首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In rats hypothyroidized with methylthiouracil (MTU), methimazol (MMI), or radiothyroidectomy, the extent of deiodination for L-diiodotyrosine (L-DIT) and L-thyroxine (L-T4) was investigated in homogenate supernatants of liver and kidney. Deiodination in liver and kidney for DIT is twice as high as for T4, but the kidney allows only 25% of the liver deiodination activity both for DIT and T4. In the livers of all hypothyroid animals, iodide splitting both from DIT and T4 is highly significantly reduced by one-half compared with controls. In the kidney of all hypothyroid animals, the DIT deiodination is highly significantly lowered in comparison with controls; the T4 deiodination is significantly reduced only in animals treated with MTU and MMI, and is not significantly enhanced in radiothyroidectomized rats. Thus, there is no difference between MTU and MMI in the extent of deiodination for DIT and T4 in the homogenate supernatants of rat liver or kidney.  相似文献   

2.
In homogenate supernatants of kidneys of male rats the extent of deiodination of L-diiodotyrosine (L-DJT) and L-thyroxine (L-T4) was investigated in dependence on the thyroid function (hypo- and hyperthyroidized) and also in dependence on age. In rats hypothyroidized by loading with Methylthiouracil (MTU) or Methimazol (MMI) the deiodination for L-DJT and L-T4 was significantly reduced, in rats loaded with 40 mug T4 sc. for 10 days, the deiodination was significantly enhanced compared with untreated control animals. With advancing age (6 weeks, 3 or 12 month) the deiodination activity is highly significantly reduced. The results underline relations between thyroid gland function and deiodination activity in kidney.  相似文献   

3.
To find out whether an inhibitor of extrathyroidal conversion of iodothyronines is present in sera of starved animals, pig liver and kidney homogenates were incubated with T4, T3 or rT3 and dithiotreitol in the presence of evaporated diethyl ether extracts of sera obtained from fed and starved (1-12 days) rabbits. Sera extracts of short-term (1-4 days) starved rabbits caused a significant inhibition of T4 to T3 conversion (54% on day 3) and T4 to rT3 deiodination (52% on day 2) in liver homogenates. Extracts of sera from long-term (8 and 12 days) starved animals diminished only liver T4 to T3 conversion on day 8 and had no influence on liver T4 to rT3 conversion. 5'-deiodination of rT3 (to 3,3'-T2) in liver was gradually decreased by extracts of sera from animals starved during 2-12 days. Liver rT3-5-deiodination (to 3',5'-T2) was significantly impaired on day 4 and totally depressed by long-term starvation. In vitro T3 to 3,3'-T2 conversion in liver was markedly (59-103%) increased by ether extracts of sera from short-term fasted rabbits and considerably inhibited (62-72%) by long-term fasting. T4 to T3 conversion in kidney was significantly influenced by sera extracts obtained neither from short-term fasted rabbits and considerably inhibited (62-72%) by long-term fasting. T4 to T3 conversion in kidney was significantly influenced by sera extracts obtained neither from short-term nor from long-term fasted rabbits but T4-5-deiodination (to rT3) was reduced by sera extracts of short-term fasted animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Rats of both sexes were either cold acclimated (6 +/- 1 degree C) or treated with thyroxine (T4) or 3,5,3'-triiodothyronine (T3) (500 micrograms/kg body wt daily s.c. for 3 weeks). Wet weight, total proteins, lipids and nucleic acids in the interscapular brown adipose tissue (IBAT) were measured. Values obtained with T4 treatment were similar to those obtained with T3 treatment. T3 is the main thyroidal hormone in the rat and it is formed from T4 deiodination in liver and kidney. As T4-treated rats have not received T3 directly and its IBAT has a similar composition to that of T3-treated rats, it is concluded that peripheral T4 deiodination is governed by the plasma T4 levels. Total proteins and DNA content were similar in cold-acclimated and T3- or T4-treated rats, which is interpreted as thyroidal hormones having an action at these levels.  相似文献   

