首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Palynology is the study of fossil pollen and spores, and these tiny grains can provide fundamental information about past climates on Earth. Among their many unique and useful properties, pollen and spores are composed of some of the most chemically resistant organic compounds found in nature. They are also produced in vast quantities and are unique to the specific plant from which they originate. All these features make them ideal to reconstruct past climates from both recent history as well as from the ancient past. The purpose of this activity is to get students familiar with palynology and how scientists study climate change. It is based on real palynological data acquired from Antarctic cores obtained recently from the ANDRILL and SHALDRIL drilling campaigns. In order for students to understand this research and its importance, they will separate and identify pollen and spores from a simulated core sample in which different species of plants are represented as different colors of glitter. Students will compare the types and abundance of pollen and spores found in each layer of the core sample and research the climate preferences of the types of plants recovered in order to reconstruct the past climates of Antarctica.  相似文献   

2.
Monosulcate pollen was produced by at least six plant orders in the Mesozoic. Megafossils of these orders are abundant in many Mesozoic sediments, but dispersed monosulcate pollen grains are commonly less than 10% of total sporomorphs (spores and pollen) in a sample. This paper presents possible explanations for the different relative frequencies of megafossils and pollen grains of monosulcate-producing plants (some of the explanations apply to only a few taxa): fragility of the pollen exines, destruction of the pollen on the plant by insects, poor pollen dispersal because of zoophily and small plant size, and, probably most importantly, overrepresentation of the plants by their generally deciduous leaves. Mesozoic monosulcate pollen was different in several ways from pollen of modern gymnosperms; furthermore, monosulcate-producing plants were not as abundant in the Mesozoic vegetation as has been generally thought.  相似文献   

3.
Palynology, which is the study of pollen and spores in an archaeological or geological context, has become a well-established research tool leading to many significant scientific developments. The term palynomorph includes pollen of spermatophytes, spores of fungi, ferns, and bryophytes, as well as other organic-walled microfossils, such as dinoflagellates and acritarches. Advances in plant genomics have had a high impact on the field of forensic botany. Forensic palynology has also been used and applied more recently to criminal investigation in a meaningful way. However, the use of pollen DNA profiling in forensic investigations has yet to be applied. There were earlier uses of dust traces in some forensic analyses that considered pollen as a type of botanical dust debris. Pollen grains can be studied for comparative morphological data, clues to unexpected aspects relating to breeding systems, pollination biology and hybridization. This can provide a better understanding of the entire biology of the group under investigation. Forensic palynology refers to the use of pollen and other spores when it is used as evidence in legal cases to resolve criminal issues by proving or disproving relationships between people and crime scenes. This overview describes the various contributions and the significance of palynology, its applications, different recent approaches and how it could be further employed in solving criminal investigations.  相似文献   

4.
Current evidence suggests that plants in biodiversity hotspots suffer more from pollen limitation of reproduction than those in lower diversity regions, primarily due to the response of self‐incompatible species. Species in biodiversity hotspots may thus be more at risk of limited reproduction and subsequent population decline. Should these species have restricted ranges (i.e. be endemics to a certain region), pollen limitation within highly diverse regions may pose an important threat to global plant biodiversity. We further dissect the global pattern by exploring whether pollen limitation of range‐restricted (endemic) species is distinctive and/or relates differently to species diversity than that of widespread (non‐endemic) species. To provide a preliminary test of this prediction we conducted both cross‐species and comparative phylogenetic meta‐analyses to determine the effect of endemism on the magnitude of pollen limitation and its relationship with regional species richness. Our data set included 287 plant species belonging to 78 families distributed world‐wide. Our results revealed that endemism and self‐compatibility contribute to the global association between pollen limitation and species richness. Self‐incompatible species were more pollen limited than self‐compatible ones, and the PICs analysis indicated that transitions to endemism were associated with transitions to self‐compatibility. The relationship between pollen limitation and species richness was significant only for the self‐incompatible species, and was monotonically increasing in non‐endemic species but accelerating in the endemic species. Thus, self‐incompatible endemic species from biodiversity hotspots are at the greatest risk of pollination failure, a previously unknown aspect suggesting this group of species as a top priority for future development of conservation strategies. In contrast, reproduction of self‐compatible species appears to be unrelated to plant diversity, although we caution that current data do not account for the reproductive limitation due to the quality of pollen received. Understanding the mechanisms underlying these patterns requires further investigation into plant–plant pollinator mediated interactions and the dynamics of pollen transfer in communities differing in species diversity.  相似文献   

