首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated, in mesenteric arteries from hypertensive rats (SHR), the possible changes in neurogenic nitric oxide (NO) release produced by angiotensin II (AII), and the possible mechanisms involved in this process. In deendothelialized segments the NO synthase inhibitor N(G)-nitro-L-arginine (L-NAME, 10 microM) increased the contractions caused by electrical field stimulation (EFS, 200 mA, 0.3 ms, 1-16 Hz, for 30 s). AII (0.1 nM) enhanced the response to EFS, which was unmodified by the subsequent addition of L-NAME. The AII antagonist receptor saralasine (0.1 microM) prevented the effect of AII, and the subsequent addition of L-NAME restored the contractile response. SOD (25 u/ml) decreased the reponse to EFS and the subsequent addition of L-NAME increased this response. AII did not modify the decrease in EFS response induced by SOD, and the addition of L-NAME increased the response. None of these drugs altered the response to exogenous noradrenaline (NA) or basal tone except SOD, which increased the basal tone, an effect blocked by phentolamine (1 microM). In arteries pre-incubated with [3H]-NA, AII did not modify the tritium efflux evoked by EFS, which was diminished by SOD. AII did not alter basal tritium efflux while SOD significantly increased it. These results suggest that EFS of SHR mesenteric arteries releases neurogenic NO, the metabolism of which is increased in the presence of AII by the generation of superoxide anions.  相似文献   

2.
This study was designed to test the hypothesis that venular administration of ATP resulted in endothelium-dependent dilation of adjacent arterioles through a mechanism involving cyclooxygenase products. Forty-three male golden hamsters were anesthetized with pentobarbital sodium (60 mg/kg ip), and the cremaster muscle was prepared for in vivo microscopy. ATP (100 microM) injected into venules dilated adjacent arterioles from a mean diameter of 51 +/- 4 to 76 +/- 6 microm (P < 0.05, n = 6). To remove the source of endothelial-derived relaxing factors, the venules were then perfused with air bubbles to disrupt the endothelium. Resting arteriolar diameter was not altered after disruption of the venular endothelium (51 +/- 5 microm), and the responses to venular ATP infusions were significantly attenuated (59 +/- 4 microm, P < 0.05). To determine whether the relaxing factor was a cyclooxygenase product, ATP infusion studies were repeated in the absence and presence of indomethacin (28 microM). Under control conditions, ATP (100 microM) infusion into the venule caused an increase in mean arteriolar diameter from 55 +/- 4 to 78 +/- 3 microm (P < 0.05, n = 6). In the presence of indomethacin, mean resting arteriolar tone was not significantly altered (49 +/- 4 microm), and the response to ATP was significantly attenuated (54 +/- 4 microm, P < 0.05, n = 6). These studies show that increases in venular ATP concentrations stimulate the release of cyclooxygenase products, possibly from the venular endothelium, to vasodilate the adjacent arteriole.  相似文献   

3.
Nonadrenergic noncholinergic (NANC) vasodilator mechanisms may contribute to the maintenance of adult pulmonary and systemic vascular tone. However, their actions in the neonatal circulation have not been studied. We aimed to investigate NANC vasorelaxation in neonatal and 2-week-old piglet pulmonary and mesenteric arteries and to examine the potential role of nitric oxide (NO) in this phenomenon. Responses to electric field stimulation (EFS, 50V, 0.25-32 Hz) were investigated in pulmonary and mesenteric artery rings (external diameter 150-200 microm) precontracted with the thromboxane A2 mimetic U46619, in the presence of guanethidine (10 microM) and atropine (10 microM). Under these conditions, EFS resulted in a frequency dependent relaxation of newborn pulmonary (maximal relaxation of 53+/-9.1%), mesenteric (68.8.2+/-7.1%) and 2-wk-old mesenteric (46 6.3%) arteries but this relaxation was significantly reduced (4.5+/-2.2%) in 2-week-old pulmonary arteries. In neonatal pulmonary arteries, the neurotoxin tetrodotoxin (0.3 muM), the NO synthase inhibitor L-NAME (0.1 mM), and the guanylyl cyclase inhibitor ODQ (10 microM) abolished EFS-induced relaxations, suggesting that NANC relaxation of porcine neonatal pulmonary arteries is mediated by NO, which is probably neuronal in origin. However, The expression in pulmonary arteries of the neuronal NO synthase (nNOS), as determined by Western-blot analysis, increased with postnatal age whereas the expression of the endothelial NOS (eNOS) did not change. In conclusion, NANC relaxation is present in neonatal pulmonary and mesenteric arteries and it is, at least partially, mediated through NO. NANC relaxation of porcine pulmonary and mesenteric arteries decreases with postnatal maturation.  相似文献   

