首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Regional Reductions of Transketolase in Thiamine-Deficient Rat Brain   总被引:1,自引:0,他引:1  
Abstract: Thiamine deficiency impairs oxidative metabolism and causes metabolic encephalopathy. An early reduction in transketolase (TK) activity may be an important pathogenic event. To assess the role of TK, we have delineated the regional/cellular distribution of TK protein and mRNA in adult rat brain in pyrithiamine-induced thiamine deficiency. TK activity declined in both vulnerable and spared regions. Immunoblots showed a parallel reduction of TK protein. With a few exceptions, immunocytochemistry indicated an overall decline of TK immunoreactivity and the decrease was not specific to vulnerable areas. In contrast to the pronounced, general decline of TK protein, in situ hybridization revealed a regional decrease of 0–25% of TK mRNA in thiamine deficiency. Northern blots indicated a similar level of TK mRNA in whole brain in thiamine deficiency. These results show that the decline of TK activity results from a proportional decrease of TK protein, and the deficiency may be due to an instability of TK protein or an inhibition of TK mRNA translation. The lack of correlation of the distribution, and the absence of specific alteration, of TK in affected regions suggest that the reduced TK may not be linked directly to selective vulnerability in thiamine deficiency.  相似文献   

2.
Thiamine deficiency frequently occurs in patients with advanced cancer and therefore thiamine supplementation is used as nutritional support. Thiamine (vitamin B1) is metabolized to thiamine pyrophosphate, the cofactor of transketolase, which is involved in ribose synthesis, necessary for cell replication. Thus, it is important to determine whether the benefits of thiamine supplementation outweigh the risks of tumor proliferation. Using oxythiamine (an irreversible inhibitor of transketolase) and metabolic control analysis (MCA) methods, we measured an in vivo tumour growth control coefficient of 0.9 for the thiamine-transketolase complex in mice with Ehrlich's ascites tumour. Thus, transketolase enzyme and thiamine clearly determine cell proliferation in the Ehrlich's ascites tumour model. This high control coefficient allows us to predict that in advanced tumours, which are commonly thiamine deficient, supplementation of thiamine could significantly increase tumour growth through transketolase activation. The effect of thiamine supplementation on tumour proliferation was demonstrated by in vivo experiments in mice with the ascites tumour. Thiamine supplementation in doses between 12.5 and 250 times the recommended dietary allowance (RDA) for mice were administered starting on day four of tumour inoculation. We observed a high stimulatory effect on tumour growth of 164% compared to controls at a thiamine dose of 25 times the RDA. This growth stimulatory effect was predicted on the basis of correction of the pre-existing level of thiamine deficiency (42%), as assayed by the cofactor/enzyme ratio. Interestingly, at very high overdoses of thiamine, approximately 2500 times the RDA, thiamine supplementation had the opposite effect and caused 10% inhibition of tumour growth. This effect was heightened, resulting in a 36% decrease, when thiamine supplementation was administered from the 7th day prior to tumour inoculation. Our results show that thiamine supplementation sufficient to correct existing thiamine deficiency stimulates tumour proliferation as predicted by MCA. The tumour inhibitory effect at high doses of thiamine is unexplained and merits further study.  相似文献   

3.
An isocratic HPLC procedure for the assessment of thiamine (T), thiamine monophosphate (TMP) and thiamine diphosphate (TDP) in human erythrocytes is described. Several aspects of the procedure make it suitable for both clinical and research purposes: limits of detection and quantification of 1 and 2.5 nmol/l, respectively, recovery of 102% on average (range 93-112%), intra- and inter-day precisions within 5 and 9%, respectively, total elution time 15 min. This analytical methodology was applied to a case-control study on erythrocyte samples from 103 healthy subjects and 36 alcohol-dependent patients at risk of thiamine deficiency. Mean control values obtained were: T=89.6+/-22.7 nmol/l, TMP=4.4+/-6.6 nmol/l and TDP=222.23+/-56.3 nmol/l. T and TDP mean values of alcoholics were significantly lower than those of control cases: T=69.4+/-35.9 nmol/l (P<0.001) and TDP=127.4+/-62.5 nmol/l (P<10(-5)). The diagnostic role of TDP was evaluated and a significant role for thiamine was established in the study of alcohol related problems.  相似文献   