5.
Potentiation of thyroxine 5-deiodination by aminotriazole   总被引:1,自引:0,他引:1  
Aminotriazole, a goitrogen, in addition to its known inhibitory effects on the thyroid, demonstrated a unique effect on peripheral deiodination of thyroxine (T4). In contrast to the well-known peripheral effects of goitrogens such as propylthiouracil in inhibiting 5'-deiodinase activity, i.e., to effect a decrease in T4 to triiodothyronine (T3) conversion, aminotriazole had no effect on the 5'-deiodinative pathway. Rather, this goitrogen appeared to stimulate the alternative pathway, viz. T4 5-deiodination, resulting in an increased reverse triiodothyronine (rT3) serum concentration. This was shown in comparisons of serum T4, T3 and rT3 concentrations and serum T3/T4 and rT3/T4 ratios between rats treated with aminotriazole and T4, and rats treated with T4 alone. The finding that aminotriazole may specifically enhance T4 5-deiodination, independently of T4 5'-deiodination, is novel, as this has not been observed in the case of other goitrogens. It is of interest that this goitrogen is devoid of sulphur, which is a prominent constituent of thiourylene compounds which have been noted to affect 5'-deiodination. The potentiating effect of aminotriazole on 5-deiodination of T4 was not attributable to dietary factors.  相似文献   

6.
Thyroid hormone regulation of beta-adrenergic receptor-coupled adenylate cyclase activity was studied in rat liver and heart particulate fractions. Thyroidectomy (Tx) increased isoproterenol-stimulated cAMP accumulation in the liver and decreased it in the heart. Administration of L-thyroxine (L-T4) or L-3,3',5-triiodothyronine (L-T3) reversed these changes in both liver and heart. The changes observed in liver beta-receptor-coupled adenylate cyclase activity after Tx were similar to those reported after adrenalectomy (ADX). Thus the hypothesis was considered that these changes with altered thyroid status are produced indirectly through alteration in adrenal corticosteroids. Hydrocortisone in Tx rats decreased liver isoproterenol-stimulated adenylate cyclase activity but had no significant effect on the heart. Serum corticosterone levels were decreased significantly (by 34%) in Tx rats, as compared to euthyroid rats. Administration of L-T4 to Tx rats doubled the serum corticosterone levels. In Tx-ADX rats, L-T4 had no significant effect on liver beta-receptor-coupled adenylate cyclase. However, L-T4 significantly increased heart beta-receptor-coupled adenylate cyclase in these animals. Dexamethasone, but not deoxycorticosterone, decreased liver isoproterenol-stimulated cAMP accumulation in Tx animals to the same extent as was observed with L-T4 and hydrocortisone. Thus overall the results indicate that in the liver, as opposed to the heart, thyroid hormones regulate beta-adrenergic receptor-coupled adenylate cyclase indirectly through corticosteroids. Glucocorticoid rather than mineralocorticoid activity seems to be responsible for this regulation.  相似文献   

7.
We have described the tissue distribution and properties of thyroid hormone (TH) deiodination activities of the marine American plaice, Hippoglossoides platessoides. We then studied the 1- or 4-week responses of the plaice liver and brain deiodination activities and the plasma thyroxine (T4) and 3,5,3'-triiodothyronine (T3) levels to an intraperitoneal injection (5-500 ng/g) of the polychlorinated biphenyl (PCB) congeners 77 (3,3'-4,4'-tetrachlorobiphenyl) or 126 (3,3',4,4',5-pentachlorobiphenyl). T4 and 3,3'5'-triiodothyronine (rT3) outer-ring deiodination (ORD) activities were greater in liver than in kidney, gill, heart, brain, intestine or muscle; inner-ring deiodination (IRD) activity occurred in all tissues but was consistently higher in brain. Deiodination characteristics (optimal pH, optimal dithiothreitol concentration, responses to inhibitors and apparent Km values of 0.6-4 nM) fell in the same rage as those of low-Km deiodinases in other teleosts. Deiodination activities were maximal when assayed at 25 degrees C but uniformly low over the natural range of 0-9 degrees C. Neither PCB 77 nor PCB 126 altered brain T4ORD activity or plasma T4 levels (P < 0.05). However, at 1 week post injection hepatic T4ORD activity was increased and plasma T3 levels lowered by PCB 77 (5 and 25 ng/g), while hepatic IRD activity was increased by PCB 126 (50 and 500 ng/g). Neither PCB 77, PCB 126 nor selected hydroxylated. PCBs given in vitro compared with T4 for binding sites on plasma proteins or altered hepatic deiodination activity, indicating no direct action on plasma proteins or deiodinases We conclude that plaice TH deiodination tissue distribution and characteristics resemble those of other teleosts. Deiodination activities are low at natural assay temperatures but at 1 week show some responses to PCBs 77 and 126.  相似文献   

