首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Resistance and sensitivity to normal human serum (NHS) of Trypanosoma congolense, a parasite believed to cause disease in animals only, were investigated in vivo as well as in vitro. Our results indicate that like Trypanosoma brucei, T. congolense can be grouped into three different phenotypes according to its resistance to NHS. Some strains are completely resistant to NHS, like Trypanosoma brucei gambiense and the resistant form of Trypanosoma brucei rhodesiense. Other strains show a very low degree of resistance comparable to the sensitive form of T. b. rhodesiense, and some are completely sensitive to NHS. Continuous passaging in mice in the presence or absence of NHS shows that the resistance and sensitivity of T. congolense can be reversed like in T. b. rhodesiense. Our data suggest that T. congolense might be able to infect man in regions where animals may serve as reservoirs for the infection.  相似文献   

2.
Progressive changes in iron levels, total iron binding capacity and hematocrit values in sera of rats infected with Trypanosoma lewisi are described. The host dietary group were: (1) complete or full complement; (2) iron-deficient, and (3) pair-fed or calorically restricted. The hematocrit values of T. lewisi-infected rats given the various diets were not significantly different from those of the controls. The decrease in total iron binding capacity (TIBC) of rats inoculated with T. lewisi and fed complete and pair-fed diets ranged up to 15% over uninfected controls. TIBC levels in rats fed an iron-deficient diet and inoculated with T. lewisi ranged up to 32% over uninfected controls. TIBC levels of deficient infected rats were significantly different from the controls from day 90 to infection to the end of the observation period. Serum iron (SI) values of non-infected rats regardless of dietary regimen showed significantly higher values than T. lewisi-infected animals between days 95 and 120. The average SI value, for this period, in adequately fed control rats was 204 +/- 7 microgram/100 ml as compared to 172 +/- 5 microgram/100 for trypanosome-infected rats. SI levels of rats on a pair-fed diet and infected with T. lewisi decreased to 17% over uninfected controls. SI levels of animals on an iron-deficient diet and infected with T. lewisi decreased up to 76% over uninfected controls.  相似文献   

3.
Procyclic culture form (PCF) trypanosomes were established from a bloodstream form population of cloned Trypanosoma brucei rhodesiense and were used to immunize mice for hybridoma production. Indirect immunofluorescence was used to select 10 hybridomas which secreted antibodies that bound to the surface of homologous living PCF. The antibodies reacted with PCF of several clones of T.b. brucei, T.b. gambiense, and T.b. rhodesiense, but not with PCF of T. congolense or T. vivax, or with promastigotes of several species of Leishmania parasites. The antigens were not detectable in ethanol/acetic acid-fixed bloodstream forms or in lysates of bloodstream forms of any of the T. brucei subspecies, and are thus species-specific and stage-specific markers. Selected monoclonal antibodies bound to procyclic trypanosomes taken directly from the midgut of infected tsetse flies, and to immature epimastigote forms in salivary probes, and may therefore be useful in epidemiologic investigations.  相似文献   

4.
When procyclic trypanosomes of Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense were cultivated in Nunclon 25 cm2 flasks at 27 C in a liquid medium containing various tissue explants of Phormia regina Meigen, some of them developed into forms infective for mice. The infective stages were present at various periods of up to 29 days when the cultures were terminated. Larger numbers of explants of head-salivary glands than the other tissues used were required to produce infections. Infectivity titrations on trypanosome suspensions of T. b. brucei TRUM 252 and T. b. rhodesiense TRUM 497 indicated that only a small proportion of the populations was infective. Mice were rarely infected with trypanosomes grown in medium without explants. Only 1 mouse of the 11 inoculated developed a parasitemia from a control culture of T. b. rhodesiense TRUM 545. A few trypanosomes resembling epimastigotes and metacyclic forms were seen in stained samples of infective inocula.  相似文献   