4.
A new reversed-phase chromatographic method is described for the separation and quantification of thiamine (T), thiamine monophosphate (TMP) and diphosphate (TDP) in rat tissues. Sample extraction with perchloric acid (HClO(4)) was found more suitable than extraction with trichloroacetic acid (TCA), as regards convenience and background fluorescence. Derivatization of thiamine vitamers to thiochromes was optimized and complete separation of TDP and TMP thiochromes was obtained on a RP-amide C16 column in isocratic elution, with T thiochrome eluting in less than 10 min. The precision and the accuracy of the HPLC procedure were assessed: ranging from 0.5 to 7.7% for intra-day and from 2.0 to 9.4% for inter-day precision, a recovery average of 101% was determined (range 90-111%). Mean values of recovery for TDP, TMP or T were 91, 96 and 90% for liver extracts, respectively. Analysis of vitamers in tissues of rat submitted to 8 days thiamin deficiency, followed by a 14 days repletion, showed a significant reduction of TPP after 8 days of depletion in liver (-67%), brains (-50%), kidneys (-60%), followed by a complete recovery upon repletion.  相似文献   

5.
Thiamine phosphate esters (thiamine monophosphate-TMP; thiamine diphosphate-TDP and thiamine triphosphate-TTP) were measured as their thiochrome derivatives by High Performance Liquid Chromatography in the brains of pyrithiamine-treated rats at various stages during the development of thiamine deficiency encephalopathy. Severe encephalopathy was accompanied by significant reductions of all three thiamine phosphate esters in brain. Neurological symptoms of thiamine deficiency appeared when brain levels of TMP and TDP fell below 15% of normal values. Activities of the TDP-dependent enzyme -ketoglutarate dehydrogenase were more severely reduced in thalamus compared to cerebral cortex, a less vulnerable brain structure. On the other hand, reductions of TTP, the non-cofactor form of thiamine, occurred to a greater extent in cerebral cortex than thalamus. Early reductions of TDP-dependent enzymes and the ensuing metabolic pertubations such as lactic acidosis impaired brain energy metabolism, and NMDA-receptor mediated excitotoxicity offer rational explanations for the selective vulnerability of brain structures such as thalamus to the deleterious effects of thiamine deficiency.  相似文献   

6.
Thiamine diphosphate (TDP) serves as a cofactor for enzymes engaged in pivotal carbohydrate metabolic pathways, which are known to be modulated under stress conditions to ensure the cell survival. Recent reports have proven a protective role of thiamine (vitamin B(1)) in the response of plants to abiotic stress. This work aimed at verifying a hypothesis that also baker's yeast, which can synthesize thiamine de novo similarly to plants and bacteria, adjust thiamine metabolism to adverse environmental conditions. Our analyses on the gene expression and enzymatic activity levels generally showed an increased production of thiamine biosynthesis enzymes (THI4 and THI6/THI6), a TDP synthesizing enzyme (THI80/THI80) and a TDP-requiring enzyme, transketolase (TKL1/TKL) by yeast subjected to oxidative (1 mM hydrogen peroxide) and osmotic (1 M sorbitol) stress. However, these effects differed in magnitude, depending on yeast growth phase and presence of thiamine in growth medium. A mutant thi4Δ with increased sensitivity to oxidative stress exhibited enhanced TDP biosynthesis as compared with the wild-type strain. Similar tendencies were observed in mutants yap1Δ and hog1Δ defective in the signaling pathways of the defense against oxidative and osmotic stress, respectively, suggesting that thiamine metabolism can partly compensate damages of yeast general defense systems.  相似文献   