8.
Studies were carried out to compare the 5' deiodination reactions of thyroxine (T4) and 3, 3', 5'-triiodothyronine (rT3) in rat liver and kidney homogenates. The 5'-deiodinase activity was assayed by the 3, 5, 3'-triiodothyronine (T3) produced from T4 or by the 125I-iodide released from 125I-rT3. The two 5' deiodination reactions had similar ranges of optimal pH, incubation temperature, and apparent Km, T4 1.1 and rT3 1.3 microM. However, the apparent Vmax values for T4 and rT3 deiodination reactions were 0.9 and 220 pmol/mg protein/min, respectively. Both reactions were stimulated by thiol reagent but only rT3 deiodination showed complete thiol dependence. The inhibitory effect of 6-propyl-2-thiouracil (PTU) on the 5' deiodination of rT3 was 50 times as great as that of T4. Only the 5' deiodination of rT3 was inhibited by low concentrations of calcium and magnesium. The 5' deiodination reactions in the liver and kidney tissues showed very similar substrate specificity. However, only the hepatic deiodinase activity was reduced to 60-65% of the control value after fasting, whereas the renal 5'-deiodinase activity was unaffected or even enhanced by fasting up to 72 hours. The results showed the existence of a diverse and complex 5' deiodination system in the rat tissues which is comprised of multiple similar but distinct 5'-deiodinase enzymes with respect to their substrate specificity, tissue specificity and regulation.  相似文献   

9.
Iodothyronine deiodinases determine the biological activity of thyroid hormones. Despite the homology of the catalytic sites of mammalian and teleostean deiodinases, in-vitro requirements for the putative thiol co-substrate dithiothreitol (DTT) vary considerably between vertebrate species. To further our insights in the interactions between the deiodinase protein and its substrates: thyroid hormone and DTT, we measured enzymatic iodothyronine 5′-deiodination, Dio1 and Dio2 mRNA expression, and Dio1 affinity probe binding in liver and kidney preparations from a freshwater teleost, the common carp (Cyprinus carpio L.). Deiodination rates, using reverse T3 (rT3, 3,3′,5′-triiodothyronine) as the substrate, were analysed as a function of the iodothyronine and DTT concentrations. In kidney rT3 5′-deiodinase activity measured at rT3 concentrations up to 10 μM and in the absence of DTT does not saturate appreciably. In the presence of 1 mM DTT, renal rT3 deiodination rates are 20-fold lower. In contrast, rT3 5′-deiodination in liver is potently stimulated by 1 mM DTT. The marked biochemical differences between 5′-deiodination in liver and kidney are not associated with the expression of either Dio1 or Dio2 mRNA since both organs express both deiodinase types. In liver and kidney, DTT stimulates the incorporation of N-bromoacetylated affinity labels in proteins with estimated molecular masses of 57 and 55, and 31 and 28 kDa, respectively. Although primary structures are highly homologous, the biochemistry of carp deiodinases differs markedly from their mammalian counterparts.  相似文献   

