首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Evaluation of trophoblast cells by immunohistology has shown that subpopulations of trophoblast cells express class I HLA differently from one another and differently from embryonic and adult cells. Placental syncytial trophoblast does not express detectable levels of class I HLA; chorion membrane cytotrophoblasts bind one mAb to monomorphic determinants of class I Ag, W6/32, but not a second, 61D2. In the present study, sections of normal term placentae and matching extraplacental membranes were evaluated by in situ hybridization procedures for cells containing class I HLA mRNA using pHLA1.1, which is complementary to HLA-B. Class I Ag expression was identified by immunohistology using two mAb to class I HLA (W6/32, 61D2) and the mAb 4E to identify HLA-B. Placental syncytial trophoblast contained low to undetectable levels of class I mRNA and failed to bind all three mAb. Chorion membrane cytotrophoblast cells contained moderate levels of class I HLA mRNA and were positive with the mAb W6/32 but were negative with 61D2 and 4E. In adjacent tissues, fetal mesenchymal cells and maternal decidual cells contained high levels of class I mRNA and were positive with all three mAb. The results suggest that syncytial trophoblast may not express class I HLA because of low steady-state levels of class I HLA mRNA. In contrast, chorionic cytotrophoblast cells may express truncated versions of class I HLA or nonclassical HLA-A,B,C-like Ag. Regulation of the expression of class I HLA gene products may be essential to the development of a satisfactory immunologic relationship between the mother and her semiallogeneic fetus during pregnancy.  相似文献   

4.
To identify mAb reacting with the HLA class I alpha 3 domain, 14 mAb recognizing monomorphic determinants expressed on HLA-A, B, and C Ag or restricted to HLA-B Ag were screened in indirect immunofluorescence with mouse L cells expressing HLA-B7/H-2Kb chimeric Ag. mAb CR1S63, CR10-215, CR11-115, and W6/32 were found to react with the HLA class I alpha 3 domain in addition to the alpha 2 domain. mAb Q1/28 and TP25.99 were found to react only with the HLA class I alpha 3 domain. The determinants recognized by the six mAb were mapped on the HLA class I alpha 3 domain by indirect immunofluorescence staining of L cells expressing H-2Kb Ag containing different segments of the HLA-B7 alpha 3 domain chimerized with the H-2Kb alpha 3 domain. mAb TP25.99 reacts with chimeric Ag containing the HLA-B7 184 to 199 stretch, mAb CR10-215 and CR11-115 react with chimeric Ag containing the HLA-B7 184 to 246 stretch, mAb CR1S63 and Q1/28 react with chimeric Ag containing the HLA-B7 184 to 256 stretch, and mAb W6/32 reacts with chimeric Ag containing the whole HLA-B7 alpha 3 domain. Functional analysis using human CD8 alpha-bearing mouse H-2Kb-specific T cell hybridoma cells (HTB-Leu2) showed that only mAb TP25.99 inhibited IL-2 production by HTB-Leu2 cells stimulated with L cells expressing KbKbB7 Ag. This inhibition may occur because of the spatial proximity of the determinant defined by mAb TP25.99 to the CD8 alpha binding loop and/or because of change(s) in the conformation of the CD8 alpha binding loop induced by the binding of mAb TP25.99 to the HLA class I molecule. Furthermore, mAb TP25.99 inhibited the cytotoxicity of CD8-dependent and CD8-independent CTL clones. These results indicate that mAb TP25.99 has unique specificity and functional characteristics. Therefore it represents a valuable probe to characterize the role of the HLA class I alpha 3 domain in immunologic phenomena.  相似文献   