7.
Abstract: We compared the thiamine and thiamine phosphate contents in the frontal, temporal, parietal, and occipital cortex of six patients with frontal lobe degeneration of the non-Alzheimer's type (FNAD) or frontotemporal dementia with five age-, postmortem delay-, and agonal status-matched control subjects. Our results reveal a 40–50% decrease in thiamine diphosphate (TDP) in the cortex of FNAD patients, whereas thiamine monophosphate was increased 49–119%. TDP synthesizing and hydrolyzing enzymes were unaffected. The activity of citrate synthase, a mitochondrial marker enzyme, was decreased in the frontal cortex of patients with FNAD, but no correlation with TDP content was found. These results suggest that decreased contents of TDP, which is essentially mitochondrial, is a specific feature of FNAD. As TDP is an essential cofactor for oxidative metabolism and neurotransmitter synthesis, and because low thiamine status (compared with other species) is a constant feature in humans, a nearly 50% decrease in cortical TDP content may contribute significantly to the clinical symptoms observed in FNAD. This study also provides a basis for a trial of thiamine, to improve the cognitive status of the patients.  相似文献   

8.
The action of magnesium ion on the exchange rate of the proton in C2 of thiamine and thiamine diphosphate is studied at different values of pD. Above pD 5 the ion Mg2+ increases this exchange rate. The phenomenon is markedly enhanced for TDP rather than thiamine and increases with pD. Below pD 5 magnesium decreases the exchange rate. This decrease is greater for TDP than for thiamine. The maximum effect is reached at a magnesium concentration of 0.5/1 for thiamine and of 1/1 for TDP. T1 measurements are made for different pH values with and without magnesium ion. Results seem to prove that an increase in pD values from 3.9 to 5.9 leads to an accentuation of the molecules "folded" form. Nevertheless for a given pD value the TDP-Mg complex seems to have a more "folded" form than TDP.  相似文献   

9.
Abstract: Our results show that a net synthesis of thiamine triphosphate (TTP) can be demonstrated in vitro using rat brain extracts. The total homogenate was preincubated with thiamine or its diphosphate derivative (TDP), centrifuged, and washed twice. With TDP (1 m M ) as substrate, a 10-fold increase in TTP content was observed in this fraction (nuclear fraction, membrane vesicles). A smaller, but significant, increase was observed in the P2 fraction (mitochondrial/synaptosomal fraction). In view of the low TTP content of our fractions, it was carefully assessed that authentic TTP was being formed. Incorporation of radioactivity from [β-32P]TDP and [γ-32P]ATP in TTP suggests that these two compounds are its precursors. Furthermore, TTP synthesis was inhibited by ADP and relatively low concentrations of Zn2+. These results suggest that TTP synthesis is catalyzed by an ATP:TDP transphosphorylase rather than by the cytoplasmic adenylate kinase that may be present in the vesicles. After osmotic lysis of the vesicles at alkaline pH, TTP was recovered in protein-bound form. Concomitantly, a soluble thiamine triphosphatase, with alkaline pH optimum, was also released from the vesicles. No net synthesis could be obtained in the cytosolic fraction or in detergent-solubilized systems. Like TTP synthesis, chloride permeability of the vesicles was increased when the homogenate had been incubated with thiamine and particularly with TDP. Our results suggest a regulatory role of TTP on chloride permeability, but the target remains to be characterized.  相似文献   

10.
The responses of plants to abiotic stress involve the up-regulation of numerous metabolic pathways, including several major routes that engage thiamine diphosphate (TDP)-dependent enzymes. This suggests that the metabolism of thiamine (vitamin B1) and its phosphate esters in plants may be modulated under various stress conditions. In the present study, Zea mays seedlings were used as a model system to analyse for any relation between the plant response to abiotic stress and the properties of thiamine biosynthesis and activation. Conditions of drought, high salt, and oxidative stress were induced by polyethylene glycol, sodium chloride, and hydrogen peroxide, respectively. The expected increases in the abscisic acid levels and in the activities of antioxidant enzymes including catalase, ascorbate peroxidase, and glutathione reductase were found under each stress condition. The total thiamine compound content in the maize seedling leaves increased under each stress condition applied, with the strongest effects on these levels observed under the oxidative stress treatment. This increase was also found to be associated with changes in the relative distribution of free thiamine, thiamine monophosphate (TMP), and TDP. Surprisingly, the activity of the thiamine synthesizing enzyme, TMP synthase, responded poorly to abiotic stress, in contrast to the significant enhancement found for the activities of the TDP synthesizing enzyme, thiamine pyrophosphokinase, and a number of the TDP/TMP phosphatases. Finally, a moderate increase in the activity of transketolase, one of the major TDP-dependent enzymes, was detectable under conditions of salt and oxidative stress. These findings suggest a role of thiamine metabolism in the plant response to environmental stress.  相似文献   

