首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Using methods designed for isolation of mutants defective in receptor-mediated endocytosis, a novel L-cell mutant was obtained that exhibits resistance to three different protein toxins as well as alterations in secretion. This mutant, LEFIC, is resistant to modeccin, Pseudomonas exotoxin, and ricin. These toxins, which enter the cytoplasm via receptor-mediated endocytosis, are thought to penetrate into cells at the level of late endosomes or the trans Golgi network. Early endosomal acidification appears to be normal in the mutant based on its accumulation of iron from transferrin and its sensitivity to diphtheria toxin A chain-transferrin conjugate. Within the secretory pathway two delays in transport of vesicular stomatitis virus (VSV) G protein were observed in LEFIC: a 20-30 min delay in acquisition of Endo H resistance and a 1-2 hr delay in appearance of newly synthesized G protein on the cell surface. Movement of endogenous proteins along the secretory pathway was also affected in LEFIC. Fibronectin secretion was delayed by 15 min, and membrane proteins were delayed in arrival at the cell surface. The phenotype of LEFIC is consistent with a defect in a component or compartment shared by both the late endocytic and constitutive secretory pathways.  相似文献   

2.
The mouse L-cell mutant gro29 was selected for its ability to survive infection by herpes simplex virus type 1 (HSV-1) and is defective in the propagation of HSV-1 and vesicular stomatitis virus (F. Tufaro, M. D. Snider, and S. L. McKnight, J. Cell Biol. 105:647-657, 1987). In this report, we show that gro29 cells harbor a lesion that inhibits the egress of HSV-1 virions during infection. We also found that HSV-1 glycoprotein D was slow to traverse the secretory pathway en route to the plasma membrane of infected gro29 cells. The movement of glycoproteins was not blocked entirely, however, and immunofluorescence experiments revealed that infected gro29 cells contained roughly 10% of the expected amount of glycoprotein D on their cell surface at 12 h postinfection. Furthermore, nucleocapsids and virions assembled inside the cells during infection, suggesting that the lesion in gro29 cells impinged on a late step in virion maturation. Electron micrographs of infected cells revealed that many of the intracellular virions were contained in irregular cytoplasmic vacuoles, similar to those that accumulate in HSV-1-infected cells treated with the ionophore monensin. We conclude from these results that gro29 harbors a defect that blocks the egress of HSV-1 virions from the infected cell without seriously impeding the flux of individual glycoproteins to the cell surface. We infer that HSV-1 maturation and egress require a host cell component that is either reduced or absent in gro29 cells and that this lesion, although not lethal to the host cell, cannot be tolerated by HSV-1 during its life cycle.  相似文献   

3.
We have isolated a variant line of mouse L cells, termed gro2C, which is partially resistant to infection by herpes simplex virus type 1 (HSV-1). Characterization of the genetic defect in gro2C cells revealed that this cell line harbors a specific defect in the heparan sulfate synthesis pathway. Specifically, anion-exchange high-performance liquid chromatography of metabolically radiolabeled glycosaminoglycans indicated that chondroitin sulfate moieties were synthesized normally in the mutant cells, whereas heparin-like chains were absent. Because of these properties, we have used these cells to investigate the role of heparan sulfate proteoglycans in the HSV-1 life cycle. In this report, we demonstrate that the partial block to HSV-1 infection in gro2C cells occurs in the virus entry pathway. Virus adsorption assays using radiolabeled HSV-1 (KOS) revealed that the gro2C cell surface is a relatively poor target for HSV-1 in that virus attachment was 85% lower in the mutant cells than in the parental L cell controls. A portion of the 15% residual virus adsorption was functional, however, insofar as gro2C cells were susceptible to HSV-1 infection in plaque assays and in single-step growth experiments. Moreover, although the number of HSV-1 plaques that formed in gro2C monolayers was reduced by 85%, the plaque morphology was normal, and the virus released from the mutant cells was infectious. Taken together, these results provide strong genetic evidence that heparan sulfate proteoglycans enhance the efficiency of HSV attachment to the cell surface but are otherwise not essential at any stage of the lytic cycle in culture. Moreover, in the absence of heparan sulfate, other cell surface molecules appear to confer susceptibility to HSV, leading to a productive viral infection.  相似文献   

