首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mechanism whereby tertiary amine local anesthetics affect the activity of membrane proteins was investigated by studying the interaction of phenothiazines with mitochondrial ATP synthase. These drugs caused inhibition of the activity of the membrane-bound enzyme at concentrations that do not perturb the phospholipid bilayer. The inhibitory effect appeared consequent to interaction with multiple sites located on both the F1 and the F0 components of the enzyme complex, since: (a) Dixon plots were parabolic; (b) the membrane-bound enzyme was more sensitive to the drug effect than the isolated F1 component; (c) conditions that decreased oligomycin sensitivity also decreased the sensitivity to phenothiazines; (d) irreversible binding of photochemically activated phenothiazines to the ATP synthase complex, followed by detachment of the F1 moiety and reconstitution with purified F1 resulted in an inhibited enzyme complex. These data are interpreted as indicating that tertiary amine local anesthetics affect the activity of membrane proteins by interacting with hydrophobic sites located on both their integral and peripheral domains.  相似文献   

2.
Previous studies of the rate constants for the elementary steps of ATP hydrolysis by the soluble and membrane-bound forms of beef heart mitochondrial F1 supported the proposal that ATP is formed in high-affinity catalytic sites of the enzyme with little or no change in free energy and that the major requirement for energy in oxidative phosphorylation is for the release of product ATP.The affinity of the membrane-bound enzyme for ATP during NADH oxidation was calculated from the ratio of the rate constants for the forward binding step (k +1) and the reverse dissociation step (k –1).k –1 was accelerated several orders of magnitude by NADH oxidation. In the presence of NADH and ADP an additional enhancement ofk –1 was observed. These energy-dependent dissociations of ATP were sensitive to the uncoupler FCCP.k +1 was affected little by NADH oxidation. The dissociation constant (K d ATP) increased many orders of magnitude during the transition from nonenergized to energized states.  相似文献   

3.
4.
The effect of phosphate on the inhibition by 4-chloro-7-nitrobenzofurazan of the ATPase activity of the proton-translocating ATP synthase in heart submitochondrial particles was investigated. Binding of phosphate protected strongly against the inhibition. A dissociation constant of 0.2 mM was determined for the enzyme X Pi complex and shown to be independent of pH in the range 7.0-8.0. The protective effect of phosphate was mimicked by arsenate but not by sulphate or malonate. Similar results were obtained for the enzyme from Paracoccus denitrificans. 2,4-Dinitrophenol enhanced phosphate binding to the mitochondrial enzyme since the protective effect of phosphate was increased. The data are compatible with protection arising from binding of phosphate to a catalytic site.  相似文献   

5.
A brief summary of the factors that control synthesis and hydrolysis of ATP by the mitochondrial H+-ATP synthase is made. Particular emphasis is placed on the role of the natural ATPase inhibitor protein. It is clear from the existing data obtained with a number of agents that there is no correlation between variations of the rate of ATP hydrolysis and ATP synthesis as driven by respiration. The mechanism by which each condition differentially affects the two activities is not entirely known. For the case of the natural ATPase inhibitor protein, it appears that the protein controls the kinetics of the enzyme. This control seems essential for achieving maximal accumulation of ATP during electron transport in systems that contain relatively high concentrations of ATP.  相似文献   

6.
The mitochondrial ATP synthase from yeast S. cerevisiae has been genetically modified, purified in a functional form, and characterized with regard to lipid requirement, compatibility with a variety of detergents, and the steric limit with rotation of the central stalk has been assessed. The ATP synthase has been modified on the N-terminus of the β-subunit to include a His(6) tag for Ni-chelate affinity purification. The enzyme is purified by a two-step procedure from submitochondrial particles and the resulting enzyme demonstrates lipid dependent oligomycin sensitive ATPase activity of 50 units/mg. The yeast ATP synthase shows a strong lipid selectivity, with cardiolipin (CL) being the most effective activating lipid and there are 30 moles CL bound per mole enzyme at saturation. Green Fluorescent Protein (GFP) has also been fused to the C-terminus of the ε-subunit to create a steric block for rotation of the central stalk. The ε-GFP fusion peptide is imported into the mitochondrion, assembled with the ATP synthase, and inhibits ATP synthetic and hydrolytic activity of the enzyme. F(1)F(o) ATP synthase with ε-GFP was purified to homogeneity and serves as an excellent enzyme for two- and three-dimensional crystallization studies.  相似文献   