11.
The influence of transketolase substrates on the interaction of apotransketolase with its coenzyme thiamine diphosphate (TDP) and on the stability of the reconstituted holoenzyme was studied. Donor substrates increased the affinity of the coenzyme for transketolase, whereas acceptor substrate did not. In the presence of magnesium ions, the active centers of transketolase initially identical in TDP binding lose their equivalence in the presence of donor substrates. The stability of transketolase depended on the cation type used during its reconstitution--the holoenzyme reconstituted in the presence of calcium ions was more stable than the holoenzyme produced in the presence of magnesium ions. In the presence of donor substrate, the holoenzyme stability increased without depending on the cation used during the reconstitution. Donor substrate did not influence the interaction of apotransketolase with the inactive analog of the coenzyme N3'-pyridyl thiamine diphosphate and did not stabilize the transketolase complex with this analog. The findings suggest that the effect of the substrate on the interaction of the coenzyme with apotransketolase and on stability of the reconstituted holoenzyme is caused by generation of 2-(alpha,beta-dihydroxyethyl)thiamine diphosphate (an intermediate product of the transketolase reaction), which has higher affinity for apotransketolase than TDP.  相似文献   

12.
Effects of thiamine, thiamine monophosphate (TMP), and thiamine diphosphate (TDP) on excitatory cholinergic and inhibitory noncholinergic nonadrenergic neuromuscular transmissions were studied in the smooth muscles of the gastric fundus and in the circular layer of the distal colon of the guinea pig, respectively. It was found that, when applied in the physiological concentration range, thiamine, TMP, and TDP evoked depolarization and an increase in strain in the smooth muscle strips, as well as an increase in the amplitude of inhibitory synaptic potentials and postinhibitory depolarization. The amplitude of the excitatory synaptic potentials increases in the presence of thiamine and TMP, and decreases in the presence of TDP. The results obtained suggest that thiamine and TMP, which are normally present in the extracellular medium, may modulate synaptic transmission, as well as the electrical and contractile activity of the smooth muscles in the gastrointestinal tract.Neirofiziologiya/Neurophysiology, Vol. 26, No. 6, pp. 449–457, November–December, 1994.  相似文献   

13.
The action of magnesium ion on the exchange rate of the proton in C2 of thiamine and thiamine diphosphate is studied at different values of pD. Above pD 5 the ion Mg2+ increases this exchange rate. The phenomenon is markedly enhanced for TDP rather than thiamine and increases with pD. Below pD 5 magnesium decreases the exchange rate. This decrease is greater for TDP than for thiamine. The maximum effect is reached at a magnesium concentration of 0.5/1 for thiamine and of 1/1 for TDP.T1 measurements are made for different pH values with and without magnesium ion. Results seem to prove that an increase in pD values from 3.9 to 5.9 leads to an accentuation of the molecules «folded form. Nevertheless for a given pD value the TDP-Mg complex seems to have a more «folded form than TDP.  相似文献   

14.
Chronic thiamine deprivation in the rat leads to ataxia, loss of righting reflex and neuropathological damage to lateral vestibular nucleus. Before onset of neurological symptoms, transketolase (TK) activities were found to be selectively reduced by 25% in lateral vestibular nucleus and surrounding pons. Further progression of thiamine deprivation resulted in a generalized reduction in TK activity. Measurement of enzyme activity in the presence of added TPP cofactor in vitro did not lead to normalisation of enzyme activities suggesting loss of apoenzyme. Administration of thiamine to symptomatic thiamine-deprived rats resulted in reversal of neurological symptoms and to normalisation of defective TK activities in less vulnerable structures such as cerebral cortex striatum and hippocampus; reduction of TK activity, however, persisted in brainstem and cerebellar regions. Pyrithiamine treatment results, within 3 weeks, in loss of righting reflex, convulsions and more widespread neuropathological damage compared to that observed following thiamine deprivation. TK activity was found to be significantly decreased before the onset of neurological symptoms in all brain regions and appearance of symptoms was accompanied by more severe reductions of TK. In contrast to chronic thiamine deprivation, TK activities following pyrithiamine treatment were: (i) equally reduced in magnitude in vulnerable and non-vulnerable brain structures, (ii) unchanged following reversal of neurological abnormalities by thiamine administration.  相似文献   