10.
Weanling male wistar rats were fed 4 weeks a standard diet and separated into 2 groups, which received a high fat diet (50% w fat; HFD) or a low fat diet (3% w fat; LFD). These diets were fed 6-8 weeks and the animals then separated into light and heavy animals in each group. T4 deiodination in liver homogenates was investigated in all groups and compared with T4 clearance rate and thyroidal activity of these animals. The HFD-rats showed independently of weight and body fat content significantly higher liver deiodinase activity than LFD-rats. In light and heavy HFD-rats with great differences in body fat content the liver deiodinase activity was equal. T4 deiodination in liver, contrary to the T4 clearance rate, depends on fat content of diet and not of body. The thyroidal radioiodine uptake and PBI-131-values in some weight groups of HFD-rats were significantly higher than in some LFD-weight-groups, but a dependence of the thyroidal activity from fat content of diet or of body was not clearly evident. The results indicate however, that the thyroidal activity is likely not responsible for the increase of liver deiodinase activity after high fat diet. The apparent discrepancy between the results of higher liver T4 deiodination and equal or lower T4 clearance rate or equal T3 serum concentrations is discussed.  相似文献   

11.
Ligand binding characteristics of rat liver microsomal type I iodothyronine deiodinase were evaluated by measuring dose-response inhibition and apparent Michaelis-Menten or inhibitor constants of iodothyronine analogues to compete as substrates or inhibitors for the natural substrate L-thyroxine. These data show strong correlations with the binding requirements of hormone analogues to serum thyroxine-binding prealbumin since iodothyronine analogues with a negatively charged side chain, a negative charge or hydrogen bonding function in the 4'-position, tetraiodo ring substitution, and a skewed hormone conformation are structural features shared in common which markedly affect enzyme activity and protein binding affinity. 3,3',5'-Triiodo-L-thyronine is the most potent natural substrate (IC50 = 0.3 microM) and tetraiodothyroacetic acid is the most potent inhibitor (IC50 = 0.2 microM). Both thyroxine (T4)-5'- and T4-5-deiodination pathways are inhibited by these potent analogues, providing further evidence for a single enzyme catalyzing the rat liver microsomal deiodination reactions. These data also show that L-hormone analogues are preferentially deiodinated via the T4-5'-deiodination pathway, whereas D-analogues produce products via the T4-5-deiodination pathway. The thyroxine-binding prealbumin complex was used to model the interaction of thyroid hormones with the deiodinase active site. Computer graphic modeling of the prealbumin complex showed that only those analogues which are potent deiodinase inhibitors or substrates can be accommodated in the hormone binding site. This model suggests the design of functionally specific ligands which can modulate peripheral thyroid hormone metabolism and act as antithyroidal drugs.  相似文献   

12.
Thyroid status in the obese syndrome of rats   总被引:2,自引:0,他引:2  
The thyroid function was explored by comparing serum total and free iodothyronine levels in young male genetically obese Zucker rats and in their lean littermates, aged from 6 to 8 weeks old. Total and free thyroxine (T4) and 3,5,3'triiodothyronine (T3) levels were significantly decreased in obese rat serum while total 3,3',5'-triiodothyronine (rT3) remained constant. Radioactive T4 half life is slower in the plasma of obese rats. Peripheral synthesis of T3 from deiodination of T4 is also decreased in obese rat liver homogenate. These modifications produce changes in liver mitochondria oxidative phosphorylation and in marker enzyme activity, which are usually associated with hypothyroidism and hypothalamic disturbances. Genetic obesity probably involves activation of peripheral deiodination of T4 to rT3 which induces biochemical and metabolic changes.  相似文献   