5.
Scanty information is available about the mechanisms underlying HLA class I Ag abnormalities in malignant cells exposed to strong T cell-mediated selective pressure. In this study, we have characterized the molecular defects underlying HLA class I Ag loss in five melanoma cell lines derived from recurrent metastases following initial clinical responses to T cell-based immunotherapy. Point mutations in the translation initiation codon (ATG-->ATA) and in codon 31 (TCA-->TGA) of the beta(2)-microglobulin (beta(2)m) gene were identified in the melanoma cell lines 1074MEL and 1174MEL, respectively. A hot-spot CT dinucleotide deletion within codon 13-15 was found in the melanoma cell lines 1106MEL, 1180MEL, and 1259MEL. Reconstitution of beta(2)m expression restored HLA class I Ag expression in the five melanoma cell lines; however, the HLA-A and HLA-B,-C gene products were differentially expressed by 1074MEL, 1106MEL, and 1259MEL cells. In addition, in 1259MEL cells, the Ag-processing machinery components calnexin, calreticulin, and low m.w. polypeptide 10 are down-regulated, and HLA-A2 Ags are selectively lost because of a single cytosine deletion in the HLA-A2 gene exon 4. Our results in conjunction with those in the literature suggest the emergence of a preferential beta(2)m gene mutation in melanoma cells following strong T cell-mediated immune selection. Furthermore, the presence of multiple HLA class I Ag defects within a tumor cell population may reflect the accumulation of multiple escape mechanisms developed by melanoma cells to avoid distinct sequential T cell-mediated selective events.  相似文献   

6.
Summary The analysis of 650 HLA-A:HLA-B:Bf three-factor haplotypes revealed significant associations only between alleles of the very closely linked genes HLA-A and HLA-B, and HLA-B and Bf, respectively. Most striking is the highly significant association of the rare Bf variant F1 with HLA-B18 and of S1 with HLA-B13, HLA-B14, and HLA-Bw21. Only random allele distributions were observed when considering the somewhat more distant genes HLA-A and Bf or the higher order interaction at all three genes. From these findings it seems likely that the linkage disequilibrium within the MHC is not due to selective forces, but rather due to a short evolutionary period.Supported by the Deutsche Forschungsgemeinschaft Be 352/10.  相似文献   

7.
The mechanism by which HLA-B27 confers genetic susceptibility to the seronegative spondyloarthropathies ankylosing spondylitis, Reiter's syndrome, and reactive arthritis, is not well understood. The current concept of an extraarticular bacterial infection functioning as the triggering event in a genetically susceptible host suggests the possibility of direct microbial-MHC interaction. We have addressed the role of HLA-B27 in microbial-host cell interaction by examining invasion by putatively arthritogenic gram-negative bacteria. Target cells used were murine L cells transfected with HLA-B27, HLA-A3, HLA-A2, HLA B44, HLA B18, or pSV2neo vector alone. Relative to the pSV2neo control and the HLA-A3 transfectant, HLA-B27-transfected cells demonstrated a consistent decrease in invasion for each of the following pathogens: Salmonella typhimurium (45 +/- 2% decrease), Shigella sonnei (53 +/- 13% decrease), Shigella flexneri (45 +/- 5% decrease), and enteroinvasive Escherichia coli (57 +/- 8% decrease). This decrease was specific for the HLA B27-transfected L cells and was not observed in the other B allele transfectants. The decreased invasion in the HLA-B27 transfectants is not the result of either altered endogenous mouse class I expression as a result of human class I transfection or increased intracellular bacterial killing within the B27 transfectants. There was an inverse relationship between the amount of surface expression of HLA-B27, as measured by FACS, and the degree of invasion. Blocking of surface B27 Ag with anti-B27 mAb augmented bacterial invasion in the B27 transfectants. These studies demonstrate a novel bacterial-B27 interaction that may have relevance to the pathogenesis of B27-related arthritis.  相似文献   

8.
Three predominantly CD8+ CTL lines, TIL 501, TIL 620, and TIL 660, were generated from three HLA-A2+ melanoma patients by culturing tumor-infiltrating lymphocytes in 1000 U/ml IL-2. These tumor-infiltrating lymphocytes lysed 12 of 18 HLA-A2+ autologous and allogeneic melanomas, but none of 20 HLA-A2-negative melanomas. They also did not lyse the MHC class I negative lymphoma-leukemia cell lines, Daudi, K562, or HLA-A2+ non-melanoma cell lines including PHA or Con A-induced lymphoblast, fibroblast, EBV-transformed B cell, Burkitt's B cell lymphoma, and colon cancer cell lines. Autologous and allogeneic melanoma lysis was inhibited by anti-CD3, by anti-MHC class I, and by anti-HLA-A2 mAb, indicating recognition of shared tumor Ag among melanoma cell lines in a TCR-dependent, HLA-A2-restricted manner. Six HLA-A2-negative melanoma cell lines obtained from five HLA-A2-negative patients were co-transfected with the HLA-A2.1 gene and pSV2neo. All 17 cloned transfectants expressing cell surface HLA-A2 molecules, but none of 12 transfectants lacking HLA-A2 expression, were lysed by these three HLA-A2-restricted, melanoma-specific CTL. Lysis of the HLA-A2+ transfectants was inhibited by anti-CD3, by anti-MHC class I, and by anti-HLA-A2 mAb, indicating recognition of shared tumor Ag on transfectants in a TCR-dependent, HLA-A2-restricted manner. These results identify the HLA-A2.1 molecule as an Ag-presenting molecule for melanoma Ag. They also suggest that common melanoma Ag are expressed among melanoma patients regardless of HLA type. These findings have implications for the development of melanoma vaccines that would induce antitumor T cell responses.  相似文献   

