共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Norbert Sauer Kerstin Baier Manfred Gahrtz Ruth Stadler Jürgen Stolz Elisabeth Truernit 《Plant molecular biology》1994,26(5):1671-1679
The fluxes of carbohydrates across the plasma membranes of higher-plant cells are catalysed mainly by monosaccharide and disaccharide-H+ symporters. cDNAs encoding these different transporters have been cloned recently and the functions and properties of the encoded proteins have been studied extensively in heterologous expression systems. Several of the proteins have been identified biochemically in these expression systems and their location in plants has been shown immunohistochemically or with transgenic plants which were transformed with reporter genes, expressed under the control of the promoters of individual transporter genes. In this paper we summarize the current knowledge on the molecular biology and biochemistry of higher-plant sugar transport proteins. 相似文献
4.
5.
Kochian L. V. Garvin D. F. Shaff J. E. Chilcott T. C. Lucas W. J. 《Plant and Soil》1993,155(1):115-118
Recently, two K+-transport cDNAs, KAT1 and AKT1, were cloned in Arabidopsis thaliana. These cDNAs had structural similarities to K+ channel genes in animals, and also conferred the ability for growth on micromolar levels of K+ when expressed in K+ transport-defective yeast mutants. In this study, we examined the possibility that KAT1 encodes the high-affinity K+ transport system that has been previously characterized in plant roots, by studying the concentration-dependent kinetics of K+ transport for KAT1 expressed in Xenopus oocytes and Saccharomyces cerevisiae. In both organisms, the K+ transport system encoded by KAT1 yielded Michaelis-Menten kinetics with a high Km for K+ (35 mM in oocytes, 0.6 mM in yeast cells). Furthermore, Northern analysis indicated that KAT1 is expressed primarily in the Arabidopsis shoot. These results strongly suggest that the system encoded by KAT1 is not a root high-affinity K+ transporter. 相似文献
6.
Summary Na+ transport was characterized in normal human fibroblasts and neoplastic H.Ep. 2 cells in order to investigate the role of the endogenous peptidic factor inhibitin that is secreted by a variety of neoplastic cells (including H.Ep. 2) and inhibits Na+/Na+ exchange in human erythrocytes. Although active (Na+, K+-ATPase mediated) Na+ fluxes were similar in the two cell types, H.Ep. 2 cells maintained higher intracellular Na[su+] concentration (26mm) compared to fibroblasts (12mm). An analysis of passive Na+ fluxes showed a difference in the handling of Na+ via ouabain and bumetanide-insensitive transport between the two cell types: H.Ep. 2 cells achieved net Na+ influx via an amiloride-sensitive pathway that was only demonstrated in fibroblasts when 10% fetal calf serum (FCS) was present. Kinetic studies were undertaken to investigate the interaction between Na+ flux via Na+/H+ and Na+/Na+ exchanges. for this purpose, an outwardly directed Na+ gradient was created by loading the cells with Na+ (Na
i
>100mm) to activate the reverse functioning of Na+/H+ exchange (i.e., Na
out
+
H
in
+
). The rates of ouabain-and bumetanide-insensitive Na+ efflux were measured over a range of extracellular Na+ concentrations (Na
o
+
14–140mm). In the presence of 10% FCS, the two cell types showed different responses: in fibroblasts the Na+ efflux rate showed an inverse correlation with extracellular Na+ concentration, while H.Ep. 2 cells significantly increased their rate of Na+ efflux as extracellular Na+ concentration increased. So although the thermodynamic force would direct net Na+ efflux when Na
i
+
>Na
o
+
, H.Ep.2 cells were under kinetic control to perform Na+/Na+ exchange.When exogenous inhibitin was tested on fibroblasts, the steady-state intracellular Na+ concentration increased from 14 to 19mm (p<0.01). In Na+-loaded fibroblasts, serum-stimulated Na+ efflux was partially inhibitin sensitive and the maximal inhibitory effect was seen when extracellular Na+ concentration was 14mm and presumably the Na+/H+ exchanger operating in the reverse mode. This study demonstrated that, in contrast to fibroblasts, H.Ep.2 cells have a modified Na+/H+ exchange system whereby it acts in the Na
in
+
H
out
+
mode without exogenous growth factor activation and resists functioning in the reversed mode. It is proposed that inhibitin, is the endogenous modifier of this transport system in H.Ep.2 cells with the result that H.Ep.2 cells maintain a higher concentration of intracellular Na+ compared to fibroblasts. 相似文献
7.