4.
ts5, a temperature-sensitive mutant of influenza B virus, belongs to one of seven recombination groups. When the mutant infected MDCK cells at the nonpermissive temperature (37.5 degrees C), infectious virus was produced at very low levels compared with the yield at the permissive temperature (32 degrees C) and hemagglutinating and enzymatic activities were undetectable. However, viral protein synthesis and transport of hemagglutinin (HA) and neuraminidase (NA) to the cell surface were not affected. The NA was found as a monomer within cells even at 32 degrees C, in contrast to wild-type virus NA, existing mostly as an oligomer, but the mutant had oligomeric NA, like the wild-type virus. Its enzymatic activity was more thermolabile than that of wild-type virus. Despite the low yield, large aggregates of progeny virus particles were found to accumulate on the cell surface at the nonpermissive temperature, and these aggregates were broken by treatment with bacterial neuraminidase, with the concomitant appearance of hemagglutinating activity, suggesting that NA prevents the aggregation of progeny virus by removal of neuraminic acid from HA and cell receptor, allowing its release from the cells. Further treatment with trypsin resulted in the recovery of infectivity. When bacterial NA was added to the culture early in infection, many hemagglutinable infectious virus was produced. We also suggest that the removal of neuraminic acid from HA by NA is essential for the subsequent cleavage of HA by cellular protease. Nucleotide sequence analysis of RNA segment 6 revealed that ts5 encoded five amino acid changes in the NA molecule but not in NB.  相似文献   

5.
A herpes simplex virus 2 (HSV-2) glycoprotein E deletion mutant (gE2-del virus) was evaluated as a replication-competent, attenuated live virus vaccine candidate. The gE2-del virus is defective in epithelial cell-to-axon spread and in anterograde transport from the neuron cell body to the axon terminus. In BALB/c and SCID mice, the gE2-del virus caused no death or disease after vaginal, intravascular, or intramuscular inoculation and was 5 orders of magnitude less virulent than wild-type virus when inoculated directly into the brain. No infectious gE2-del virus was recovered from dorsal root ganglia (DRG) after multiple routes of inoculation; however, gE2-del DNA was detected by PCR in lumbosacral DRG at a low copy number in some mice. Importantly, no recurrent vaginal shedding of gE2-del DNA was detected in immunized guinea pigs. Intramuscular immunization outperformed subcutaneous immunization in all parameters evaluated, although individual differences were not significant, and two intramuscular immunizations were more protective than one. Immunized animals had reduced vaginal disease, vaginal titers, DRG infection, recurrent genital lesions, and recurrent vaginal shedding of HSV-2 DNA; however, protection was incomplete. A combined modality immunization using live virus and HSV-2 glycoprotein C and D subunit antigens in guinea pigs did not totally eliminate recurrent lesions or recurrent vaginal shedding of HSV-2 DNA. The gE2-del virus used as an immunotherapeutic vaccine in previously HSV-2-infected guinea pigs greatly reduced the frequency of recurrent genital lesions. Therefore, the gE2-del virus is safe, other than when injected at high titer into the brain, and is efficacious as a prophylactic and immunotherapeutic vaccine.  相似文献   

6.
Ltk- cells were transfected with a plasmid containing the entire domain of glycoprotein C (gC), a true gamma or gamma 2 gene of herpes simplex virus 1 (HSV-1) and the methotrexate-resistant mouse dihydrofolate reductase mutant gene. The resulting methotrexate-resistant cell line was cloned; of the 39 clonal lines tested only 1, L3153(28), expressed gC after infection with HSV-1(MP), a gC- mutant, and none expressed gC constitutively. The induction of gC was optimal at multiplicities ranging between 0.5 and 2 PFU per cell, and the quantities produced were equivalent to or higher than those made by methotrexate-resistant gC- L cells infected with wild-type (gC+) virus. The gC gene resident in the L3153(28) cells was regulated as a beta gene inasmuch as the amounts of gC made in infected L3153(28) cells exposed to concentrations of phosphonoacetate that inhibited viral DNA synthesis were higher than those made in the absence of the drug, gC was induced at both permissive and nonpermissive temperatures by the DNA- mutant tsHA1 carrying a lesion in the gene specifying the major DNA-binding protein and which does not express gamma 2 genes at the nonpermissive temperature, and gC was induced only at the permissive temperature in cells infected with ts502 containing a mutation in the alpha 4 gene. The gC induced in L3153(28) cells was made earlier and processed faster to the mature form than that induced in a gC- clone of methotrexate-resistant cells infected with wild-type virus. Unlike virus stocks made in gC- cells, HSV-1(MP) made in L3153(28) cells was susceptible to neutralization by anti-gC monoclonal antibody.  相似文献   