9.
Small cellular lung carcinoma (SCLC) cell lines are susceptible to lysis by NK cells. SCLC, normally negative for MHC class I Ag, were rendered positive for HLA-A and -B Ag by two methods: treatment with IFN-gamma or transfection with HLA class I genes. Exposure to IFN-gamma induced high levels of class I Ag and reduced susceptibility to NK-mediated lysis. However, transfection with either HLA-A2, HLA-B27, or HLA-B27 with beta 2m did not result in reduced susceptibility to NK cells. These transfectants expressed amounts of HLA class I Ag comparable to those in IFN-gamma-treated, untransfected cells. Transfection with the beta 2m gene or plasmid alone neither influenced levels of surface class I Ag nor resulted in reduced susceptibility to lysis by NK cells. Thus, the effects of IFN-gamma on NK susceptibility can be dissociated from the induction of class I Ag.  相似文献   

10.
There exists no absolute binding between the antigens HLA-Cw 2, Cw 3 and Cw 4, on the one hand, and HLA-B 27, HLA-B 15 and HLA-Bw 35, on the other hand. Even if 91% of human beings with HLA Cw 4 will simultaneously have the antigen HLA-Bw 35, another antigen as HLA-B 27 or HLA-B 15 can be identified in approximately 55% of individuals with HLA-Cw 2 and Cw 3. In this connection, the joint presence of some pairs of cross-reacting HLA antigens (A 2 and A 28, B 5 and Bw 35, B 7 and B 27, B 8 and B 14, B 12 and Bw 2) could be proved and their frequency be determined. 2 cases of a simultaneous presence of two subtypes of HLA-A 10 antigen, A 25 and A 26, could be found in family examinations. Moreover, two atypical bindings of anti-HLA-Bw 4 and anti-HLA-Bw 6 cytotoxins with HLA antigens could be identified: 7,49% of HLA-Bw 35 positive lymphocytes no positive response with anti-HLA-B 4 and 1,69% of HLA-B 12 with anti-HLA Bw 6. The importance of the findings for determining HLA in practice is discussed.  相似文献   

11.
Recognition of tumor-associated Ags (TAAs) on tumor cells by CTLs and the subsequent tumor cell death are assumed to be dependent on TAA protein expression and to correlate directly with the level of peptide displayed in the binding site of the HLA class I molecule. In this study we evaluated whether the levels of Her-2/neu protein expression on human tumor cell lines directly correlate with HLA-A*0201/Her2/neu peptide presentation and CTL recognition. We developed a TCR mimic (TCRm) mAb designated 1B8 that specifically recognizes the HLA-A2.1/Her2/neu peptide (369-377) (Her2(369)-A2) complex. TCRm mAb staining intensity varied for the five human tumor cell lines analyzed, suggesting quantitative differences in levels of the Her2(369)-A2 complex on these cells. Analysis of tumor cell lines pretreated with IFN-gamma and TNF-alpha for Her2/neu protein and HLA-A2 molecule expression did not reveal a direct correlation between the levels of Her2/neu Ag, HLA-A2 molecule, and Her2(369)-A2 complex expression. However, compared with untreated cells, cytokine-treated cell lines showed an increase in Her2(369)-A2 epitope density that directly correlated with enhanced tumor cell death (p = 0.05). Although a trend was observed between tumor cell lysis and the level of the Her2(369)-A2 complex for untreated cells, the association was not significant. These findings suggest that tumor cell susceptibility to CTL-mediated lysis may be predicted based on the level of specific peptide-MHC class I expression rather than on the total level of TAA expression. Further, these studies demonstrate the potential of the TCRm mAb for validation of endogenous HLA-peptide epitopes on tumor cells.  相似文献   