5.
Tubulin from Trypanosoma brucei was purified to near homogeneity using a protocol which involved treatment with urea with subsequent renaturation and was then used to immunize mice. Renatured tubulin further purified by SDS-PAGE (denatured), synthetic tubulin peptides (STP), and rat brain tubulin (RbTub) were also used. Immunized mice were challenged with T. brucei, Trypanosoma congolense or Trypanosoma rhodesiense. Renatured T. brucei tubulin (nTbTub) induced protection in all mice tested, of which 60-80% (n = 81) was complete and the remainder partial. Denatured T. brucei tubulin (dTbTub), STP, or RbTub induced lower antibody levels than nTbTub and did not offer protection. However, in culture, the antibodies against dTbTub or STP killed trypanosomes although at lower dilutions than nTbTub, but those against RbTub did not. In Western blots anti-trypanosome antibodies recognized the tubulin of all the trypanosome species investigated but not vertebrate tubulin, whereas the anti-RbTUB antibodies recognized both trypanosome and vertebrate tubulin. Of the five mice given passive immunity by the transfer of anti-nTbTub serum, four were completely protected and one partially protected. These data suggest that tubulin is the relevant immunogen in the preparation used and could therefore be a promising target for the development of a parasite-specific, broad spectrum vaccine.  相似文献   

6.
White rats were inoculated with 10(6) trypomastigotes of Trypanosoma lewisi, simultaneously or two days before and after inoculation with 10(5) oocysts of T. gondii. A greater number of cysts was found in the brain of the animals having concomitant inoculations, as compared with rats inoculated with either one of the two parasites. An apparent immunosuppressive effect is likely. Since both organisms can be found in rats, it is possible that infections with T. lewisi, could make this rodent another intermediate host for Toxoplasma infections.  相似文献   

7.
Acute infection with Trypanosoma cruzi or its African relatives, including T. brucei rhodesiense, T. b. gambiense, T. b. brucei and T. congolense, is frequently accompanied by manifestations of immunological dysfunction. Initially investigators catalogued the ensuing immunologic alterations and identified a number of modifications in lymphoid or accessory cell properties. More recently, the emphasis has switched towards the molecular underpinnings of immunosuppression in these infections. In this article, Marcelo Sztein and Felipe Kierszenboum focus on recent progress made in the quest to delineate the mechanisms behind altered lymphocyte functions in tryponosomal infections, point out particular and common features of immunosuppression induced by T. cruzi and African trypanosomes, and outline possible directions for future research.  相似文献   

8.
Culture procyclic forms of Trypanosoma brucei rhodesiense and Trypanosoma congolense were fed to Glossina morsitans morsitans through artificial membranes. A very high percentage of the flies so fed produced established midgut infections, a proportion of which went on to develop into mature metacyclic trypanosomes capable of infecting mammalian hosts. The method offers a safe, clean way of infecting tsetse flies with African trypanosomes which reduces the need for trypanosome-infected animals in the laboratory.  相似文献   

9.
The amounts of an antigen to primary biliary cirrhosis (PBC) which occur in subcellular fractions of Trypanosoma rhodesiense and T. lewisi correlate positively with the oligomycin-sensitive (OS) ATPase activity of these fractions. This result is consistent with the mitochondrial ATPase association of the antigen in mammalian and other cells. Higher levels of OS-ATPase and of PBC antigen in T. lewisi accord with a more extensive mitochondrial development in this species.  相似文献   

10.
We demonstrate here that dipalmitoylphosphatidylcholine (DPPC) liposome has an antitrypanosomal effect, especially against the bloodstream forms (BSFs) of African trypanosomes (Trypanosoma congolense, T. brucei rhodesiense, and T. brucei brucei). The DPPC liposome significantly decreased the in vitro percentage of viable and motile BSF African trypanosomes but only marginally reduced the percentage of viable and motile procyclic form (PCF) of trypanosomes. The DPPC liposome absorption was much more pronounced to BSF than to PCF trypanosomes. Administration of the DPPC liposome showed a slight but significant reduction in the early development of parasitemia in T. congolense-infected mice. These results suggest that parasites were killed by specific binding of the DPPC liposome to the trypanosomes. This work demonstrates for the first time that a liposome has antitrypanosomal activity.  相似文献   