7.
8.
9.
10.
11.
Replication-defective mutants of herpes simplex virus type 1 (HSV-1) may prove useful as vectors for gene transfer, particularly to nondividing cells. Cgal delta 3 is an immediate-early gene 3 (IE 3) deletion mutant of HSV-1 that expresses the lacZ gene of Escherichia coli from the human cytomegalovirus immediate-early control region but does not express viral early or late genes. This vector was able to efficiently infect and express lacZ in cells refractory to traditional methods of gene transfer. However, 1 to 3 days postinfection, Cgal delta 3 induced cytopathic effects (CPE) in many cell types, including neurons. In human primary fibroblasts Cgal delta 3 induced chromosomal aberrations and host cell DNA fragmentation. Other HSV-1 strains that caused CPE, tested under conditions of viral replication-inhibition, included mutants of the early gene UL42, the virion host shutoff function, single mutants of IE 1, IE 2, and IE 3, and double mutants of IE 3 and 4 and IE 3 and 5. Inhibition of viral gene expression by UV irradiation of virus stocks or by preexposure of cells to interferon markedly reduced the CPE. We conclude from these studies that HSV-1 IE gene expression is sufficient for the induction of CPE, although none of the five IE gene products appear to be solely responsible. After infection of human fibroblasts with Cgal delta 3 at a low multiplicity of infection, we were able to recover up to 6% of the input virus 2 weeks later by a superinfection-rescue procedure, even though the virally transduced human cytomegalovirus-lacZ transgene was not expressed at this time. It is therefore likely that inhibition or inactivation of viral IE gene expression, either for establishing latency or for the long-term transduction of foreign genes by HSV-1 vectors, is essential to avoid the death of infected cells.  相似文献   

12.
SE21Q1b, a Rous sarcoma virus mutant which packages cellular rather than viral RNA, is competent for infection of quail cells and can transmit defective transforming retrovirus genes. Stably transformed recipient clones have been obtained by using this mutant.  相似文献   

13.
We report on the properties of a temperature-sensitive mutant produced by transfection of cells with intact DNA and a specific DNA fragment mutagenized with low levels of hydroxylamine. The plating efficiency of the mutant at 39 degrees C relative to that at 33.5 degrees C was 5 X 10(-6). The pattern of polypeptides produced at the nonpermissive temperature was similar to that seen with wild-type virus in infected cells treated with inhibitory concentrations of phosphonoacetic acid in that alpha and beta polypeptides were produced, whereas most gamma polypeptides were either reduced or absent. Consistently, the mutant did not make viral DNA, although temperature sensitivity of the viral DNA polymerase could not be demonstrated. Marker rescue studies with herpes simplex virus type 2 (HSV-2) DNA mapped the mutant in the L component within map positions 0.385 and 0.402 in the prototype (P) arrangement of the HSV-1 genome. Analysis of the recombinants permitted the mapping of the genes specifying infected cell polypeptides 36, 35, 37, 19.5, 11, 8, 2, 43, and 44, but only the infected cell polypeptide 8 of HSV-2 was consistently made by all recombinants containing demonstrable HSV-2 sequences. Marker rescue studies with cloned HSV-1 DNA fragments mapped the temperature-sensitive lesion within less than 10(3) base pairs between 0.383 and 0.388 map units. Translation of the RNA hybridizing to cloned HSV-1 DNA, encompassing the smallest region containing the mutation, revealed polypeptide 8 (128,000 molecular weight), which was previously identified as a beta polypeptide with high affinity for viral DNA, and a polypeptide (25,000 molecular weight) not previously identified in lysates of labeled cells.  相似文献   

14.
A temperature-sensitive group II mutant of influenza virus, ts-52, with a presumed defect in viral RNA synthesis, readily produced von Magnus-type defective interfering virus (DI virus) when passed serially (four times) at high multiplicity in MDBK cells. The defective virus (ts-52 DI virus) had a high hemagglutinin and a low infectivity titer, and strongly interfered with the replication of standard infectious viruses (both ts-52 and wild-type ts+) in co-infected cells. Progeny virus particles produced by co-infection of DI virus and infectious virus were also defective and also had low infectivity, high hemagglutinating activity, and a strong interfering property. Infectious viruses ts+ and ts-52 were indistinguishable from ts-52 DI viruses by sucrose velocity or density gradient analysis. Additionally, these viruses all possessed similar morphology. However, when the RNA of DI viruses was analyzed by use of polyacrylamide gels containing 6 M urea, there was a reduction in the amount of large RNA species (V1 to V4), and a number of new smaller RNA species (D1 to D6) with molecular weights ranging from 2.9 X 10(5) to 1.05 X 10(5) appeared. Since these smaller RNA species (D1 to D6) were absent in some clones of infectious viruses, but were consistently associated with DI viruses and increased during undiluted passages and during co-infection of ts-52 with DI virus, they appeared to be a characteristic of DI viruses. Additionally, the UV target size of interfering activity and infectivity of DI virus indicated that interfering activity was 40 times more resistant to UV irradiation than was infectivity, further implicating small RNA molecules in interference. Our data suggest that the loss of infectivity observed among DI viruses may be due to nonspecific loss of a viral RNA segment(s), and the interfering property of DI viruses may be due to interfering RNA segments (DIRNA, D1 to D6). ts-52 DI virus interfered with the replication of standard virus (ts+) at both permissive (34 degrees C) and nonpermissive temperatures. The infectivity of the progeny virus was reduced to 0.2% for ts+ and 0.05% for ts-52 virus without a reduction in hemagglutinin titer. Interference was dependent on the concentration of DI virus. A particle ratio of 1 between DI virus (0.001 PFU/cell) and infectious virus (1.0 PFU/cell) produced a maximal amount of interference. Infectious virus yield was reduced 99.9% without any reduction of the yield of DI viruses Interference was also dependent on the time of addition of DI virus. Interference was most effective within the first 3 h of infection by infectious virus, indicating interference with an early function during viral replication.  相似文献   