4.
Little is known about vascular effects of testosterone. We previously reported chronic testosterone treatment increases vascular tone in middle cerebral arteries (MCA; 300 microm diameter) of male rats. In the present study, we investigated the hypothesis that physiological levels of circulating testosterone affect endothelial factors that modulate cerebrovascular reactivity. Small branches of MCA (150 microm diameter) were isolated from orchiectomized (ORX) and testosterone-treated (ORX+T) rats. Intraluminal diameters were recorded after step changes in intraluminal pressure (20-100 Torr) in the absence or presence of N(G)-nitro-L-arginine-methyl ester (L-NAME), a nitric oxide synthase (NOS) inhibitor; indomethacin, a cyclooxygenase (COX) inhibitor; and/or apamin and charybdotoxin (CTX); and K(Ca) channel blockers used to inhibit endothelium-derived hyperpolarizing factors (EDHF). At intraluminal pressures >or=60 Torr, arteries from ORX+T developed greater tone compared with ORX arteries. This difference was abolished by removal of the endothelium but remained after treatment of intact arteries with indomethacin or L-NAME. In addition, testosterone treatment had no effect on cerebrovascular production of endothelin-1 or prostacyclin nor did it alter protein levels of endothelial NOS or COX-1. Endothelium removal after L-NAME/indomethacin exposure caused an additional increase in tone. Interestingly, the latter effect was smaller in arteries from ORX+T, suggesting testosterone affects endothelial vasodilators that are independent of NOS and COX. Apamin/CTX, in the presence of L-NAME/indomethacin, abolished the difference in tone between ORX and ORX+T and resulted in vessel diameters similar to those of endothelium-denuded preparations. In conclusion, testosterone may modulate vascular tone in cerebral arteries by suppressing EDHF.  相似文献   

5.
The effects of hydrogen peroxide (H2O2, 1 nM-5 mM) on the tone of the rings of aorta precontracted with phenylephrine (PE) were studied in 4-5 months streptozotocin (STZ)-diabetic rats and their age-matched controls. H2O2 induced brief contraction before relaxation in endothelium-containing rings that was more pronounced in diabetic rats. Removal of the endothelium or pretreatment of rings with N(G)-nitro-L-arginine methyl ester (L-NAME, 100 microM) abolished H2O2-induced immediate and transient increase in tone, but preincubation with indomethacin (10 microM) had no effect on contractions induced by H2O2 in both group of animals. Pretreatment with L-NAME or indomethacin as well as absence of endothelium produced an inhibition of H2O2-induced relaxation that was more pronounced in diabetic rings. Chronically STZ-diabetes resulted in a significant increase in H2O2-induced maximum relaxation that was largely endothelium-dependent. Decreased sensitivity (pD2) of diabetic vessels to vasorelaxant action of H2O2 was normalized by superoxide dismutase (SOD, 80 U/ml). Pretreatment with SOD had no effect on H2O2-induced maximum relaxations in both group of animals but led to an increase in H2O2-induced contractions in control rats. When the rings pretreated with diethyldithiocarbamate (DETCA, 5 mM), H2O2 produced only contraction in control rats, and H2O2-induced relaxations were markedly depressed in diabetic rats. H2O2 did not affect the tone of intact or endothelium-denuded rings in the presence of catalase (2000 U/ml). Aminotriazole (AT, 10 mM) failed to affect H2O2-induced contractions or relaxations in all rings. Our observations suggest that increased production of oxygen-derived free radicals (OFRs) in diabetic state leads to a decrease in SOD activity resulting an increase in endogenous superoxide anions (O2*-), that is limited cytotoxic actions, and an increase in catalase activity resulting a decrease in both H2O2 concentrations and the production of harmful hydroxyl radical (*OH) in diabetic aorta in long-term. Present results indicate that increased vascular activity of H2O2 may be an important factor in the development of vascular disorders associated with chronically diabetes mellitus. Enhanced formation of *OH, that is a product of exogenous H2O2 and excess O2*, seems to be contribute to increased relaxations to exogenously added H2O2 in chronically diabetic vessels.  相似文献   