11.
Methionine is an essential amino acid for both prokaryotic and eukaryotic organisms; however, little is known concerning its utilization in African trypanosomes, protozoa of the Trypanosoma brucei group. This study explored the Michaelis-Menten kinetic constants for transport and pool formation as well as metabolic utilization of methionine by two divergent strains of African trypanosomes, Trypanosoma brucei brucei (a veterinary pathogen), highly sensitive to trypanocidal agents, and Trypanosoma brucei rhodesiense (a human pathogenic isolate), highly refractory to trypanocidal arsenicals. The Michaelis-Menten constants derived by Hanes-Woolf analysis for transport of methionine for T. b. brucei and T. b. rhodesiense, respectively, were as follows: K(M) values, 1. 15 and 1.75 mM; V(max) values, 3.97 x 10(-5) and 4.86 x 10(-5) mol/L/min. Very similar values were obtained by Lineweaver-Burk analysis (K(M), 0.25 and 1.0 mM; V(max), 1 x 10(-5) and 2.0 x 10(-5) mol/L/min, T. b. brucei and T. b. rhodesiense, respectively). Cooperativity analyses by Hill (log-log) plot gave Hill coefficients (n) of 6 and 2 for T. b. brucei and T. b. rhodesiense, respectively. Cytosolic accumulation of methionine after 10-min incubation with 25 mM exogenous methionine was 1.8-fold greater in T. b. rhodesiense than T. b. brucei (2.1 vs 1.1 mM, respectively). In African trypanosomes as in their mammalian host, S-adenosylmethionine (AdoMet) is the major product of methionine metabolism. Accumulation of AdoMet was measured by HPLC analysis of cytosolic extracts incubated in the presence of increasing cytosolic methionine. In trypanosomes incubated for 10 min with saturating methionine, both organisms accumulated similar amounts of AdoMet (approximately 23 microM), but the level of trans-sulfuration products (cystathionine and cysteine) in T. b. rhodesiense was double that of T. b. brucei. Methionine incorporation during protein synthesis in T. b. brucei was 2.5 times that of T. b. rhodesiense. These results further confirm our belief that the major pathways of methionine utilization, for polyamine synthesis, protein transmethylation and the trans-sulfuration pathway, are excellent targets for chemotherapeutic intervention against African trypanosomes.  相似文献   

12.
wo laboratory strains of Glossina morsitans centralis originating from different fly-belts (one from Singida, in Tanzania, and the other from Mumbwa, in Zambia) were compared with respect to vectorial competence for pathogenic Trypanosoma species, genetic variation and inter-colony fertility. The vectorial competence of G.m.centralis of Tanzanian origin for Trypanosoma vivax and T.congolense is similar to, whereas for T.brucei brucei it is lower than the colony of Zambian origin. Nevertheless, these two laboratory strains of G.m.centralis showed levels of susceptibility to the three pathogenic Trypanosoma species which were much greater than previously observed in laboratory colonies of other Glossina species. Electrophoresis of fifteen enzymes revealed that the two colonies differ significantly in allele frequencies at only three loci that are relatively close together on one of the autosomes. Hybridization experiments revealed that G.m.centralis from the two fly-belts are consubspecific.  相似文献   

13.
African trypanosomes of the Trypanosoma brucei group are agents of disease in man and animals. They present unique biochemical characteristics such as the need for preformed purines and have extensive salvage mechanisms for nucleoside recovery. In this regard we have shown that trypanosomes have a dedicated transporter for S-adenosylmethionine (AdoMet), a key metabolite in transmethylation reactions and polyamine synthesis. In this study we compared the apparent kinetics of AdoMet transport, cytosolic AdoMet pool formation, and utilization of AdoMet in protein methylation reactions using two isolates: Trypanosoma brucei brucei, a veterinary parasite, and Trypanosoma brucei rhodesiense, a human pathogen that is highly refractory and has greatly reduced susceptibility to standard trypanocidal agents active against T. b. brucei. The apparent Km values for [methyl-3H]AdoMet transport, derived by Hanes-Woolf analysis, for T. b. brucei was 4.2 and 10 mM for T. b. rhodesiense, and the Vmax values were 124 and 400 micromol/liter/min, respectively. Both strains formed substantial cytosolic pools of AdoMet, 1600 nmol/10(9) T. b. brucei and 3500 nmol/10(9) T. b. rhodesiense after 10 min incubation with 25 mM exogenous AdoMet. Data obtained from washed trichloroacetic acid precipitates of cells incubated with [methyl-3H]AdoMet indicated that the rate of protein methylation in T. b. brucei was fourfold greater than in T. b. rhodesiense. These results demonstrate that the unique rapid uptake and utilization of AdoMet by African trypanosomes is an important consideration in the design and development of new agents of potential use in chemotherapy.  相似文献   