12.
A novel HLA-B5 CREG gene, HLA-B SNA was cloned and the primary structure was determined. The sequence data showed that HLA-B SNA was identical to HLA-B51 except the alpha 1 domain in which one amino acid substitution at residue 74 and 5 amino acid substitutions associated with the Bw4/Bw6 epitopes were observed between these Ag. The comparison with other HLA-B locus genes suggested that HLA-B SNA evolved from HLA-B51 by gene exchange or recombination at the exon 2 between HLA-B51 and B8. A total of 10 of 14 HLA-B51-specific CTL clones showed significantly weak or no recognition of HLA-B SNA Ag. They also gave the same degree of a lysis of Hmy2CIR cells expressing the HLA-B35/51 chimeric Ag composed of the alpha 1 domain of HLA-B35 and other domains of HLA-B51 as that of Hmy2CIR cells expressing the HLA-B SNA Ag. These results demonstrated that amino acid substitutions within positions 77-83 associated with the HLA-Bw4/Bw6 epitopes have an influence on recognition of the HLA-B SNA antigen by HLA-B51-specific CTL.  相似文献   

13.

Introduction

Behçet’s disease (BD) as systemic vasculitis of unknown etiology is associated with HLA-B*51 in European and Asian populations. HLA-A*26 was claimed as an additional BD susceptibility marker in Japanese and Greek patients. This study was performed to test for HLA associations in HLA-B*51 negative German and Turkish BD populations.

Methods

In total, 65 German and 46 Turkish patients lacking HLA-B*51 were analyzed in comparison to healthy HLA-B*51 negative Germans (n = 1500) and Turks (n = 130). HLA-A/B genotypes were determined by SSOP. P-values with correction for multiple testing (pc), χ2-test and odds ratio (OR) were used for statistical evaluation.

Results

HLA-A*26 was significantly more frequent in HLA-B*51 German patients [pc = 0.0076, OR = 3.23, 95% CI 1.63 to 6.39] than in respective controls. HLA-A*26 was also elevated in a smaller group of Turkish patients versus the controls. Significant association of HLA-Bw4 with isoleucine at amino-acid position 80 (HLA-Bw4-80I) was found in the HLA-B*51 German cohort of BD patients [pc = 0.0042, OR = 2.35, 95% CI 1.41 to 3.93) and in the Turkish patients in comparison to the respective controls [p = 0.025, OR = 2.17, 95% CI 1.09 to 4.31]. On the contrary, HLA-Bw4-80 T was reduced in both HLA-B*51 BD patient cohorts.

Conclusions

The study shows a significant association of HLA-Bw4-80I present on HLA-B*51 as well as on other B-locus molecules with BD. This indicates that distinctive Bw4 epitopes on HLA-B locus molecules could play a role in BD pathogenesis. The study also indicates an association with HLA-A*26 in German and Turkish BD patients as a genetic risk factor independent of HLA-B*51.  相似文献   

14.
Previous studies have indicated that the frequency of murine CTL precursors (CTLp) for human class I molecules is one to two orders of magnitude lower than that for murine class I alloantigens, and that this is due to species-specific structural differences between these molecules. Transgenic mice expressing the human class I MHC Ag HLA-A2.1 were used to examine changes in the frequency of class I HLA-specific precursors after T cell differentiation in an HLA-A2.1 positive environment. The HLA-A2.1 gene product was expressed at levels comparable to those of the endogenous H-2Db molecule in thymus, bone marrow, and spleen. By limiting dilution analysis, it was observed that the frequencies of CTLp in transgenic mice responding to the human alloantigens HLA-B7 or HLA-A2.2 were comparable to or lower than those in normal C57BL/6 mice, regardless of whether the Ag was presented on human or murine cells. Thus, expression of a human class I molecule in these animals did not result in an expansion of the number of CTLp specific for other human class I Ag. In addition, the frequency of HLA-A2.1-restricted, influenza specific CTLp was substantially lower than the frequency of H-2b restricted CTLp, indicating a poor utilization of HLA-A2.1 as a restricting element. Finally, the frequencies of CTLp for HLA-A2.1 expressed on syngeneic murine tumor cells were decreased significantly. Thus, expression of HLA-A2.1 in these animals appeared to induced tolerance to this Ag. Interestingly, however, these mice were not tolerant to the HLA-A2.1 molecule expressed on human cells. This indicates that the HLA-A2.1 associated epitopes expressed on murine and human cells differ and suggests that, under these circumstances, HLA-A2.1 acts as a restricting element for human nominal Ag. These results are discussed in the context of current models of T cell repertoire development.  相似文献   

