disodium, profoundly increased hypobaric insult-induced neurotoxicity. In a flow cytometry study, the nerve growth factor-mediated antiapoptotic effect was facilitated by AMPA, with an induction of TrkA, but not p75(NTR) expression. Therefore, AMPA and KA receptors might mediate neurotrophic functions to facilitate neurotrophic factor signaling to protect neurons against hypoxic insult in early neuronal development.  相似文献   

5.
The effects of glutamate agonists and their selective antagonists on the Ca2+-dependent and independent releases of [3H]GABA from rat coronal hippocampal slices were studied in a superfusion system. The Ca2+-dependent release evoked by glutamate, kainate and N-methyl-D-aspartate (NMDA) gradually declined with time despite the continuous presence of the agonists. Quisqualate (QA) caused a sustained release which exhibited no tendency to decline within the 20-min period of stimulation. This release was enhanced in Ca2+-free medium. The release evoked by QA in Ca2+-containing medium was significantly inhibited by (+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)cyclohept-5,10-imine hydrogen maleate (MK-801) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), showing that QA activates NMDA receptors directly or indirectly through (RS)--amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors. The inhibition of MK-801 was slightly diminished and that of CNQX totally abolished in Ca2+-free medium. Verapamil inhibited the QA-activated release in both Ca2+-containing and Ca2+-free media. The effect of QA but not that of AMPA was blocked in Ca2+-free medium by L(+)-2-amino-3-phosphonopropionate (L-AP3), a selective antagonist of the metabotropic glutamate receptor. It is suggested that the sustained release of GABA is also mediated partly by activation of metabotropic receptors and mobilization of Ca2+ from intracellular stores.  相似文献   

6.
Calcium entry through Ca2+‐permeable AMPA/kainate receptors may activate signaling cascades controlling neuronal development. Using the fluorescent Ca2+‐indicator Calcium Green 1‐AM we showed that the application of kainate or AMPA produced an increase of intracellular [Ca2+] in embryonic chick retina from day 6 (E6) onwards. This Ca2+ increase is due to entry through AMPA‐preferring receptors, because it was blocked by the AMPA receptor antagonist GYKI 52466 but not by the N‐methyl‐D ‐aspartic acid (NMDA) receptor antagonist AP5, the voltage‐gated Ca2+ channel blockers diltiazem or nifedipine, or by the substitution of Na+ for choline in the extracellular solution to prevent the depolarizing action of kainate and AMPA. In dissociated E8 retinal cultures, application of glutamate, kainate, or AMPA reduced the number of neurites arising from these cells. The effect of kainate was prevented by the AMPA/kainate receptor antagonist CNQX and by GYKI 52466 but not by AP5, indicating that the reduction in neurite outgrowth resulted from the activation of AMPA receptors. Blocking Ca2+ influx through L‐type voltage‐gated Ca2+ channels with diltiazem and nifedipine prevented the effect of 10–100 μM kainate but not that of 500 μM kainate. In addition, joro spider toxin‐3, a blocker of Ca2+‐conducting AMPA receptors, prevented the effect of all doses of kainate. Neither GABA, which is depolarizing at this age in the retina, nor the activation of metabotropic glutamate receptors with tACPD mimicked the effects of AMPA receptor activation. Calcium entry via AMPA receptor channels themselves may therefore be important in the regulation of neurite outgrowth in developing chick retinal cells. © 2001 John Wiley & Sons, Inc. J Neurobiol 49: 200–211, 2001  相似文献   