7.
N Ahn  J P Klinman 《Biochemistry》1983,22(13):3096-3106
Dopamine beta-monooxygenase catalyzes a reaction in which 2 mol of protons are consumed for each turnover of substrate. Studies of the pH dependence of initial rate parameters (Vmax and Vmax/Km) and their primary hydrogen isotope effects show that at least two ionizable residues are involved in catalysis. One residue (B1, pK = 5.6-5.8) must be protonated prior to the carbon-hydrogen bond cleavage step, implying a role for general-acid catalysis in substrate activation. A second protonated residue (B2, pK = 5.2-5.4) facilitates, but is not required for, product release. Recent measurement of the intrinsic isotope effect for dopamine beta-monoxygenase [Miller, S. M., & Klinman, J. P. (1983) Biochemistry (preceding paper in this issue)] allows an analysis of the pH dependence of rate constant ratios and in selected instances individual rate constants. We demonstrate large changes in the rate-determining step as well as an unprecedented inversion in the kinetic order of substrate release from ternary complex over an interval of 2 pH units. Previously, fumarate has been used in dopamine beta-monooxygenase assays because of its property of enzyme activation. Studies of the pH behavior in the presence of saturating concentrations of fumarate have shown two causes of the activation: (i) fumarate perturbs the pK of B1 to pK = 6.6-6.8 such that the residue remains protonated and the enzyme optimally active over a wider pH range; (ii) fumarate decreases the rate of dopamine release from the ternary enzyme-substrate complex, increasing the equilibrium association constant for dopamine binding. Both effects are consistent with a simple electrostatic stabilization of bound cationic charges by the dianionic form of fumarate.  相似文献   

8.
Effect of hydrostatic pressure on the mitochondrial ATP synthase   总被引:2,自引:0,他引:2  
The effects of hydrostatic pressure on three different preparations of mitochondrial H+-ATPase were investigated by studies of the hydrolytic activity, of the spectral shift and quantum yield of the intrinsic protein fluorescence, and of filtration chromatography. Both membrane-bound and detergent-solubilized forms of the mitochondrial F0-F1 complex were reversibly inactivated in the pressure range of 600-1800 bar, whereas with soluble F1-ATPase the inactivation was irreversible. Pressure inactivation of soluble F1-ATPase was facilitated by decreasing the protein concentration, indicating that dissociation is an important factor. In the presence of 30% glycerol, soluble F1-ATPase becomes inactivated by pressure in a reversible fashion, recovering the original activity. ATPase activity measured in an aqueous medium returns to the original values when incubated under high pressure in a glycerol-containing medium without substrate and is even enhanced when Mg-ATP is present. ATP hydrolysis returns to 80% of its original value in the case of the F0-F1 complex. Fluorescence studies under pressure revealed a red shift in the spectral distribution of the emission of tyrosine fluorescence of soluble F1-ATPase. A decrease in the quantum yield of intrinsic fluorescence was also observed upon subjection to pressure. The fluorescence intensity decreased monotonically as a function of pressure when the sample was in an aqueous medium, whereas it presented a biphasic behavior in a 30% glycerol medium. Gel filtration studies demonstrated that the hydrodynamic properties of the F1-ATPase are preserved if the enzyme is subjected to pressure in the presence of glycerol but they are modified when the same procedure is performed in an aqueous medium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
10.
J Miki  M Maeda  Y Mukohata  M Futai 《FEBS letters》1988,232(1):221-226
cDNA clones encoding the gamma-subunit of chloroplast ATP synthase were isolated from a spinach library using synthetic oligonucleotide probes. The predicted amino acid sequence indicated that the mature chloroplast gamma-subunit consists of 323 amino acid residues and is highly homologous (55% identical residues) with the sequence of the cyanobacterial subunit. The positions of the four cysteine residues were identified. The carboxyl-terminal region of the chloroplast gamma-subunit is highly homologous with those of the gamma-subunits from six other sources (bacteria and mitochondria) sequenced thus far.  相似文献   

11.
12.
13.
14.
A novel series of pyridazinone analogs has been developed as potent β-1,3-glucan synthase inhibitors through structure-activity relationship study of the lead 5-[4-(benzylsulfonyl)piperazin-1-yl]-4-morpholino-2-phenyl-pyridazin-3(2H)-one (1). The effect of changes to the core structure is described in detail. Optimization of the sulfonamide moiety led to the identification of important compounds with much improved systematic exposure while retaining good antifungal activity against the fungal strains Candida glabrata and Candida albicans.  相似文献   