6.
The main aim of this study was to compare the vascular reactivity of the perfused (Krebs, 4 ml/min) mesenteric vascular bed (MVB) isolated from rats with streptozotocin (STZ)-induced diabetes of 8 weeks duration to that of the MVB from non-diabetic (ND) Wistar rats. There were no differences in basal perfusion pressure between the MVB isolated from STZ and ND rats. The addition of indomethacin to the perfusate increased the basal perfusion pressure in both ND (18.8 +/- 0.7 vs 29.4 +/- 3.7 mmHg, p < 0.05) and STZ rats (18.3 +/- 0.9 vs 27.2 +/- 2.6 mmHg, p < 0.05), suggesting the release of a vasodilator prostaglandin. Remotion of the endothelium did not affect this response, indicating that prostaglandin was released from vascular smooth muscle. The response to phenylephrine was reduced in STZ rats compared to ND rats (2.3 [1.6-3.8] vs 8.3 [3.5-19.4], ED50. [IC 95%]) and was not modified by removal of the endothelium or by perfusion of L-nitro-arginine (50 microM). In contrast, indomethacin was able to reduce the response to phenylephrine in ND but not in STZ rats (2.3 [1.6-3.8] vs 4.7 [3.2-6.0], ED50. [IC 95%], p=0.02), suggesting that the blunted response to phenylephrine observed in STZ was due to the abolition of the release of prostaglandin by vascular smooth muscle. In conclusion, experimental diabetes induction in the rat is followed by a reduction of the contractile effect of phenylephrine due to the lack of release of a vasoconstrictor prostaglandin from vascular smooth muscle.  相似文献   

7.
区域性血管床对局部注射植物雌激素三羟异黄酮的反应   总被引:3,自引:0,他引:3  
Ji ES  Zhang LH  Wang YH  Yue H  He RR 《生理学报》2003,55(3):255-259
在72只麻醉大鼠,分别采用后肢、肾脏和肠系膜动脉在体恒流灌注法,观察了向灌流环路中直接注射植物雌激素三羟异黄酮(genistein,GST)的血管效应,以所引起的灌流压增减反映血管的收缩和舒张。结果如下:(1)不同剂量的GST(0.4、0.8、1.2mg/k8)注射于股部灌注环路时,剂量依赖性地降低股动脉的灌流压。GST的这一效应可被L-硝基精氨酸甲酯(L-NAME)部分阻断,预先注射蛋白酪氨酸磷酸酶抑制剂正钒酸钠(50μg/kg),可部分抑制GST(0.8mg/kg)引起的效应;(2)向肾血管灌注环路中直接注射GST也可剂量依赖性地降低肾动脉的灌流压,预先注射正钒酸钠可完全抑制GST引起的效应,而L-NAME对此效应没有影响;(3)肠系膜血管灌流环路中注射GST可剂量依赖性地降低其灌流压,这一效应可被正钒酸钠部分抑制,而L-NAME对此无影响。根据上述结果得出的结论是:GST降低后肢、肾脏和肠系膜血管床的血管张力,其机制与酪氨酸激酶抑制有关,而在股动脉则与NO释放有部分关系。  相似文献   