14.
Partially purified azanthraquinone (AQ) extract from Mitracarpus scaber was coupled to bovine transferrin (Tf) using azidophenyl glyoxal (APG). The AQ-APG-Tf conjugate was found to possess an enhanced in vitro trypanocidal activity against Trypanosoma congolense and T. brucei brucei. At low concentrations of 0.39-90 mg/ml, the conjugate diminished the growth of T. congolense and T. b. brucei dose dependently at the logarithmic phase. Both parasites were more sensitive to AQ-APG-Tf than to the free (AQ) extract. Growth inhibition on the parasites by the free extract was observed at 20-200 mg/ml. The total activity of the lysosomal enzyme a-mannosidase was reduced in the T. congolense cells treated with AQ-APG-Tf in a dose related pattern. However, the activity of the mannosidase in the T. b. brucei treated cells is less affected. The AQ-APG-Tf is more effective on a mannosidase than free AQ, eight and four fold for T. congolense and T. b. brucei respectively. The results are discussed as regards the potency of using transferrin as suitable drug carrier in the chemotherapy of Human sleeping sickness.  相似文献   

15.
Abstract .In a single generation of selection, two lines of Glossina morsitans centralis were established that differed significantly in susceptibility to Trypanosoma congolense clone IL 1180. Reciprocal crosses demonstrated that susceptibility was a maternally inherited trait. Differences between the lines, to all phases of the trypanosome infection, were maintained for eight generations, whereas differences in susceptibility to midgut infections were maintained for twenty-eight generations. Thereafter, the lines did not differ in susceptibility to Trypanosoma congolense IL 1180. Susceptibility to infections with Trypanosoma congolense IL 1180 was only a weak predictor of susceptibility to T. congolense clones IL 13-E3 and K60/1, as well as clone T. brucei brucei STIB 247-L. However, the susceptible and refractory lines displayed these phenotypes when tested with Trypanosoma vivax, indicating that the factors that affect susceptibility to trypanosomes are expressed both within and outside the midgut.  相似文献   

16.
Trypanosoma brucei brucei is the causative agent of nagana in cattle and can infect a wide range of mammals but is unable to infect humans because it is susceptible to the innate cytotoxic activity of normal human serum. A minor subfraction of human high-density lipoprotein (HDL) containing apolipoprotein A-I (apoA-I), apolipoprotein L-I (apoL-I), and haptoglobin-related protein (Hpr) provides this innate protection against T. b. brucei infection. This HDL subfraction, called trypanosome lytic factor (TLF), kills T. b. brucei following receptor binding, endocytosis, and lysosomal localization. Trypanosoma brucei rhodesiense, which is morphologically and physiologically indistinguishable from T. b. brucei, is resistant to TLF-mediated killing and causes human African sleeping sickness. Human infectivity by T. b. rhodesiense correlates with the evolution of a resistance-associated protein (SRA) that is able to ablate TLF killing. To examine the mechanism of TLF resistance, we transfected T. b. brucei with an epitope-tagged SRA gene. Transfected T. b. brucei expressed SRA mRNA at levels comparable to those in T. b. rhodesiense and was highly resistant to TLF. In the SRA-transfected cells, intracellular trafficking of TLF was altered, with TLF being mainly localized to a subset of SRA-containing cytoplasmic vesicles but not to the lysosome. These results indicate that the cellular distribution of TLF is influenced by SRA expression and may directly determine the organism's susceptibility to TLF.  相似文献   