7.
8.
Glutamate-induced cobalt uptake reveals non-N-methyl-D-aspartate (non-NMDA) glutamate receptors (GluRs) in rat taste bud cells. However, it is not known which type of non-NMDA glutamate receptors is involved. We used a cobalt staining technique combined with pharmacological tests for kainate or alpha-amino-3-hydroxy-5-methyl-isoxazole-propionic acid (AMPA) receptors and/or immunohistochemistry against subunits of GluRs to examine the presence of non-NMDA receptors in rat foliate tastebud cells. Cobalt uptake into taste cells was elicited by treating taste buds with glutamate, kainate or SYM 2081, a kainate receptor agonist. Treating taste buds with AMPA or fluorowillardiine did not stimulate significant cobalt uptake. Moreover, 6-cyano-7-nitro-quinoxaline-2, 3-dione significantly reduced cobalt staining elicited by glutamate or kainate receptor agonists, but SYM 2206, an AMPA receptor antagonist, did not. Immunohistochemistry against subunits of GluRs reveals GluR6 and KA1-like immunoreactivity. Moreover, most glutamate-induced cobalt-stained cells showed GluR6 and KA1-like immunoreactivity. These results suggest that glutamate-induced cobalt uptake in taste cells occurs mainly via kainate type GluRs.  相似文献   

9.
It is known that glutamate is a major excitatory transmitter of sensory and cortical afferents to the thalamus. These actions are mediated via several distinct receptors with postsynaptic excitatory effects predominantly mediated by ionotropic receptors of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and N-methyl-D-aspartate varieties (NMDA). However, there are also other kinds of glutamate receptor present in the thalamus, notably the metabotropic and kainate types, and these may have more complex or subtle roles in sensory transmission. This paper describes recent electrophysiological experiments done in vitro and in vivo which aim to determine how the metabotropic and kainate receptor types can influence transmission through the sensory thalamic relay. A particular focus will be how such mechanisms might operate under physiological conditions.  相似文献   

10.
Effects of metabotropic glutamate receptors of the duration of posttetanic changes in monosynaptic excitatory postsynaptic potentials (mEPSP), evoked by afferent and reticulospinal input stimulation, were investigated in lumbar motoneurons of the frog isolated spinal cord. It was found that application of MAP4 (25 microM), a selective antagonist of group III of these receptors, prolonged posttetanic potentiation and depression of synaptic transmission, whereas activation of this group of metabotropic glutamate receptors by L-AP4 (1 mM), a selective agonist of these receptors, suppressed the amplitude of synaptic responses, but did not affect the dynamics of development of posttetanic changes. The NMDA receptor antagonist AP5 (50 microM), added to the perfusing solution, blocked completely the effects produced by MAP4. Neither selective antagonist MCCG (400 microM), nor agonist tACPD (50 microM) of group II metabotropic glutamate receptors affected the terms of mEPSP posttetanic potentiation and depression, although the latter, in contrast to the antagonist, in most cases increased the synaptic potential amplitude. The data obtained permit to suggest that group III metabotropic receptors may control the duration of posttetanic changes of synaptic transmission in the frog spinal motoneurons. The long-term changes in the investigated synapses seem to be mediated by activation of postsynaptic metabotropic glutamate receptors (most likely, of group I receptors), which is normally masked with activation of group III presynaptic autoreceptors. The mechanism of such an induction essentially depends on activation of NMDA type of inotropic glutamate receptors.  相似文献   