8.
The present study investigated the involvement of endothelial nitric oxide in relaxation induced by purified green tea (-)epicatechin in rat isolated mesenteric arteries. (-)Epicatechin caused both endothelium-dependent and -independent relaxation. NG-Nitro-L-arginine methyl ester (L-NAME, 100 microM) and methylene blue (10 microM) significantly attenuated (-)epicatechin-induced relaxation in endothelium-intact tissues. L-Arginine (1 mM) partially antagonized the effect of L-NAME. (-)Epicatechin-induced relaxation was inhibited by Rp-guanosine 3',5'-cyclic monophosphothioate triethylamine. In contrast, indomethacin and glibenclamide had no effect. (-)Epicatechin (100 microM) significantly increased the tissue content of cyclic GMP and NG-nitro-L-arginine (100 microM) or removal of the endothelium abolished this increase. (-)Epicatechin (100 microM) induced an increase in intracellular Ca2+ levels in cultured human umbilical vein endothelial cells. Iberiotoxin at 100 nM attenuated (-)epicatechin-induced relaxation in endothelium-intact arteries and this effect was absent in the presence of 100 microM L-NAME. In summary, (-)epicatechin-induced endothelium-dependent relaxation is primarily mediated by nitric oxide and partially through nitric oxide-dependent activation of iberiotoxin-sensitive K+ channels. In addition, there may be a causal link between increased Ca2+ levels and nitric oxide release in response to (-)epicatechin.  相似文献   

9.
NTPDase is one of the principal enzymes involved in the sequential hydrolysis of ATP. In the present study, the presence and functionality of NTPDase in the mesenteric vein and artery were examined. Adenosine triphosphate (ATP) (0.01-1000 pmol) induces a dose-dependent vasodilation in the isolated arterial and venous mesenteric vasculatures of the guinea pig. Adenosine diphosphate (ADP) (0.01-1000 pmol) but not adenosine monophosphate (AMP) (0.01-1000 pmol) induces a similar response in the mesenteric vascular circuit. L-NAME, a nitric oxide synthase inhibitor (200 microM, 30 min), significantly reduces the arterial dilatory effect of ATP and abolishes the responses to ADP and AMP. Complete removal of the endothelium with 3-[(3-cholamidopropyl) dimethylammonio]-1-propansulfonate (CHAPS) (20 mM, 2 x 45 s) abolishes ATP-induced responses. Infusion of ATP in the vascular circuit generated detectable amounts of ADP and AMP, as measured by HPLC. CHAPS treatment significantly reduced the level of ATP and the production of AMP in the arterial mesenteric circuit. In contrast to the arterial mesenteric vasculature, endothelium removal in the venous circuit triggered a marked potentiation of ADP release and, interestingly, a marked reduction in the release of AMP. Moreover, a specific inhibitor of NTP diphosphohydrolase, 1-hydroxynaphthlene-3,6-disulfonic acid BGO 136 (10 mM for 20 min), significatively reduced AMP production in both vascular preparations. These results confirm that the endothelium contributes to the vasoactive properties of ATP, ADP, and AMP. Our data also demonstrated a significant role of endothelium in NTPDase activity on ADP and AMP production prior to exogenous administration of ATP. The activity of this particular enzyme appears to be different from the reaction products viewpoint (i.e., the production of ADP) in the pre- and post-mesenteric circuits, suggesting two different isoforms with different substrate specificities.  相似文献   