13.
The influence of an inhibitor of iodothyronines' extrathyroidal conversion on T4, T3 and rT3 deiodination by adult pig pituitary and cerebral cortical homogenates has been investigated. The homogenates were incubated with T4, T3 and rT3 in the presence of 5 mM dithiothreitol and evaporated diethyl ether extracts of sera obtained from fed and starved (1-14 days) rabbits. The extracts had no influence either on T4 to T3 or on T4 to rT3 conversion in cerebral cortex. Deiodination of rT3 to 3,3'-T2 in that tissue was significantly inhibited only by the extracts of sera obtained from 4 days starved rabbits. Inner-ring deiodination of both rT3 and T3 was not changed by the extracts got from short-term (1-4 days) fasted animals but was significantly reduced by the extracts from long-term (7-14 days) food-deprived subjects. Pituitary conversion of T4 to T3 was diminished by 35% in the presence of sera extracts gained from 1-9 days fasted rabbits and by about 50% on day 14 of fasting, but only the latter change was statistically significant. Short-term fasting inhibited T4 to rT3 conversion on days 2 and 4. Both deiodinations of rT3 and 5-deiodination of T3 were affected by extracts of sera collected during long-term fasting.  相似文献   

14.
Parameters of the peripheral metabolism of thyroxine (T4) were studied in the early postnatal period. Iopanoic acid (IOP) was administered to newborn rats that were either euthyroid or rendered hypothyroid in utero by propylthiouracil (PTU) or methimazole (MMI) administration to the mothers during gestation and injected with thyroxine on postnatal days 6 and 7. In euthyroid newborn rats given IOP from postnatal day 6, the plasma T4 level increased (+50%) while the plasma 3,3',5'-triiodothyronine (T3) level slightly decreased (-18%). Peripheral deiodination of T4 was also reduced (about -50%) as estimated by thyroid 125I uptake after injection of 125I (3'-5')L-T4. In the newborn rats rendered hypothyroid in utero and given T4 on postnatal days 6 and 7, IOP treatment started on day 4 decreased the constant rate of elimination (-50%), the distribution volume (-43%) and the metabolic clearance (-74%) of plasma T4. The results were the same in PTU- and MMI-treated newborn rats. The differences between newborn and adult animals under IOP treatment are discussed.  相似文献   

15.
Serum thyroxine (T4) and triiodothyronine (T3) concentrations and T4-5'-monodeiodinase activity in liver and kidney homogenates were studied in Sprague-Dawley rats during lactation. Blood and tissue samples were collected from nulliparous and pregnant rats 2 days before delivery and from lactating rats 0, 2, 7, 12, 19, and 26 days after delivery. Litters were removed from half of the mothers immediately after delivery to create a postpartum nonlactating group for study at the same times. Pregnant rats had lower serum T4 and T3 concentrations and higher liver T4-5'-monodeiodinase activity than nulliparous females. Low serum T4 persisted throughout lactation but further decrease in serum T3 was observed. Activity of T4-5'-monodeiodinase in liver and kidney homogenates was significantly reduced during lactation as compared to nonlactating rats. Serum concentration of T4 and T3 and T4-5'-monodeiodinase activity in liver and kidney returned toward control values 5 days after weaning (Postpartum Day 26). Our findings suggest that the relative hypothyroid state observed during lactation in rats is associated with a significant decrease in T4 to T3 conversion in the liver and kidneys.  相似文献   

16.
We studied the effect of the state of the thyroid on T4 monodeiodination in the rat placenta, and it was compared with those in the liver and kidney. The tissues, maternal serum, and amniotic fluid were obtained from pregnant rats. The tissues were homogenized in cold 50 mM Tris-HCl buffer, pH 7.5. The homogenate (1 mg protein) was incubated at 37 degrees C for 60 min with 1 microgram T4 in the presence of 5 mM DTT. The T3 and reverse T3 generated in the reaction mixture were extracted into cold ethanol and measured by RIAs. The conversion of T4 to reverse T3 in rat placenta was not significantly changed in MMI-induced hypothyroidism or T4 induced hyperthyroidism. On the other hand, conversion of T4 to T3 in the liver and kidney were changed in parallel with the thyroid state. The concentration of reverse T3 in the amniotic fluid was increased in accordance with the increase in the maternal serum T4 concentration. These results indicate that the placental T4 inner ring deiodination is not affected by the thyroid state, and that the change in the amniotic fluid reverse T3 concentration in this study is mainly dependent upon the change in maternal thyroid function.  相似文献   