15.
CTL lines were established in vitro by stimulating patient lymphocytes with autologous melanoma cells in the presence of IL-2. Resulting CTL lines lysed autologous melanoma and failed to lyse several allogeneic melanomas or K562. The mechanism of target cell recognition by autologous tumor-specific CTL was evaluated in this system, using several CTL lines: DT6, DT105, DT141, DT166, DT169, and DT179. Autologous melanoma lysis was inhibited by W6/32, mAb directed against HLA class I Ag, but not by L243, mAb directed against HLA class II Ag. CTL from DT6, DT141, DT166, DT169, and DT179 lysed fresh and cultured allogeneic melanomas, which shared the HLA-A2 Ag, but failed to lyse allogeneic melanomas, which shared B-region or C-region Ag, or shared no HLA class I Ag. CTL from DM141 lysed DM93, which shared A2 and Bw6, but failed to lyse DM105, which shared only Bw6. DM105 CTL failed to lyse allogeneic melanomas that shared HLA-A1, or that shared B or C region Ag, but they did lyse allogeneic melanoma DM49, which expressed an A region Ag that either was A10 or was serologically cross-reactive with A10. A T cell leukemia line, three EBV transformed B cell lines, and a pancreatic cancer line, all of which expressed HLA-A2, were not lysed by DM6 or DM179 CTL. Furthermore, HLA-matched nonmelanomas failed to inhibit autologous tumor lysis in cold target inhibition assays, whereas an HLA-A2+ allogeneic melanoma, DM93, inhibited autologous tumor lysis as effectively as the autologous tumor itself. HLA-A2, and possibly other HLA-A-region Ag, appear to function in HLA-restricted recognition of shared melanoma associated Ag by CTL.  相似文献   

16.
We determined the tissue distribution of 7 human minor histocompatibility (H) Ag. Each of these Ag is defined by one or more MHC class I-restricted CTL clones, previously generated from PBL primed against minor H Ag by HLA-identical bone marrow transplantation (BMT). CTL-mediated lysis of tissue-derived cells and cultured cell lines was used as an in vitro assay for minor H Ag expression of several human tissues. The Ag HA-3 (HLA-A1-restricted), HA-4 (HLA-A2 restricted), HA-6 and HA-7 (HLA-B7 restricted), and the male-specific Ag H-Y (HLA-A2 and B7 restricted) were found to be expressed on cells of all tissues tested. In contrast, the HLA-A2-restricted Ag HA-1 and HA-2 were demonstrated on PHA-blasts, EBV-BLCL, purified T cells, B cells, monocytes, and immature thymocytes, but could not be demonstrated on skin-derived cultured fibroblasts, keratinocytes, melanocytes, cultured epithelial cells of kidney proximal tubili, and umbilical cord vein-derived endothelial cells. Incubation of the latter cell lines with rIFN-gamma, rTNF-alpha, and/or rIL-1 alpha, in concentrations shown to maximally increase their susceptibility to lysis by allo-MHC class I CTL, did not induce recognition by HA-1- and HA-2-specific CTL in vitro. These results indicate an ubiquitous tissue expression of the minor H Ag HA-3, -4, -6, -7 and H-Y in contrast to a to the hemopoietic cell lineage-restricted expression for HA-1 and HA-2. The heterogeneity in tissue expression of T cell-defined, class I-restricted non-MHC Ag implies that they might be derived from intracellular proteins with either an ubiquitous or a more specialized cell type-specific function.  相似文献   