5.
The movement of pollen grains from anthers to stigmas, often by insect pollinator vectors, is essential for plant reproduction. However, pollen is also a unique vehicle for viral spread. Pollen-associated plant viruses reside on the outside or inside of pollen grains, infect susceptible individuals through vertical or horizontal infection pathways, and can decrease plant fitness. These viruses are transferred with pollen between plants by pollinator vectors as they forage for floral resources; thus, pollen-associated viral spread is mediated by floral and pollen grain phenotypes and pollinator traits, much like pollination. Most of what is currently known about pollen-associated viruses was discovered through infection and transmission experiments in controlled settings, usually involving one virus and one plant species of agricultural or horticultural interest. In this review, we first provide an updated, comprehensive list of the recognized pollen-associated viruses. Then, we summarize virus, plant, pollinator vector, and landscape traits that can affect pollen-associated virus transmission, infection, and distribution. Next, we highlight the consequences of plant–pollinator–virus interactions that emerge in complex communities of co-flowering plants and pollinator vectors, such as pollen-associated virus spread between plant species and viral jumps from plant to pollinator hosts. We conclude by emphasizing the need for collaborative research that bridges pollen biology, virology, and pollination biology.  相似文献   

6.
A well-preserved macroflora and rich palynological assemblages corresponding to the Camarillas Formation (early-middle Barremian) in the San Cristóbal and Galve Mine sites from the Galve sub-basin in northeastern Spain are presented here. These remains represent the first fossil plant evidence from these deposits. Within plant macroremains, the cheirolepidiacean Pseudofrenelopsis aff. varians (Fontaine) Watson has been found. The palynological assemblage yielded well-preserved spores and pollen grains, mainly dominated by the genus Classopollis. Spores are also abundantly represented by schizaeacean spores (Cicatricosisporites and Plicatella). This spore assemblage supports an early-middle Barremian age for these localities. It is noteworthy that small basal angiosperm pollen grains of the genera Crassipollis and Retimonocolpites, together with other indeterminate grains, have been reported here. This flora constitutes the primary food producer for dinosaur at that time, and thus the information of the flora is important for the understanding of the ecological background for the dinosaur evolution during the Early Cretaceous.  相似文献   

7.
花粉培养又称为游离小孢子培养,指将发育到一定阶段的花粉从花药中游离出来成为分散或游离状态,通过培养使花粉粒脱分化,进而发育成完整植株的过程。花粉培养的主要目的是获得单倍体植株,进而得到双单倍体(double haploid,DH)植株,最终获得纯合系物种。本文对花粉培养形成植株的物种信息进行了收集整理,概述了国内外花粉培养的一些最新研究进展,包括影响花粉培养形成胚的因素以及提高花粉胚产量的措施,并对花粉培养的前景进行了展望。  相似文献   

8.
花粉培养又称为游离小孢子培养,指将发育到一定阶段的花粉从花药中游离出来成为分散或游离状态,通过培养使花粉粒脱分化,进而发育成完整植株的过程。花粉培养的主要目的是获得单倍体植株,进而得到双单倍体(double haploid,DH)植株,最终获得纯合系物种。本文对花粉培养形成植株的物种信息进行了收集整理,概述了国内外花粉培养的一些最新研究进展,包括影响花粉培养形成胚的因素以及提高花粉胚产量的措施,并对花粉培养的前景进行了展望。  相似文献   