15.
Thymidine kinase (TK) and its isoenzymes were studied in relation to age of Ehrlich ascites tumour cells growing in vivo. Various steps of the pathway of thymidine through deoxynucleotide metabolism were studied: [3H]-thymidine cellular uptake and incorporation into DNA; the cellular nucleotide pools; and the concentration of thymidine in ascites. In addition, the proportion of cells in the various parts of the cell cycle and the bromodeoxyuridine labelling index were determined. Four isoenzymes at pI 4.1, 5.3, 6.9 and 8.3 were identified using isoelectric focusing. The TK activity declined with age of the tumour by about 90%, mostly due to a decrease of the isoenzyme at pI 8.3. However, this decline was neither related to the changes in DNA synthesis rate of the cells with tumour age, nor to the proportion of cells in S-phase or the bromodeoxyuridine (BrdU) labelling index. In contrast, the contribution of DNA synthesis via the thymidine salvage pathway relative to the total DNA synthesis increased from less than 1% at exponential growth to about 15% at plateau phase of growth. Blocking of DNA synthesis by aphidicolin did not change the TK activity. We therefore conclude that changes in TK activity and changes in cell growth are epiphenomena rather than causally related to each other. All nucleotide pools decreased with tumour age. The inhibition of TK by an increase in the deoxythymidine triphosphate pool could therefore be excluded. With a decrease of the TK activity during tumour growth, increasing amounts of TdR were excreted by the cells and accumulated in the ascites fluid. To explain our results on TK activity we propose a substrate cycle in which thymidine monophosphate supplied by de novo synthesis is dephosphorylated and is then either phosphorylated by TK to thymidine monophosphate or excreted by the cell.  相似文献   

16.
Inhibition of the thiamine-utilizing enzyme transketolase (TK) has been linked with diminished tumor cell proliferation. Most thiamine antagonists have a permanent positive charge on the B-ring, and it has been suggested that this charge is required for diphosphorylation by thiamine pyrophosphokinase (TPPK) and binding to TK. We sought to make neutral thiazolium replacements that would be substrates for TPPK, while not necessarily needing thiamine transporters (ThTr1 and ThTr2) for cell penetration. The synthesis, SAR, and structure-based rationale for highly potent non-thiazolium TK antagonists are presented.  相似文献   

17.
Postnatal Development of Thiamine Metabolism in Rat Brain   总被引:1,自引:0,他引:1  
The activities of thiamine diphosphatase (TDPase), thiamine triphosphatase (TTPase), and thiamine pyrophosphokinase and the contents of thiamine and its phosphate esters were determined in rat brain cortex, cerebellum, and liver from birth to adulthood. Microsomal TTPase activity in the cerebral cortex and cerebellum increased from birth to 3 weeks, whereas that in the liver did not change during postnatal development. Microsomal TDPase activity in the cerebral cortex showed a transient increase at 1-2 weeks, but that in the cerebellum did not change during development. In contrast to the activity of the brain enzyme, that of liver microsomal TDPase increased stepwise after birth. Thiamine pyrophosphokinase activity in the cerebellum increased from birth to 3 weeks and then decreased, whereas that in the cerebral cortex and liver showed less change during development. TDP and thiamine monophosphate (TMP) levels increased after birth and plateaued at 3 weeks whereas TTP and thiamine levels showed little change during development in the cerebral cortex and cerebellum. The contents of thiamine and its phosphate esters in the liver showed more complicated changes during development. It is concluded that thiamine metabolism in the brain changes during postnatal development in a different way from that in the liver and that the development of thiamine metabolism differs among brain regions.  相似文献   