11.
β-N-Oxalylamino-L-Alanine Action on Glutamate Receptors   总被引:1,自引:1,他引:0  
beta-N-Oxalylamino-L-alanine (L-BOAA) is a non-protein excitatory amino acid present in the seed of Lathyrus sativus L. This excitotoxin has been characterized as the causative agent of human neurolathyrism, an upper motor neuron disease producing corticospinal dysfunction from excessive consumption of the lathyrus pea. Previous behavioral, tissue-culture, and in vitro receptor binding investigations revealed that L-BOAA might mediate acute neurotoxicity through quisqualate (QA)-preferring glutamate receptors. The present study demonstrates the stereospecific action of L-BOAA on glutamate receptor binding in whole mouse brain synaptic membranes. L-BOAA was most active in displacing thiocyanate (KSCN)-sensitive specific tritiated (RS)-alpha-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) binding (i.e., QA receptor) (Ki = 0.76 microM) with a rank-order potency of QA greater than kainate greater than N-methyl-D-aspartate (NMDA). By contrast, the nonneurotoxic D-BOAA isomer (100 microM) was essentially inactive in displacing radioligands for glutamate receptors, except the NMDA site, where it was equipotent with L-BOAA. Scatchard analysis of L-BOAA displacement of specific [3H]AMPA binding indicated competitive antagonism (KD: control, 135 nM; L-BOAA, 265 nM) without a significant change in QA-receptor density, and Hill plots yielded coefficients approaching unity. Differential L-BOAA concentration-dependent decreases in specific [3H]AMPA binding were observed in synaptic membranes, indicating that the neurotoxin was more potent in displacing specific binding from frontal cortex membranes, followed by that for corpus striatum, hippocampus, cerebellum, and spinal cord. (ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Choline acetyltransferase (ChAT) activity was reduced by more than 85% in cultured retina cells after 16 h treatment with 150 microM kainate (T(1/2) : 3.5 h). Glutamate, AMPA and quisqualate also inhibited the enzyme in equivalent proportion. Cell lesion measured by lactate dehydrogenase (LDH) release, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide - thiazolyl blue (MTT) reduction and microscopic observation was not detected even after 48 h with kainate. Other retina neurochemical markers were not affected by kainate and full recovery of the enzyme was achieved 9 days after kainate removal. Moreover, hemicolinium-3 sensitive choline uptake and hemicolinium-3 binding sites were maintained intact after kainate treatment. The immunoblot and immunohistochemical analysis of the enzyme revealed that ChAT molecules were maintained in cholinergic neurons. The use of antagonists showed that ionotropic and group 1 metabotropic receptors mediated the effect of glutamate on ChAT inhibition, in a calcium dependent manner. The quisqualate mediated ChAT inhibition and part of the kainate effect (30%) was prevented by 5 mM N(G)-nitro-L-arginine methyl ester (L-NAME). Veratridine (3 microM) also reduced ChAT by a Ca(2+) dependent, but glutamate independent mechanism and was prevented by 1 microM tetrodotoxin.  相似文献   

13.
In the present study we investigate the effects of a specific glutamate reuptake blocker, L-trans-pyrrolidine-3,4-dicarboxylic acid (PDC), on extracellular concentrations of glutamine and glutamate in the striatum of the freely moving rat. Intracerebral infusions of PDC (1, 2 and 4 mM) produced a dose-related increase in extracellular concentrations of glutamate and a dose-related decrease in extracellular concentrations of glutamine. These increases in extracellular glutamate and decreases in extracellular glutamine were significantly correlated. To investigate the involvement of ionotropic glutamate receptors in the decreases of extracellular glutamine produced by PDC, N-methyl-D-aspartate (NMDA) receptor antagonist and -amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/kainate receptor antagonist were used. Perfusion of the NMDA receptor antagonist blocked the decrease of extracellular glutamine but had no effect on the increase of extracellular glutamate, both produced by PDC. Perfusion of the AMPA/kainate receptor antagonist attenuated the increase of extracellular glutamate and not only blocked the decrease of extracellular glutamine but also produced a significant increase of extracellular glutamine. The results reported in this study suggest that both NMDA and AMPA/kainate glutamatergic receptors are involved in the regulation of extracellular glutamine.  相似文献   

14.
An overactivation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/kainate receptors has been implicated in the pathophysiology of oligodendrocyte damage in demyelinating disorders of the CNS. We decided to examine the effect of testosterone on excitotoxic death of oligodendrocytes because a gender difference exists in the incidence and disease course of multiple sclerosis. Short-term pure cultures of oligodendrocytes (4 days in vitro) were exposed to a brief pulse with kainate or AMPA + cyclothiazide for the induction of excitotoxicity. Exposure to testosterone enantate was slightly toxic per se and amplified both AMPA and kainate toxicity. Testosterone treatment induced all gene targets of p53, and amplified the induction of these genes induced by kainate. The effect of testosterone was mediated by the activation of androgen receptors and was resistant to the aromatase inhibitors, dl-aminoglutethimide and 4-hydroxyandrost-4-ene-3,17-dione. Testosterone treatment also potentiated the stimulation of 45Ca2+ influx induced by AMPA + cyclothiazide or kainate without changing the expression of the glutamate receptor (GluR) 1, -2/3, and -4 subunits of AMPA receptors or the GluR6/7 subunits of kainate receptors. We conclude that testosterone amplifies excitotoxic damage of oligodendrocytes acting at an early step of the death cascade triggered by AMPA/kainate receptors.  相似文献   