Thomas E. Humphreys 《Phytochemistry》1973,12(6):1211-1219
Sucrose that leaked from maize scutellum slices upon transfer of slices from a hexose or hexitol solution to water or upon placing the slices in a buffered EDTA solution was considered to be cytoplasmic in origin; residual (after leakage) tissue sucrose was considered to be stored in the vacuoles. This paper presents a study of the movement of sucrose across the tonoplast between the vacuoles and the cytoplasmic compartment. It is concluded that; (a) sucrose transport into the vacuoles is directly linked to sucrose synthesis in such a way that free sucrose is not an intermediate in the coupled process, (b) cytoplasmic sucrose is not (cannot be?) stored, (c) sucrose transport out of the vacuoles is linked to the metabolic demand for sugar, and (d) the transport process removing sucrose from the vacuoles does not release free sucrose into the cytoplasm. The sucrose fluxes at the plasmalemma and at the tonoplast are calculated, and the transport processes at the two membranes are compared. 相似文献
8.
Effects of air pollutants on proton and sucrose transport at the plasma membrane of Ricinus communis
C. E. RUSSELL J. PITTMAN N. M. DARRALL L. E. WILLIAMS & J. L. HALL 《Plant, cell & environment》1999,22(2):221-227
The effects of the air pollutants O3, SO2 and NO2 on aspects of sucrose/proton cotransport across the plasma membrane of Ricinus communis plants have been investigated. The H+-ATPase hydrolytic activity in cotyledon plasma membrane vesicles purified by phase partitioning showed small stimulations by Na2SO3 or NaNO3 added separately or together to the assay medium. ATPase activity from plants pretreated by fumigation with SO2 or O3 also showed an increase, the effect of O3 being quite marked. Plasma membrane H+-pumping in KI-treated microsomal fractions and medium acidification by intact cotyledons both showed small decreases in the presence of Na2SO3 or NaNO2. Both Na2SO3 and NaNO2 at high concentrations (2 mol m–3) had significant effects on sucrose uptake by intact cotyledons, although sucrose efflux was unaffected. No significant effects on sucrose uptake or efflux by intact cotyledons were observed in plants pretreated by fumigation with SO2 or O3. Proton-coupled sucrose transport in isolated plasma membrane vesicles was inhibited in the presence of Na2SO3 or NaNO2. However, both pollutants also significantly inhibited the uptake of acetate by the vesicles, indicating a dissipation of the pH gradient across the membrane. It was concluded that no specific aspect of the sucrose/proton cotransport mechanism was damaged by these air pollutants, and that the effects of these pollutants on carbohydrate partitioning are more likely to be due to general effects on membrane integrity or on other aspects such as leaf carbohydrate metabolism. 相似文献
9.
Thomas Humphreys 《Phytochemistry》1978,17(4):679-684
A model originally developed for transport of neutral substrates in bacterial systems was tested for its suitability for depicting sucrose transport across the plasmalemma of the maize scutellum cell. The model contains a sucrose—proton symporter, a negatively-charged free carrier and a neutral sucrose—proton—carrier complex. Sucrose transport is driven by the sucrose gradient and by a proton electrochemical gradient set up by a proton-translocating ATPase. The results of experiments on sucrose uptake in scutellum slices are in accord with predictions based on the model. Evidence was obtained for an electrogenic proton pump in the plasmalemma, for sucrose—proton symport and for a sucrose transport mechanism driven by both electrical potential and pH gradients. It was found that treatments (dinitrophenol, N-ethylmaleimide or HCl) causing a net proton influx into the slices also caused an efflux of sucrose. Interpretations of these results compatible with the model are given. 相似文献
10.
吕萍萍 胡军 陈少良 沈昕 尹维波 陈宇红 孙勇如 胡赞民 Lü Ping-Ping HU Jun CHEN Shao-Liang SHEN Xin YIN Wei-Bo CHEN YU-Hong SUN Yong-Ru HU Zan-Min 《植物生理与分子生物学学报》2007,33(2):173-178
将胡杨Na /H 逆向转运蛋白基因PeNhaD1,分别转入对盐敏感的缺失质膜和缺失液泡膜Na /H 逆向转运蛋白基因的酵母突变菌株ANT3和GX1中。结果表明,在pH6.0、Na 浓度为80mmol/L(固体培养基)或400mmol/L(液体培养基)的条件下,转化具有目的基因的酵母ANT3具有更高的耐盐性,而将目的基因转化到突变株GX1时,却不能提高其耐盐性。实验结果说明PeNhaD1可能是通过编码质膜Na /H 逆向转运蛋白而提高酵母的耐盐性的,推测其在胡杨耐盐机制中的作用可能是提高拒盐性。 相似文献
11.