15.
In our recent publication, we describe the local anesthetic (LA) inhibition of the prokaryotic voltage gated sodium channel NaChBac. Despite the numerous functional and putative structural differences with the mammalian sodium channels, the data show that LA compounds effectively and reversibly inhibit NaChBac channels in a concentration range similar to resting blockade on eukaryotic Navs. In addition to current reduction, LA application accelerated channel inactivation kinetics of NaChBac which could be accounted for in a simple state-model whereby local anesthetics increase the probability of entering the inactivated state. We have further explored what state (or states) local anesthetic blockade of NaChBac could pertain to eukaryotic sodium channels, and what molecular similarities exist between these disparate channel families. Here we show that the rate of recovery from inactivation remains unaffected in the presence of local anesthetics. Further, we show that two sites that support use-dependent inhibition in eukaryotic channels, do not affect block to the same extent when mutated in NaChBac channels. The data indicate that the molecular determinants and the inherent mechanisms for LA block are likely to be divergent between bacterial and eukaryotic Navs, but future experiments will help define possible similarities.  相似文献   

16.
In our recent publication, we describe the local anesthetic (LA) inhibition of the prokaryotic voltage gated sodium channel NaChBac. Despite the numerous functional and putative structural differences with the mammalian sodium channels, the data show that LA compounds effectively and reversibly inhibit NaChBac channels in a concentration range similar to resting blockade on eukaryotic Navs. In addition to current reduction, LA application accelerated channel inactivation kinetics of NaChBac which could be accounted for in a simple state-model whereby local anesthetics increase the probability of entering the inactivated state. We have further explored what state (or states) local anesthetic blockade of NaChBac could pertain to eukaryotic sodium channels, and what molecular similarities exist between these disparate channel families. Here we show that the rate of recovery from inactivation remains unaffected in the presence of local anesthetics. Further, we show that two sites that support use-dependent inhibition in eukaryotic channels, do not affect block to the same extent when mutated in NaChBac channels. The data indicate that the molecular determinants and the inherent mechanisms for LA block are likely to be divergent between bacterial and eukaryotic Navs, but future experiments will help define possible similarities.  相似文献   

17.
18.
The present structure-activity relationship (SAR) study focused on chemical modifications of the structure of the local anesthetic lidocaine, and indicated analogues having reduced anesthetic potency, but with superior potency relative to the prototype in preventing anaphylactic or histamine-evoked ileum contraction. From the SAR analysis, 2-(diethylamino)-N-(trifluoromethyl-phenyl) and 2-(diethylamino)-N-(dimethyl-phenyl) acetamides were selected as the most promising compounds. New insights into the applicability of non-anesthetic lidocaine derivatives as templates in drug discovery for allergic syndromes are provided.  相似文献   

19.
We have performed molecular docking on quinazoline antifolates complexed with human thymidylate synthase to gain insight into the structural preferences of these inhibitors. The study was conducted on a selected set of one hundred six compounds with variation in structure and activity. The structural analyses indicate that the coordinate bond interactions, the hydrogen bond interactions, the van der Waals interactions as well as the hydrophobic interactions between ligand and receptor are responsible simultaneously for the preference of inhibition and potency. In this study, fast flexible docking simulations were performed on quinazoline antifolates derivatives as human thymidylate synthase inhibitors. The results indicated that the quinazoline ring of the inhibitors forms hydrophobic contacts with Leu192, Leu221 and Tyr258 and stacking interaction is conserved in complex with the inhibitor and cofactor.  相似文献   

20.
Thymidylate synthase (TS) is a well-recognized target for anticancer chemotherapy. Due to its key role in the sole de novo pathway for thymidylate synthesis and, hence, DNA synthesis, it is an essential enzyme in all life forms. As such, it has been recently recognized as a valuable new target against infectious diseases. There is also a pressing need for new antimicrobial agents that are able to target strains that are drug resistant toward currently used drugs. In this context, species specificity is of crucial importance to distinguish between the invading microorganism and the human host, yet thymidylate synthase is among the most highly conserved enzymes. We combine structure-based drug design with rapid synthetic techniques and mutagenesis, in an iterative fashion, to develop novel antifolates that are not derived from the substrate and cofactor, and to understand the molecular basis for the observed species specificity. The role of structural and computational studies in the discovery of nonanalog antifolate inhibitors of bacterial TS, naphthalein and dansyl derivatives, and in the understanding of their biological activity profile, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号