15.
16.
Abstract: In vivo microdialysis was used to assess the hypothesis that the stress-induced increase in dopamine release in the prefrontal cortex is mediated by stress-activated glutamate neurotransmission in this region. Local perfusion of an α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/kainate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione, blocked the stress-induced increase in dopamine levels, whereas an NMDA receptor antagonist, 2-amino-5-phosphonopentanoic acid, at the dose tested, was not able to alter this response significantly. These data indicate that the effect of stress on dopamine release in the prefrontal cortex is mediated locally by activation of AMPA/kainate receptors, which modulate the release of dopamine in this region.  相似文献   

17.
Using cultured cerebral cortical neurons at mature stages (9 days in culture, d.i.c.) it was demonstrated that glutamate, NMDA (N-methyl-D-aspartate) and to a lesser extent KA (kainate) increase the intracellular cGMP concentration ([cGMP]i) whereas no such effect was observed after exposure of the cells of QA (quisqualate) and AMPA (2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionate). No effect of glutamate, NMDA and KA was observed in immature neurons (2 d.i.c.). The pharmacology of these cGMP responses was investigated using the glutamate antagonists APV (2-amino-5-phosphonovalerate) with selectivity for NMDA receptors, CNQX (6-cyano-7-nitro-quinoxaline-2,3-dione) with selectivity for non-NMDA receptors and the novel KA selective antagonists AMOA (2-amino-3-[3-(carboxymethoxy)-5-methylisoxazol-4-yl]propionate) and AMNH (2-amino-3-[2-(3-hydroxy-5-methylisoxazol-4-yl)methyl-5-methyl-3-oxoisoxazolin-4-yl]propionate). In addition, the cytotoxicity of glutamate, NMDA and KA was studied and found to be enhanced by addition of the non-metabolizable cGMP analogue 8-Br-cGMP. On the contrary, the toxicity of QA and AMPA was not affected by 8-Br-cGMP. Pertussis toxin augmented the toxicity elicited by glutamate, NMDA, KA and QA but not that induced by AMPA. On the other hand, only glutamate and KA induced toxicity was potentiated by cholera toxin, which also enhanced the stimulatory effect of glutamate and NMDA but not that of KA on the cellular cGMP content. The toxicity as well as the effects on intracellular cGMP levels could be antagonized by the specific excitatory amino acid (EAA) antagonists. These results suggest that the mechanisms by which the various excitatory amino acids exert cytotoxicity are different, and that increased cGMP levels may participate in the mediation of glutamate, NMDA or KA induced toxicity but less likely in QA and AMPA mediated toxicity. Furthermore, G-proteins or other pertussis or cholera toxin sensitive entities seem to be involved in the cytotoxic action of all excitatory amino acids except AMPA.  相似文献   