17.
18.
The molecular basis of T-cell-mediated recognition of ovarian cancer cells remains to be fully addressed. In this study we investigated HLA class I restriction and directed antigens of cytotoxic T lymphocytes (CTL) at the sites of ovarian cancer. Three HLA-class-I-restricted CTL lines were established from the tumor sites of ovarian cancer by culturing tumor-infiltrating lymphocytes or tumor-associated ascitic lymphocytes with interleukin-2: (1) HLA-A2402-restricted and ovarian-adenocarcinoma-specific CTL, (2) HLA-A2-restricted CTL recognizing histologically different cancers, and (3) HLA-B52-restricted and ovarian-cancer-specific CTL. HLA-A0201, HLA-A0206 and HLA-A0207 tumor cells were lysed by the HLA-A2-restricted CTL. HLA-B52 restriction of the third CTL line was confirmed by the transfection of HLA-B5201 cDNA into the tumor cells. The HLA-A2-restricted CTL recognized the SART-1, but not the MAGE-1 or MAGE-3 antigen. These results may facilitate a better understanding of the molecular basis of tumor-specific immunity at the tumor site of ovarian cancer. Received: 30 December 1998 / Accepted: 2 March 1999  相似文献   

19.
The class I MHC molecule HLA-B27 bears an unpaired Cys residue at position 67, which is predicted to face the Ag binding pocket, based on the x-ray crystallographic model of HLA-A2. To investigate the potential of this residue in the antigenic structure of HLA-B27, a panel of 11 mutant HLA-B27 genes has been created, each bearing a separate amino acid substitution at position 67. The genes were transfected into mouse L cells and the resulting cells analyzed by cytofluorography with a panel of antibodies reactive with the wild-type B27 molecule. Although previous studies had indicated that all mAb that bound the B27 molecule on human lymphocytes bound comparably to L cells transfected with the wild-type B27 gene in the absence of h beta 2-m (human beta 2-microglobulin), the first of the mutant B27 genes was found to express several mAb epitopes in the presence but not in the absence of a h beta 2-m gene. Therefore, subsequent analysis of the B27 mutant panel was conducted in L cells coexpressing the h beta 2-m gene. Under these circumstances, all of the mutants bound the monomorphic anti-class I HLA mAb W6/32 and B.9.12.1, as well as the broadly polymorphic mAb B.1.23.2. Binding to the mutant transfectants of three anti-B27 mAb that cross-react with HLA-B7, ME1, GS145.2, and GSP5.3, was directly proportional to the size of the substituted amino acid side chain. The binding of another anti-B27 mAb, B27M2, that recognizes a B27 determinant that includes the region of amino acids 77-81, was not affected by the Cys67- greater than Tyr67 substitution. Rabbit antibodies to a synthetic peptide composed of B27 amino acids 61-84 bound to both the wild-type B27 and to the Tyr67 mutant. This binding, but not the binding of ME1 or B27M2, was inhibited by the synthetic peptide. These data are interpreted as suggesting that the large amino acid substitutions at position 67 induce a limited conformational change that disrupts the epitopes of the three anti-B27, B7 mAb, that are themselves at least partially conformational. The potential implications of these findings for the role of HLA-B27 in disease pathogenesis are discussed.  相似文献   

20.
The expression of transfected HLA class I Ag has previously been shown to protect human target cells from NK-mediated conjugation and cytolysis. In this same system, transfected H-2 class I Ag fail to impart resistance to NK. In this study, we have mapped the portion of the HLA class I molecule involved in this protective effect by exploiting this HLA/H-2 dichotomy. Hybrid class I genes were produced by exon-shuffling between the HLA-B7 and H-2Dp genes, and transfected into the class I Ag-deficient B-lymphoblastoid cell line (B-LCL) C1R. Only those transfectants expressing class I Ag containing the alpha 1 and alpha 2 domains of the HLA molecule are protected from NK, suggesting the "protective epitope" is located within these domains. Since a glycosylation difference exists between HLA and H-2 class I Ag within these domains (i.e., at amino acid residue 176), the role of carbohydrate in the class I protective effect was examined. HLA-B7 mutant genes encoding proteins which either lack the normal carbohydrate addition site at amino acid residue 86 (B7M86-) or possess an additional site at residue 176 (B7M176+) were transfected into C1R. Transfectants expressing either mutant HLA-B7 Ag were protected from NK. Thus, carbohydrate is probably not integral to a class I "protective epitope." The potential for allelic variation in the ability of HLA class I Ag to protect C1R target cells from NK was examined in HLA-A2, A3, B7, and Bw58 transfectants. Although no significant variation exists among the HLA-A3, B7, and Bw58 alleles, HLA-A2 appears unable to protect. Comparison of amino acid sequences suggests a restricted number of residues which may be relevant to the protective effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号