拟南芥液泡膜Na+/H+逆向转运蛋白研究进展 总被引:2,自引:0,他引:2
盐分是植物生长发育的主要限制因素之一,而离子在胞内区室之间的选择性运动对提高植物耐盐性是至关重要的。来自于拟南芥(Arabidopsis thaliana)的AtNHX1基因可编码Na /H 逆向转运蛋白,而Na /H 逆向转运蛋白AtNHX1可将细胞质中多余的Na 排进液泡来消除Na 的毒害,维持细胞的渗透平衡,提高植物的耐盐性。简要综述了AtNHX1基因及Na /H 逆向转运蛋白AtNHX1的特征,AtNHX1的耐盐机制以及植物耐盐基因工程改良等方面的研究进展。 相似文献
12.
Darginaviciene J Pasakinskiene I Maksimov G Rognli OA Jurkoniene S Sveikauskas V Bareikiene N 《Journal of plant physiology》2008,165(8):825-832
Changes in plasmalemma K+Mg2+-ATPase dephosphorylating activity and H+ transport were examined in freezing-tolerant and non-tolerant genotypes of the perennial grass species Festuca pratensis Huds. Enzyme activity and ΔμH+ were measured in plasmalemma fractions isolated from basal nodes and roots. Three types of experiments were undertaken: (i) a field experiment, utilizing the seasonal growth and cessation cycle of a perennial plant; (ii) a cold acclimation experiment in hydroponics; and (iii) an instant freezing test. A specific fluctuation in K+Mg2+-ATPase activity was found throughout the seasonal growth of the plants (i). The K+Mg2+-ATPase activity peaks for both the basal node and the root plasmalemma were determined early in the spring before the renewal of growth. The lowest activity values in roots occurred at the time approaching flowering, and in basal nodes at the transition into the growth cessation. The K+Mg2+-ATPase activity was approximately 50% lower in the basal node plasmalemma of freezing-tolerant plants than of non-tolerant ones, when assessed at the optimal growth stage in hydroponics. In hydroponics (ii) and in the freezing test (iii), temperature stress was followed by a more pronounced change in the level of K+Mg2+-ATPase activity than in that of H+ transport, and this change was more clearly differentiated in the basal node plasmalemma of contrasting genotypes than in the roots. Stress response was manifested differently in freezing-tolerant and non-tolerant plants at cold acclimation (4–2 °C) and at freezing (−8 °C) temperatures. Proton transport regulation via coupled changes in the hydrolysed ATP/transported proton ratio, as an attribute of freezing-tolerant plants, is discussed. 相似文献
13.
Characterization of AtCHX17, a member of the cation/H+ exchangers, CHX family, from Arabidopsis thaliana suggests a role in K+ homeostasis 总被引:2,自引:0,他引:2
Cellier F Conéjéro G Ricaud L Luu DT Lepetit M Gosti F Casse F 《The Plant journal : for cell and molecular biology》2004,39(6):834-846
The Arabidopsis genome contains many sequences annotated as encoding H(+)-coupled cotransporters. Among those are the members of the cation:proton antiporter-2 (CPA2) family (or CHX family), predicted to encode Na(+),K(+)/H(+) antiporters. AtCHX17, a member of the CPA2 family, was selected for expression studies, and phenotypic analysis of knockout mutants was performed. AtCHX17 expression was only detected in roots. The gene was strongly induced by salt stress, potassium starvation, abscisic acid (ABA) and external acidic pH. Using the beta-glucuronidase reporter gene strategy and in situ RT-PCR experiments, we have found that AtCHX17 was expressed preferentially in epidermal and cortical cells of the mature root zones. Knockout mutants accumulated less K(+) in roots in response to salt stress and potassium starvation compared with the wild type. These data support the hypothesis that AtCHX17 is involved in K(+) acquisition and homeostasis. 相似文献
14.
The co-ordinated action of the two proton-transporting enzymes at the tonoplast of the CAM plants. daigremontiana, viz. the ATPase and the PPiase, was studied by measuring fluorescent dye quenching. The initial rates of ATP and PPi-dependent H+ transport into tonoplast vesicles were additive, i.e. the sum of the rates obtained with each substrate alone was in the range obtained with both substrates added together at the same time. Conversely, the activities of the two H+ pumps were non-additive in establishing the steady-state level, indicating that the final steady state was under thermodynamic control of a maximal attainable proton gradient. The initial rates of ATP-dependent H+ transport were stimulated enormously if ATP was added a few minutes after pre-energization of the vesicles with PPi. This stimulation was observed only when the PPiase was active. A similar effect was not found for PPi-dependent H+ transport after pre-energization with ATP. Hence, a PPiase-activated ATP-dependent H+ transport can be distinguished from the basic ATP- and the basic PPi-dependent H+ transport. In parallel a PPi-dependent stimulation of ATP hydrolysis in the absence of ionophores was measured, which can only be attributed to the activity of the PPiase. PPiase-activated ATP-dependent H+ transport depends on the presence of permeant anions. It shows properties of both H+ transport activities, i.e. the chloride and malate stimulation and the DCCD inhibition of the ATP-dependent H+ transport activity, the nitrate stimulation and the KF inhibition of the PPi-dependent H+ transport activity. Only MgPPi and MgATP were effective as the respective substrates. The PPiase-activated ATP-dependent H+ transport had a half life of about 5–9 minutes. It is concluded that the PPiase may play an important role in kinetic regulation of the ATPase, and implications for CAM metabolism are discussed. 相似文献
15.