9.
Eudicot flowering plants comprise roughly 70% of land plant species diversity today, but their early evolution is not well understood. Fossil evidence has been largely restricted to their distinctive tricolpate pollen grains and this has limited our understanding of the ecological strategies that characterized their primary radiation. I describe megafossils of an Early Cretaceous eudicot from the Potomac Group in Maryland and Virginia, USA that are complete enough to allow reconstruction of important life-history traits. I draw on quantitative and qualitative analysis of functional traits, phylogenetic analysis and sedimentological evidence to reconstruct the biology of this extinct species. These plants were small and locally rare but widespread, fast-growing herbs. They had complex leaves and they were colonizers of bright, wet, disturbance-prone habitats. Other early eudicot megafossils appear to be herbaceous rather than woody, suggesting that this habit was characteristic of their primary radiation. A mostly herbaceous initial diversification of eudicots could simultaneously explain the heretofore sparse megafossil record as well as their rapid diversification during the Early Cretaceous because the angiosperm capacity for fast reproduction and fast evolution is best expressed in herbs.  相似文献   

10.
辽河盆地大民屯凹陷沈249井早白垩世九佛堂组孢粉组合   总被引:1,自引:1,他引:0  
沈249井九佛堂组孢粉材料是目前所知辽河盆地孢粉类型最丰富、数量最多且保存最完好,可确定63属,包括蕨类植物孢子40属和裸子植物花粉23属;根据孢粉组合特征,可称其为Cicatricosisporites Concavissimi sporites Classopollis孢粉组合,具有裸子植物花粉相对含量明显较高、分异性较低,而蕨类植物孢子分异性明显较高、相对含量较低的特点;该组合与辽西九佛堂组、内蒙古二连盆地赛汉塔拉组一段的孢粉组合具有很强的一致性。本文资料可弥补辽河盆地九佛堂组孢粉组合的空白,并为深入认识我国北方区九佛堂组沉积时期植物群特征提供重要的帮助。  相似文献   

11.
Pollen and spores are biological particles that are ubiquitous to the atmosphere and are pathologically significant, causing plant diseases and inhalant allergies. One of the main objectives of aerobiological surveys is forecasting. Prediction models are required in order to apply aerobiological knowledge to medical or agricultural practice; a necessary condition of these models is not to be chaotic. The existence of chaos is detected through the analysis of a time series. The time series comprises hourly counts of atmospheric pollen grains obtained using a Burkard spore trap from 1987 to 1989 at Mar del Plata. Abraham's method to obtain the correlation dimension was applied. A low and fractal dimension shows chaotic dynamics. The predictability of models for atomspheric pollen forecasting is discussed.  相似文献   

12.
The amount and genetic composition of pollen grains that are transported to flowers influence the reproduction and fitness of plants. Despite the importance of insect-pollination systems, an understanding of those systems is still lacking due to the absence of a genetic analysis of pollen grains that are transported to flowers. We evaluated the pollination efficiencies of bumblebees (Apidae, Bombus spp.), flower beetles (Scarabaeidae, subfamily Cetoniinae, Protaetia and Eucetonia sp.), and small beetles (Lagriidae, Arthromacra sp.) that visited the flowers of Magnolia obovata (Magnoliaceae) using quantitative (flower visitation frequency, amount of adherent pollen per insect) and qualitative (origin and genetic diversity of adherent pollen per insect) criteria. Most of the pollen adhering to bumblebees and small beetles was self-pollen. This result suggests that visitation by these insects may cause geitonogamous pollen flow and negatively affect the reproduction of M. obovata, causing inbreeding depression. In contrast, flower beetles transported large amounts of genetically diverse outcross pollen. Our results suggest that certain beetle species contribute quantitatively and qualitatively to the pollination of M. obovata. Direct genetic analysis of pollen grains will advance our understanding of plant mating systems and may shed light on the mutualism and coevolution of plants and flower visitors.  相似文献   