18.
Three major subtypes of glutamate receptors that are coupled to cation channels--N-methyl-D-aspartate (NMDA), kainate, and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors--are known as ionotropic receptors in the mammalian CNS. Recently, an additional subtype that is coupled to GTP binding proteins and stimulates (or inhibits) metabolism of phosphoinositides has been proposed as a metabotropic receptor. Incubation of dispersed hippocampal cells from adult rats with glutamate or NMDA decreased forskolin-stimulated cyclic AMP (cAMP) accumulation; half-maximal effects were obtained with 5.6 +/- 2.2 and 6.4 +/- 2.3 microM, respectively. Kainate and quisqualate were less potent. The effect of glutamate was antagonized by 2,3-diaminopropionate and 2-amino-5-phosphonovalerate, NMDA/glutamate receptor antagonists, but not by 0.5 microM Joro spider toxin, a specific blocker of the AMPA receptor. The inhibitory effect of glutamate on cAMP formation was not blocked by 2 microM tetrodotoxin or by the absence of Ca2+. In hippocampal membranes, glutamate, similar to carbachol, inhibited adenylate cyclase activity in a GTP-dependent manner. These findings suggest that the glutamate inhibition of adenylate cyclase is direct and is not due to a result of the release of other neurotransmitters. The effect of glutamate on cAMP accumulation was observed in an assay medium containing 0.7 mM MgCl2, which is known to inhibit both ionotropic NMDA receptor/channels in the hippocampus and metabotropic NMDA receptors in the cerebellum. The inhibitory effect of glutamate was abolished by pertussis toxin treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Abstract: l -Glutamate, NMDA, dl -α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA), and kainate (KA) increased the release of somatostatin-like immunoreactivity (SRIF-LI) from primary cultures of rat hippocampal neurons. In Mg2+-containing medium, the maximal effects (reached at ∼100 µ M ) amounted to 737% (KA), 722% (glutamate), 488% (NMDA), and 374% (AMPA); the apparent affinities were 22 µ M (AMPA), 39 µ M (glutamate), 41 µ M (KA), and 70 µ M (NMDA). The metabotropic receptor agonist trans -1-aminocyclopentane-1,3-dicarboxylate did not affect SRIF-LI release. The release evoked by glutamate (100 µ M ) was abolished by 10 µ M dizocilpine (MK-801) plus 30 µ M 1-aminophenyl-4-methyl-7,8-methylenedioxy-5 H -2,3-benzodiazepine (GYKI 52466). Moreover, the maximal effect of glutamate was mimicked by a mixture of NMDA + AMPA. The release elicited by NMDA was sensitive to MK-801 but insensitive to GYKI 52466. The AMPA- and KA-evoked releases were blocked by 6,7-dinitroquinoxaline-2,3-dione (DNQX) or by GYKI 52466 but were insensitive to MK-801. The release of SRIF-LI elicited by all four agonists was Ca2+ dependent, whereas only the NMDA-evoked release was prevented by tetrodotoxin. Removal of Mg2+ caused increase of basal SRIF-LI release, an effect abolished by MK-801. Thus, glutamate can stimulate somatostatin release through ionotropic NMDA and AMPA/KA receptors. Receptors of the KA type (AMPA insensitive) or metabotropic receptors appear not to be involved.  相似文献   

20.
Activation of astrocytes is a common feature of neurological disorders, but the importance of this phenomenon for neuronal outcome is not fully understood. Treatment of mixed hippocampal cultures of neurones and astrocytes from day 2-4 in vitro (DIV 2-4) with 1 micro m cytosine arabinofuranoside (AraC) caused an activation of astrocytes as detected by a stellate morphology and a 10-fold increase in glial fibrillary acidic protein (GFAP) level compared with vehicle-treated cultures. After DIV 12, we determined 43% and 97% damaged neurones 18 h after the exposure to glutamate (1 mm, 1 h) in cultures treated with vehicle and AraC, respectively. Dose-response curves were different with a higher sensitivity to glutamate in cultures treated with AraC (EC50 = 0.01 mm) than with vehicle (EC50 = 0.12 mm). The susceptibility of neurones to 1 mm glutamate did not correlate with the percentage of astrocytes and was insensitive to an inhibition of glutamate uptake. In cultures treated with vehicle and AraC, glutamate-induced neurotoxicity was mediated through stimulation of the NR1-NR2B subtype of NMDA receptors, because it was blocked by the NMDA receptor antagonist MK-801 and the NR1-NR2B selective receptor antagonist ifenprodil. Protein levels of the NR2A and NR2B subunits of NMDA receptor were similar in cultures treated with vehicle or AraC. AraC-induced changes in glutamate-induced neurotoxicity were mimicked by activation of protein kinase C (PKC), whereas neuronal susceptibility to glutamate was reduced in cultures depleted of PKC and treated with AraC suggesting that the increase in glutamate toxicity by activated astrocytes involves activation of PKC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号