10.
The effect of captopril treatment on neurally induced vasoconstrictor and vasodilator responses was examined in the isolated mesenteric arterial bed from normotensive and one-kidney, one clip hypertensive (1K1C) rats. In isolated mesenteric beds, electrical field stimulation (EFS) of perivascular nerves at basal tone induced a frequency-dependent increase in perfusion pressure that was greater in preparations from hypertensive rats compared with those from normotensive rats. Captopril treatment was associated with a decrease in vasoconstrictor responses in the hypertensive group compared with its non-treated control. Responses to norepinephrine (320 ng) were greater in hypertensive than normotensive groups; captopril reduced this response only in the hypertensive group. In preconstricted mesenteric arteries perfused with solutions containing guanethidine (5 microM) and atropine (1 microM), EFS elicited a frequency-dependent decrease in perfusion pressure that was abolished by tetrodotoxin (1 microM). Vasodilator responses to EFS were not affected by captopril treatment, although they were smaller in the hypertensive group. Acetylcholine (10 ng) induced similar decreases in perfusion pressure of normotensive and 1K1C groups; captopril did not influence these responses. These results indicate that captopril treatment does not affect the reduced neurogenic vasodilation but normalizes the augmented sympathetic-mediated vasoconstrictor responses of mesenteric resistance vessels of chronic 1K1C hypertensive rats.  相似文献   

11.
The mechanism of action of lithium, an effective treatment for bipolar disease, is still unknown. In this study, the mesenteric vascular beds of control rats and rats that were chronically treated with lithium were prepared by the McGregor method, and the mesenteric vascular bed vasorelaxation responses were examined. NADPH-diaphorase histochemistry was used to determine the activity of NOS (nitric oxide synthase) in mesenteric vascular beds. We demonstrated that ACh-induced vasorelaxation increased in the mesenteric vascular bed of rats treated with lithium. Acute No-nitro-L-arginine methyl ester (L-NAME) administration in the medium blocked ACh-induced vasorelaxation in the control group more effectively than in lithium-treated rats, while the vasorelaxant response to sodium nitroprusside, a NO donor, was not different between lithium-treated and control groups. Acute aminoguanidine administration blocked ACh-induced vasorelaxation of lithium-treated rats, but had no effect in the control rats. Furthermore, NOS activity, determined by NADPH-diaphorase staining, was significantly greater in the mesenteric vascular beds from chronic lithium-treated rats than in those from control rats. These data suggest that the enhanced ACh-induced endothelium-derived vasorelaxation in rat mesenteric bed from chronic lithium-treated rats might be associated with increased NOS activity, likely via iNOS. Simultaneous acute L-NAME and indomethacin administration suggests the possible upregulation of EDHF (endothelium-derived hyperpolarizing factor) in lithium-treated rats.  相似文献   

12.
The in vitro responses to ACh, flow, and hypoxia were studied in arterioles isolated from the diaphragms of rats. The endothelium was removed in some vessels by low-pressure air perfusion. In endothelium-intact arterioles, pressurized to 70 mmHg in the absence of luminal flow, ACh (10(-5) M) elicited dilation (from 103 +/- 10 to 156 +/- 13 microm). The response to ACh was eliminated by endothelial ablation and by the nitric oxide synthase antagonists NG-nitro-L-arginine (L-NNA; 10(-5) M) and NG-nitro-L-arginine methyl ester (L-NAME, 10(-5) M) but not by indomethacin (10(-5) M). Increases in luminal flow (5-35 microl/min in 5 microl/min steps) at constant distending pressure (70 mmHg) elicited dilation (from 98 +/- 8 to 159 +/- 12 microm) in endothelium-intact arterioles. The response to flow was partially inhibited by L-NNA, L-NAME, and indomethacin and eliminated by endothelial ablation and by concurrent treatment with L-NAME and indomethacin. The response to hypoxia was determined by reducing the periarteriolar PO2 from 100 to 25-30 Torr by changing the composition of the gas used to bubble the superfusing solution. Hypoxia elicited dilation (from 110 +/- 9 to 165 +/- 12 microm) in endothelium-intact arterioles but not in arterioles from which the endothelium had been removed. Hypoxic vasodilation was eliminated by treatment with indomethacin and was not affected by L-NAME or L-NNA. In rat diaphragmatic arterioles, the response to ACh is dependent on endothelial nitric oxide release, whereas the response to hypoxia is mediated by endothelium-derived prostaglandins. Flow-dilation requires that both nitric oxide and cyclooxygenase pathways be intact.  相似文献   