The final stage of map-based gene isolation is complementation of the mutant phenotype with wild-type DNA to determine the exact location of the gene of interest. This usually involves Agrobacterium tumefaciens-mediated transformation, which is reliable and produces stable transformants. However, the process of Agrobacterium transformation may take up to three months to complete. If the mutant phenotype can be seen in a single cell, and the wild-type copy of the gene can act cell autonomously, then complementation of the whole plant is not strictly necessary. We have developed a technique for the biolistic transformation of Arabidopsis thaliana root hairs, and used this to test large insert clones for complementation of two recessive mutant phenotypes, a procedure that takes less than a day. Our results show that biolistic transformation can be used with transient assays to conduct rapid tests for complementation by large insert clones. 相似文献
16.
17.
18.
Mutations in the genes coding for the soluble and the membrane-bound hydrogenase of Alcaligenes eutrophus strain H16 significantly affected the expression of respiratory chain components. In lithoautotrophically grown wild type cells electron flow mainly proceeded via the cytochrome c oxidases. Mutants defective in the membrane-bound hydrogenase contained a 2- to 3-fold higher cytochrome a content than the wild type and cytochrome c oxidase of the aa3-type was preferentially used by these cells for substrate oxidation. Mutants impaired in the soluble hydrogenase revealed slow growth on hydrogen, presumably due to inefficient reverse electron flow mechanisms which provide the cells with NADH for autotrophic CO2-fixation. In this class of mutants the two quinol oxidases of the o- and d-type in addition to the co-type oxidase were the predominant electron-transport branches. 相似文献
19.
Grebenok Robert J. Ohnmeiss Thomas E. Yamamoto Alvin Huntley Edward D. Galbraith David W. Della Penna Dean 《Plant molecular biology》1998,38(5):807-815
The yeast C-8,7 sterol isomerase contains a polyvalent high-affinity drug binding site similar to mammalian sigma receptors. Exogenously supplied sigma ligands inhibit sterol biosynthesis in yeast, demonstrating a pharmacological relationship between sigma ligand-binding and C-8,7 sterol isomerase activity. We report the isolation of an Arabidopsis thaliana C-8,7 sterol isomerase by functional complementation of the corresponding sterol mutant in yeast and its characterization by exposure to sigma ligands. The yeast erg2 mutant, which lacks the C-8,7 sterol isomerase gene and activity, was transformed with an Arabidopsis cDNA yeast expression library. Transformed colonies were selected for restoration of C-8,7 sterol isomerase activity (i.e. wild-type ergosterol production) by enhanced resistance to the antibiotic cycloheximide. Sterols produced in complemented lines were characterized by gas chromatography-mass spectroscopy (GC-MS). The full-length A. thaliana cDNA (pA.t.SI1) that complemented the erg2 mutation contains an open reading frame encoding a 21 kDa protein that shares 68% similarity and 35% amino acid identity to the recently isolated mouse C-8,7 sterol isomerase. The sigma ligands, haloperidol, ifenprodil and verapamil inhibited the production of ergosterol in wild-type Saccharomyces cerevisiae and in the erg2 mutant complemented with pA.t.SI1. Structural and biochemical similarities between the A. thaliana C-8,7 sterol isomerase and the mammalian emopamil-binding protein (EBP) are discussed. 相似文献
20.
Ca2+/H+ 反向转运体作为一类 Ca2+外向转运器,在植物的营养和信号转导中起着非常重要的作用 . 克隆了水稻 Ca2+/H+ 反向转运体基因 OsCAX3 ,序列分析表明 OsCAX3 具有 11 个跨膜区,其中在第 6 和第 7 个跨膜区之间有一个 17 个氨基酸组成的酸性基序 (acid motif) ,功能互补实验证明 OsCAX3 具有转运 Ca2+ 的功能,并且其 N 端 26 个氨基酸序列对转运 Ca2+ 具有一定的抑制作用 . RT-PCR 分析表明 OsCAX3 的表达受到外源 Ca2+ 的诱导 . 利用 PSORT prediction 进行亚细胞定位分析,和利用 OsCAX3-GFP 融合蛋白瞬时表达分析证明, OsCAX3 定位于细胞质膜 . 以上结果表明, OsCAX3 是一种定位于细胞质膜上的 Ca2+/H+ 反向转运体 . 相似文献