17.
African Buffalo Serum Contains Novel Trypanocidal Protein   总被引:2,自引:0,他引:2  
ABSTRACT. The high ability of African buffalo, as compared to domestic cattle, to control infections with Trypanosoma brucei brucei IL Tat 1.4 organisms did not correlate with the timing or magnitude of parasite surface coat-specific antibody responses and may have resulted from the constitutive presence in buffalo blood of a novel trypanocidal factor. Buffalo plasma and serum contained material that killed bloodstream stage T. b. brucei, T. b. rhodesiense, T. b. gambiense, T. evansi, T. congolense , and T. vivax organisms during four h of incubation at 37° C in vitro. Serum from eland was also trypanocidal whereas serum from oryx, waterbuck, yellow-back duiker, cattle, horse, sheep, goat, mouse, rat, and rabbit was not trypanocidal. The buffalo serum trypanocidal material was not lipoprotein, or IgG, and had the following properties: 1) a density of < 1.24 g/ml determined by flotation ultracentrifugation; 2) insolubility in 50% saturated ammonium sulphate; 3) non-reactivity with anti-bovine IgM, and anti-bovine IgG; 4) non-reactivity with protein G, and protein A; 5) a relative molecular mass of 152 kDa determined by chromatography on Sephacryl S 300, and of 133 kDa determined by chromatography of the 50% SAS cut of IgG-depleted buffalo serum on Superose 12; 6) no associated cholesterol; and 7) inactivation by digestion with proteinase K that was immobilized on agarose.  相似文献   

18.
The sleeping sickness trypanosomes Trypanosoma brucei rhodesiense and T. brucei gambiense are morphologically indistinguishable from each other and from T. brucei brucei, which does not infect humans. The relationships between these three subspecies have been controversial. Several years ago, the characterization of T. brucei gambiense was reviewed in an attempt to clarify and draw together the results, and to put them in the context of the biology of the organism. The discovery of a gene associated with human-serum resistance in T. brucei rhodesiense and the consequent reappraisal of the identity of this trypanosome prompt this companion article.  相似文献   

19.
The trypanolytic factor of human serum   总被引:3,自引:0,他引:3  
African trypanosomes (the prototype of which is Trypanosoma brucei brucei) are protozoan parasites that infect a wide range of mammals. Human blood, unlike the blood of other mammals, has efficient trypanolytic activity, and this needs to be counteracted by these parasites. Resistance to this activity has arisen in two subspecies of Trypanosoma brucei - Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense - allowing these parasites to infect humans, and this results in sleeping sickness in East Africa and West Africa, respectively. Study of the mechanism by which T. b. rhodesiense escapes lysis by human serum led to the identification of an ionic-pore-forming apolipoprotein - known as apolipoprotein L1 - that is associated with high-density-lipoprotein particles in human blood. In this Opinion article, we argue that apolipoprotein L1 is the factor that is responsible for the trypanolytic activity of human serum.  相似文献   

20.
Targett G. A. T. and Wilson V. C. L. C. 1973. The blood incubation infectivity test as a means of distinguishing between Trypanosoma brucei brucei and T. brucei rhodesiense. International Journal for Parasitology, 3: 5–11. A simple test for distinguishing between the morphologically identical subspecies Trypanosoma brucei rhodesiense, which is infective to man, and T. brucei brucei, which by definition is not, has been described. This test, the blood incubation infectivity test (BIIT), is based on absolute differences in the infectivity to rats of the subspecies after exposure to human blood, and was applied to strains which are preserved in the laboratory as stabilates. Five T. brucei brucei strains were BIIT negative since their infectivity was destroyed by incubation in normal human blood but only five of the nine T. brucei rhodesiense strains tested were consistently BIIT positive. The other four gave equivocal results, indicating that the resistance of T. brucei rhodesiense strains to the trypanocidal effect of human blood can change, probably as a result of maintenance in the laboratory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号