13.
The vascular effects of adenosine triphosphate (ATP) were examined in the isolated perfused mesenteric arteries of the rabbit. Bolus injections of ATP (1 X 10(-8) to 10(-6) mol) induced a dose-dependent vasoconstrictor response at resting perfusion pressure, while continuous perfusion with ATP briefly elicited a vasoconstrictor response which was not maintained. Perfusion with phentolamine (2.65 X 10(-6) M, an alpha-adrenergic receptor blocker), indomethacin (8.37 X 10(-6) M, an inhibitor of cyclooxygenase), atropine (1 X 10(-7) M, a muscarinic receptor blocker), and hydralazine (2 X 10(-4) M, a vascular smooth muscle inhibitor) for a period of 1 h had no effect on vasoconstrictor responses to ATP. However, pretreatment with reserpine (2 mg X kg-1 X day-1 for 2 days), an agent which depletes catecholamines, potentiated responses to ATP. On the other hand, when vascular tone was increased with an isoosmotic 60 mM K+ depolarizing Krebs bicarbonate solution, bolus injections of ATP elicited a prominent dose-dependent vasoconstriction followed by a prominent vasodilation. The degree of vasodilation but not of vasoconstriction elicited by ATP was greater in small terminal arteries with branches (less than 0.5 mm outside diameter (o.d.) ) than in the medium size arteries (less than or equal to 1 mm o.d.) without terminal branches. Both the vasoconstrictor and vasodilator responses were unaffected by a perfusion with atropine, indomethacin, or eicosatetraynoic acid (ETYA, 1 X 10(-4) M) for 1-2 h.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The study was aimed at the effect of prior adaptation to short-term stress exposure on changes in K(ATP)-channel activity induced by severe stress and the dependence of the changes on the state of endothelium which plays important role in autoregulation of the coronary flow and myocardial contractility. Experiments were conducted on isolation hearts of female rats. At the first step of experiment, the heart was perfused by Krebs-Henseleit solution; at the second step, the heart was perfused with the same solution in which glibenclamide (1 microM), glibenclamide with saponin or N(omega)-nitro-L-arginine (60 microM) methyl ether was added. During the experiment, the perfusion pressure was stepwise elevated from 40 to 120 mm Hg with 20 mm intervals (coronary autoregulation). Adaptation to short-term stress prevented development of stress-specific myocardial hyperperfusion (increased volumetric velocity of coronary flow against the background of decreased myocardial contractility) and the reduction of coronary dilation reserve. In coronary vessels of adapted rats, as distinct from control rats, basal glibenclamide-sensitive functional activity of K(ATP)-channels depended on presence and functional activity of endotheliocytes; it was reduced in presence of endothelium and increased after de-endothelization or NO synthase inhibition. In all experimental groups, the increase in glibenclamide-sensitive functional activity of K(ATP)-channels induced by NO synthase inhibition more than twice as great as after the endothelium denudation. In adapted animals, stress did not decrease the functional activity of K(ATP)-channels and their activity slightly depended on presence of endotheliocytes. In addition, the elevation of their functional activity characteristic of adaptation and evident after endothelium removal has vanished. Therefore adaptation to short-term stress exposure is associated with a potential increase in basal activity of K(ATP)-channels which enhances the potency of vascular dilation system and may apparently reduce the risk of high vascular tone when such important local regulatory system as the NO system is damaged.  相似文献   