17.
Administration of either D- or L-thyroxine (T4) significantly increased the glucocorticoid binding capacity of cytosol of the livers of adrenalectomized adult rats. Administration of up to 0.5 mg/100 g body wt. of L-T4 was more effective than that of D-T4, but higher doses (0.8-3 mg/100 g body wt.) of D-T4 increased the binding capacity markedly to more than that with L-T4. T4- administration did not alter the apparent dissociation constant of glucocorticoid binding proteins for glucocorticoid binding, or their behavior on DEAE-cellulose chromatography either before or after thermal activation (23 degrees C for 40 min). Thus the increased binding capacity seemed to be due to increase in the level of glucocorticoid receptor in rat liver.  相似文献   

18.
The content of cytochromes c + c1, b and a in brain and liver mitochondria in 7-day-old rats reaches the level seen in adult animals. Administration of L-T4 in a dose of 0.7 micrograms/g rat bw for 4 days before sacrifice results in activation of cytochrome synthesis in both test organs within the first week of the suckling rats' life. On the 20th day of the postnatal period the effect of T4 is seen only in the liver while the brain tissue turns out indifferent to the thyroid hormone. Thus, T4 activates cytochrome biosynthesis in brain mitochondria during the first week of the rats' life, that leads to the acceleration of the functional activity and higher differentiation of the developing brain mitochondria.  相似文献   

19.
The pectoralis muscles of two groups of anaesthetized pigeons were exercised in vivo by electrical stimulation for periods of 1 h and 5 h respectively. There was no significant change from controls in the level of blood glucose in both groups. Blood lactate level was significantly higher in the exercised groups but was relatively lower in the 5-h control group in comparison with its 1-h counter part. Blood lactate dehydrogenase (LDH) activity was significantly higher in the 1-h stimulated pigeons as was also the case with liver LDH in the same group but markedly lower in the 5-h ones. No significant change was seen in liver glycogen content in the stimulated pigeons. Liver phosphorylase activity was markedly low in the 5-h stimulated pigeons as was also the case with liver LDH activity. Circulating level of corticosterone was significantly higher in both the stimulated groups. Blood thyroxine (T4) as well as triiodothyronine (T3) levels were considerably reduced in both stimulated groups. The T3/T4 ratio was higher in the 5-h stimulated pigeons. It was concluded that, while initially carbohydrate was used as fuel for exercise, in prolonged exercise, lipid became the chief fuel as was shown in earlier studies. While fat continued to be used as the main fuel, carbohydrate was spared and also gluconeogenesis was enhanced. It was also concluded that the r?le of the thyroid hormones in promoting oxidative metabolism was enhanced by markedly increasing peripheral deiodination of T4 to T3 in prolonged exercise.  相似文献   

20.
The effect of thyroxine (T4) on T4 conversion to triiodothyronine (T3) and reverse T3 (rT3) was studied in BB/W rats. A colony of 38 BB/W rats was obtained and half were treated with thyroxine (T4), 1 mg per liter of drinking water. At 106 days of age the following groups were identified: nondiabetic, no T4 treatment, 8 rats; nondiabetic, T4 treated, 8 rats; diabetic, no T4 treatment, 10 rats; diabetic, T4 treated, 7 rats. All animals with diabetes were treated with insulin. T4 conversion to T3 and rT3 was assessed in liver homogenates in 0.1 M Tris-HCl buffer, pH 7.4, with or without 5 mM dithiothreitol (DDT). Serum T4 and rT3 were significantly elevated in both T4-treated groups (P less than 0.001), while serum T3 was not affected in either. Basal T4 deiodination to T3 by the liver homogenate did not change on treatment with T4; the addition of DTT increased T3 production in the homogenate from T4 treated nondiabetic animals (P less than 0.05). In both nondiabetic and insulin-treated diabetic rats there was no effect of T4 on the rate of rT3 production. Since, in the rat, 30-40% of circulating T3 is a direct contribution of thyroid gland secretion, and that would be absent in our T4-suppressed animals, the normal serum T3 may reflect increased absolute peripheral T3 production from the greater concentration of circulating T4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号