13.
The rate of deposition of 20–30 μm diameter particles, including spores and pollen grains, on plant and other surfaces, is determined, first, by the frequency at which particles strike the surfaces and, secondly, by the proportion retained on the surface rather than rebounding into the airstream. Spores and pollen grains tagged with a radioactive marker were used to show that the impaction efficiency on leaves and stems depends very much on whether or not the surfaces are sticky or moist. If they are, the rate of deposition may approach that predicted aerodynamically. If the plant surfaces are dry, there is saltation of some spores and the effective rate of deposition is greatly reduced.  相似文献   

14.
中国红树植物花粉形态   总被引:12,自引:0,他引:12  
刘兰芳  唐绍清   《广西植物》1989,9(3):221-232+285
红树林是热带海岸的特殊植被类型。红树植物花粉已被证实加入海泥沉积,因此,可作为海滨、浅海相的直接标志。本文对分布于我国的红树植物22科29属40种以及寄生在红树植物上的桑寄生科植物3属3种进行光学显微镜及扫描电子显微镜的观察,以期为海洋地质勘探提供参考依据。  相似文献   

15.

Background and Aims

Insufficient pollination is a function of quantity and quality of pollen receipt, and the relative contribution of each to pollen limitation may vary with intrinsic plant traits and extrinsic ecological properties. Community-level studies are essential to evaluate variation across species in quality limitation under common ecological conditions. This study examined whether endemic species are more limited by pollen quantity or quality than non-endemic co-flowering species in three endemic-rich plant communities located in biodiversity hotspots of different continents (Andalusia, California and Yucatan).

Methods

Natural variations in pollen receipt and pollen tube formation were analysed for 20 insect-pollinated plants. Endemic and non-endemic species that co-flowered were paired in order to estimate and compare the quantity and quality components of pre-zygotic pollination success, obtained through piecewise regression analysis of the relationship between pollen grains and pollen tubes of naturally pollinated wilted flowers.

Key Results

Pollen tubes did not frequently exceed the number of ovules per flower. Only the combination of abundant and good quality pollen and a low number of ovules per flower conferred relief from pre-zygotic pollen limitation in the three stochastic pollination environments studied. Quality of pollen receipt was found to be as variable as quantity among study species. The relative pollination success of endemic and non-endemic species, and its quantity and quality components, was community dependent.

Conclusions

Assessing both quality and quantity of pollen receipt is key to determining the ovule fertilization potential of both endemic and widespread plants in biodiverse hotspot regions. Large natural variation among flowers of the same species in the two components and pollen tube formation deserves further analysis in order to estimate the environmental, phenotypic and intraindividual sources of variation that may affect how plants evolve to overcome this limitation in different communities worldwide.  相似文献   

16.
Abstract Monitoring the biodiversity of Australian rangelands has been identified as a means of informing policy and supporting funding decisions in relation to the conservation of biodiversity. Australian rangelands are subject to invasion by alien plants that have the potential to have major impacts on ecosystem function and biodiversity, although there has been little quantitative documentation of these effects. Research is needed to improve our understanding of how and to what extent alien plants affect biodiversity in Australian rangelands so that this relationship can be considered when developing and implementing programmes to monitor biodiversity. It is also important to consolidate existing efforts to quantify the extent of alien plant invasions and monitor their progress, thus documenting a process that threatens biodiversity. Information on the presence and abundance of alien plant species should be considered for inclusion as a component of biodiversity monitoring programmes that are undertaken. Monitoring components of biodiversity can itself provide a basis for evaluating weed management strategies.  相似文献   