15.
The vasodilator effect of the ethanolic extract of leaves from Hancornia speciosa Gomes (HSE) was evaluated in superior mesenteric artery rings. HSE produced a concentration-dependent vasodilation (IC50 = 10.8 +/- 4.0 microg/mL) in arterial rings pre-contracted with phenylephrine, which was completely abolished in endothelium-denuded vessels. Endothelium-dependent vasodilation induced by HSE was strongly reduced by L-NAME (100 microM), a nitric oxide (NO) synthase inhibitor, but neither by atropine, a muscarinic receptor antagonist (1 microM), nor by indomethacin (10 microM), a cyclooxygenase inhibitor. In rings pre-contracted with 80 mM KCl, the vasodilator effect of HSE was shifted to the right and was completely abolished in the presence of L-NAME (100 microM). Similar effects were obtained in mesenteric rings pre-contracted with phenylephrine in the presence of KCl 25 mM alone or in addition to 100 microM L-NAME. In addition, BaCl2 (1 mM) dramatically reduced the vasodilation induced by HSE. Together, these findings led us to conclude that HSE induces an endothelium-dependent vasodilation in rat mesenteric artery, by a mechanism dependent on NO, on the activation of potassium channels and endothelium-derived hyperpolarizing factor release. Rutin, identified as a major peak in the HPLC fingerprint obtained for HSE, might contribute for the observed vasodilator effect, since it was able to induce an endothelium-dependent vasodilation in rat superior mesenteric arteries.  相似文献   

16.
Here we studied direct vasodilation induced by statins in isolated bovine coronary arteries. In rings of coronary bovine arteries preconstricted with prostaglandin F(2 alpha) (3 x 10(-8) - 10(-5)), lovastatin, simvastatin, atorvastatin and cerivastatin (3-30 microM) but not pravastatin induced concentration-dependent vasodilation. Removal of endothelium diminished response to simvastatin, cerivastatin and atorvastatin (30 microM) (67.4+/-4.56 vs. 22.7+/-8.14%, 96.9+/-2.27% vs. 54.5+/-6.86%, 67.4+/-4.01% vs. 34.6+/-5.66%, respectively). In presence of L-NAME (300 microM) or indomethacin (5 microM) responses to simvastatin, atorvastatin and cerivastatin, were also partially diminished. In contrast, lovastatin-induced vasorelaxation was not significantly affected by removal of endothelium (35.6+/-4.19% vs. 28.8+/-5.24%) or by pretreatment with L-NAME or indomethacin. In summary, with the exception of pravastatin, statins act as coronary vasodilators. Simvastatin, cerivastatin and atorvastatin but not lovastatin induced vasodilation displayed endothelium dependent- and endothelium-independent components. The endothelium-dependent effect of statins was mediated by NO and PGI(2), while the mechanism of smooth muscle cells-dependent component remains to be determined.  相似文献   

17.
The objective of the present study was to assess the influence of diabetes in the neuronal nitric oxide (NO) release elicited by electrical field stimulation (EFS, 200 mA, 0.3 ms, 1-16 Hz, for 30 s, at 1 min interval) in endothelium-denuded mesenteric artery segments from control and streptozotocin-induced diabetic rats, assessing the influence of protein kinase C (PKC) in this release. N(G)-nitro-L-arginine-methyl ester (L-NAME, 10 microM, a NO synthase inhibitor) enhanced EFS-elicited contractions in control, and specially in diabetic rats, whereas they were unaltered by AMT (5 nM, an inducible NO synthase inhibitor) and capsaicin (0.5 microM, a sensory neurone toxin). Calphostin C (0.1 microM, a PKC inhibitor) increased the contraction elicited by EFS in both types of arteries. This increase was further enhanced by calphostin C + L-NAME in diabetic rats. Phorbol 12,13-dibutyrate (PDBu, 1 microM) reduced and unaltered EFS-induced contractions in control and diabetic rats, respectively. The further addition of L-NAME reversed the reduction obtained in control rats, and enhanced the response observed in diabetic rats. These results suggest that the EFS-induced NO release from perivascular nitrergic nerves, that negatively modulates the contraction, which is synthesized by neuronal constitutive NO synthase. The NO synthesis is positively stimulated by PKC. This NO release is increased in diabetes, likely due to an increase in the activity of this enzyme. The sensory nerves of these arteries do not seem to be involved in the contractile response.  相似文献   