18.
Abstract. Thymidine kinase (TK) and its isoenzymes were studied in relation to age of Ehrlich ascites tumour cells growing in vivo. Various steps of the pathway of thymidine through deoxynucleotide metabolism were studied: [3H]-thymidine cellular uptake and incorporation into DNA; the cellular nucleotide pools; and the concentration of thymidine in ascites. In addition, the proportion of cells in the various parts of the cell cycle and the bromodeoxyuridine labelling index were determined.
Four isoenzymes at pi 41, 5-3, 6–9 and 8-3 were identified using isoelectric focusing. The TK activity declined with age of the tumour by about 90%, mostly due to a decrease of the isoenzyme at pi 8-3. However, this decline was neither related to the changes in DNA synthesis rate of the cells with tumour age, nor to the proportion of cells in S-phase or the bromodeoxyuridine (BrdU) labelling index. In contrast, the contribution of DNA synthesis via the thymidine salvage pathway relative to the total DNA synthesis increased from less than 1% at exponential growth to about 15% at plateau phase of growth. Blocking of DNA synthesis by aphidicolin did not change the TK activity. We therefore conclude that changes in TK activity and changes in cell growth are epiphenomena rather than causally related to each other.
All nucleotide pools decreased with tumour age. The inhibition of TK by an increase in the deoxythymidine triphosphate pool could therefore be excluded. With a decrease of the TK activity during tumour growth, increasing amounts of TdR were excreted by the cells and accumulated in the ascites fluid. To explain our results on TK activity we propose a substrate cycle in which thymidine monophosphate supplied by de novo synthesis is dephosphorylated and is then either phosphorylated by TK to thymidine monophosphate or excreted by the cell.  相似文献   

19.
In order to follow up the morphological changes of the rat liver as a reaction to the tumour graft, three groups of Guérin tumour-grafted animals were used: a first control group, a second one treated with leucotrophine (LT) and a third one treated with LT and thiamine diphosphate (TDP). The tumour-grafted rats showed hepatic changes affecting mainly the organelles involved in cellular respiration and synthesis, as well as some morphological changes of Kupffer cells expressing an increased endocytosis. The protection by immunostimuli determined the diminution of histochemical and histoenzymatic changes both in hepatocytes and Kupffer cells.  相似文献   

20.
The effect of depolarization of rat brain cortex slices on the relative distribution of thiamine among its various phosphate esters and on the efflux of thiamine was studied as a probe of possible coenzyme-independent neurophysiological functions of thiamine. Electrical pulses for 30 min increased lactate production but did not affect the levels of thiamine esters. Depolarization with 41 mM-potassium decreased thiamine diphosphate by only 3 percent (P= 0.05). Thiamine triphosphate levels (TTP) were unaffected by depolarization but doubled during incubation for 1 h in which time efflux of 40 percent of the total thiamine from the slices as unesterified thiamine occurred. Depolarization by potassium released a small but highly variable portion of the thiamine content of superfused cortex slices above the basal rate of efflux. The basal efflux was partially sodium dependent. Thiamine efflux was unaffected by acetylcholine, ouabain, or tetrodotoxin, compounds previously reported to increase thiamine efflux. The incorporation of 32P1 into the endogenous thiamine phosphates of cortex slices was studied. Incorporation into thiamine diphosphate reached only 20 percent of the specific activity of its precursor, ATP, after 2h of incubation while the incorporation into TTP approached equilibrium with ATP in 15-30 min indicating that the TTP pool was the most rapidly turning over of the thiamine phosphates. The data suggest that only a small portion of the TDP pool undergoes rapid turnover and serves as a precursor for TTP. The rapid turnover of TTP phosphoryl groups is consistent with specific functions for this compound related to its potential for phosphorylation reactions. An analog of TTP with the β, γ oxygen bridge replaced by a methylene group decreased TDP levels and increased thiamine when incubated with cortex slices, but did not effect thiamine monophosphate or triphosphate levels indicating inhibition of thiamine pyrophosphokinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号