17.
Wang WY  Zhang L  Xing S  Ma Z  Liu J  Gu H  Qin G  Qu LJ 《遗传学报》2012,39(2):81-92
VPS 15 protein is a component of the phosphatidylinositol 3-kinase complex which plays a pivotal role in the development of yeast and mammalian cells.The knowledge about the function of its homologue in plants remains limited.Here we report that AtVPS15, a homologue of yeast VPS15p in Arabidopsis,plays an essential role in pollen germination.Homozygous T-DNA insertion mutants of AtVPS15 could not be obtained from the progenies of self-pollinated heterozygous mutants.Reciprocal crosses between atvpslS mutants and wild-type Arabidopsis revealed that the T-DNA insertion was not able to be transmitted by male gametophytes.DAPI staining, Alexander’s stain and scanning electron microscopic analysis showed that atvpsl5 heterozygous plants produced pollen grains that were morphologically indistinguishable from wild-type pollen,whereas in vitro germination experiments revealed that germination of the pollen grains was defective.GUS staining analysis of transgenic plants expressing the GUS reporter gene driven by the AtVPS15 promoter showed that AtVPSI5 was mainly expressed in pollen grains.Finally,DUALmembrane yeast two-hybrid analysis demonstrated that AtVPS15 might interact directly with AtVPS34.These results suggest that AtVPS15 is very important for pollen germination,possibly through modulation of the activity of PI3-kinase.  相似文献   

18.
Male meiosis is generally synchronous in higher plants. The regulation of the cell cycle is still not well understood, and a powerful tool for gaining an understanding of this regulation is the development of mutations that affect cell-cycle synchrony. We report here asynchronous microsporogenesis in an interspecific hybrid between two important tropical grasses. In young spikelets of the interspecific hybrid 49.10% of anther meiocytes entered meiosis, exhibiting typical phases of the first and second divisions, while the other 50.90% showed distinctive features of early prophase. In older spikelets, anthers containing mature pollen grains also displayed meiocytes still undergoing meiosis. At this time, the latter cells were enclosed by the exine wall. Despite asynchrony, all cells completed meiosis. Old anthers contained only pollen grains that appeared to be in the same stage of development. Pollen fertility was estimated to be 52.76% in dehiscent anthers. An independent genetic control for meiosis synchrony and meiotic stages is suggested.  相似文献   

19.
Summary Pollen grains capable of embryogenesis were selectively isolated from (a) near-mature buds from plants induced to flower in short days and low temperature (8 hours light and 18 °C) and (b) young buds from these plants with an additional low temperature treatment (10 °C for 10 days) and fixed for electron microscopy. The pollen from the former formed embryos at a very low frequency in culture, and at the subcellular level showed different degrees of regression of cytoplasm and mitochondria. On the contrary, cold-treated pollen were characterized by a high frequency of embryogenesis, up to 25% of the cultured pollen. They did not show regression of cytoplasm or organelles but had an attenuated cytoplasm which was not rich in ribosomes. Another noteworthy feature of embryogenic grains was the condensed nature of mitochondria. These characteristics of embryogenic grains indicate that they are repressed for gametophytic differentiation. The embryogenic pollen did not differentiate from gametophytic pollen which were very distinctive, having a thick exine, and dense cytoplasm rich in ribosomes. The close similarity of embryogenic grains with young microspores in terms of thin exine and sparse cytoplasm is suggestive of an indeterminate state and that determination into gametophytic or sporophytic (embryogenic) type is probably the function of differential gene activity. Of interest, in this context, is the condensation of mitochondria in embryogenic grains. The relationship, if any, between mitochondrial condensation and embryogenesis remains to be resolved.  相似文献   

20.
A technique is presented that is capable of predicting the motion of airborne pollen grains and the probability of pollen capture by wind-pollinated plants. Equations for the motion of rigid-walled particles (= pollen grains, spores, or Sephadex beads) in a supporting, compressible fluid (= air) are derived from the first principles of fluid dynamics. These equations are incorporated into a computer program (MODEL) which can be used with a desktop computer. The operation of MODEL requires empirical data on the pattern of airflow or the motion of a pollen species around the surfaces of the taxonomically relevant ovulate plant organ. With this information, MODEL can predict the behavior of any pollen species for which physical properties (size and density) are specified or empirically known. The significance of this procedure lies in the quantification of physical phenomena that influence the mechanics and fluid dynamics of pollen capture in wind pollination. The technique is illustrated and tested by its application to two grass species (Setaria geniculata and Agrostis hiemalis) for which velocity fields of pollen motion have been previously reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号