18.
OBJECTIVE: We analysed the effect of aldosterone on calcitonin gene-related peptide (CGRP) mediated vasodilation in noradrenaline precontracted endothelium denuded mesenteric arteries segments from Wistar Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) and the effect of aldosterone on calcitonin receptor-like receptor (CL receptor) and receptor activity modifying protein 1 (RAMP1) expression in endothelium-denuded mesenteric arteries from SHR rats. RESULTS: CGRP 0.1 nM-0.1 microM induced a concentration-dependent relaxation that was enhanced by aldosterone 1 microM in SHR only. Incubation with RU 486 10 microM significantly reduced the enhancement of CGRP-relaxation produced by aldosterone in SHR. CL receptor expression was not modified in either strain, while RAMP1 expression was enhanced in SHR by aldosterone 1 microM 120 min and 0.1 microM 120 min. This up-regulation of RAMP1 was prevented by RU 486 10 microM. CONCLUSIONS: Aldosterone, through glucocorticoid receptor activation, increases the vasodilatory effect of CGRP in SHR mesenteric arteries, which seems to be mediated by increased RAMP1 expression.  相似文献   

19.
Because the effects of calcium supplementation on arterial tone in nitric oxide-deficient hypertension are unknown, we investigated the influence of elevating dietary calcium from 1.1 to 3.0% in Wistar rats treated with N(G)-nitro-L-arginine methyl ester (L-NAME; 20 mg. kg(-1). day(-1)) for 8 wk. A high-calcium diet attenuated the development of hypertension induced by L-NAME and abrogated the associated impairments of endothelium-independent mesenteric arterial relaxations to nitroprusside, isoproterenol, and cromakalim. Endothelium-dependent relaxations to acetylcholine during nitric oxide synthase inhibition in vitro were decreased in L-NAME rats and improved by calcium supplementation. The inhibition of cyclooxygenase by diclofenac augmented the responses to acetylcholine in L-NAME rats but not in calcium + L-NAME rats. When hyperpolarization of smooth muscle was prevented by KCl precontraction, the responses to acetylcholine during combined nitric oxide synthase and cyclooxygenase inhibition were similar in all groups. Furthermore, superoxide dismutase enhanced the acetylcholine-induced relaxations in L-NAME rats but not in calcium + L-NAME rats. In conclusion, calcium supplementation reduced blood pressure during chronic nitric oxide synthase inhibition and abrogated the associated impairments in endothelium-dependent and -independent arterial relaxation. The augmented vasorelaxation after increased calcium intake in L-NAME hypertension may be explained by enhanced hyperpolarization and increased sensitivity to nitric oxide in arterial smooth muscle and decreased vascular production of superoxide and vasoconstrictor prostanoids.  相似文献   

20.
《Life sciences》1997,61(15):PL211-PL219
The aim of this study was to evaluate the effects of Spirulina maxima on vasomotor responses of aorta rings from male Wistar rats fed on a purified diet. For this purpose, the animals (weighing 200–240 g) were allocated randomly in two groups. One receiving purified control diet (A) and the other receiving purified diet containing 5% Spirulina (B). Purified diets were according to American Institute of Nutrition guidelines and adjusted to Spirulina protein content. All animals were fed (20 g/day/rat) during two weeks, receiving water ad libitum and 12 h. lightdark cycles. Spirulina maxima effects were evaluated by concentration-response (CR) curves of aorta rings with or without endothelium to phenylephrine (PE), both in presence and absence of indomethacin (Indom) or indomethacin plus L-NAME (Indom. + L-NAME), and to carbachol (CCh). Aorta rings with endothelium from group B showed, relative to corresponding rings from group A: 1) a significant decrease in the maximal tension developed in response to PE. 2) this decrease was reverted by Indom. 3) Indom. + L-NAME induced an additional increase in the contractile responses to PE. 4) a significant shift to the left of the CR curve to CCh. No significant differences were observed in the tension developed in response to PE in rings without endothelium from either group. These results suggest that Spirulina maxima may decrease vascular tone by increasing the synthesis and release of both a vasodilating cyclooxygenase-dependent product of arachidonic acid and nitric oxide, as well as by decreasing the synthesis and release of a vasoconstricting eicosanoid from the endothelial cells. © 1997 Elsevier Science Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号