15.
D Chen  E C Stabell    P D Olivo 《Journal of virology》1995,69(7):4515-4518
Varicella-zoster virus (VZV) gene 51 encodes a protein which is homologous to UL9, the origin of DNA replication-binding protein of herpes simplex virus type 1. No genetic information is available on VZV gene 51, but its product has been shown to bind to virtually the same recognition sequence as does UL9 (D. Chen and P. D. Olivo, J. Virol. 68:3841-3849, 1994; N. D. Stow, H. M. Weir, and E. C. Stow, Virology 177:570-577, 1990). We report here that gene 51 can complement a UL9 null mutant (hr94) (A. K. Malik, R. Martinez, L. Muncy, E. P. Carmichael, and S. K. Weller, Virology 190:702-715, 1992), but at a level which is only 20% of that of UL9. Quantitation of viral DNA synthesis suggests that this phenotype is due to a defect in viral DNA synthesis. Regardless, the ability of VZV gene 51 to complement UL9 suggests that alphaherpesviruses have a highly conserved mechanism of initiation of viral DNA synthesis.  相似文献   

16.
Summary Temperature sensitive mutants of Trichoderma reesei derived from hypersecretory strain RL-P37 were isolated and characterized. Compared to the parent strain, one mutant (LU-ts 1) grew well in the mycelial phase at both permissive (25°C) and non-permissive (37°C) temperatures. However, the secretion of overall protein and active cellulases was significantly reduced in the mutant at the higher temperature. No accumulation of active cellulases or intracellular proteins was observed in the mycelia of LU-ts 1 at 37°C. The inhibitory effects of temperature on cellulase secretion in LU-ts 1 were reversible. Isoelectric focusing and sodium dodecyl sulfate-polyacrylamide gel electrophoretic analyses confirmed that the secretion of the major cellulases was greatly reduced in LU-ts 1 at 37°C. Molecular characterization of the various temperature sensitive secretion mutants of T. reesei should help elucidate the crucial aspects of the secretory pathway of this cellulolytic fungus.  相似文献   

17.
Defective genomes generated during serial propagation of herpes simplex virus type 1 (Justin) consist of tandem reiterations of sequences that are colinear with a portion of the S component of the standard viral genome. We determined the structure of the novel US-a junction, at which the US sequences of one repeat unit join the a sequences of the adjacent repeat unit. Comparison of the nucleotide sequence at this junction with the nucleotide sequence of the corresponding US region of the standard virus genome indicated that the defective genome repeat unit arose by a single recombinational event between an L-S junction a sequence and the US region. The recombinational process might have been mediated by limited sequence homology. The sequences retained within the US-a junction further define the signal for cleavage and packaging of viral DNA.  相似文献   

18.
Seven complementation-recombination groups of temperature-sensitive (ts) influenza WSN virus mutants have been previously isolated. Recently two of these groups (IV and VI) were shown to possess defects in the neuraminidase and the hemagglutinin gene, respectively, and two groups (I and III) were reported to have defects in the P3 and P1 proteins which are required for complementary RNA synthesis. In this communication we report on the defects in the remaining three mutant groups. Wild-type (ts+) recombinants derived from ts mutants and different non-ts influenza viruses were analyzed on RNA polyacrylamide gels. This technique permitted the identification of the P2 protein, the nucleoprotein, and the M protein as the defective gene products in mutant groups II, V, and VII, respectively. Based on the physiological behavior of mutants in groups II and V, it appears that P2 protein and nucleoprotein are required for virion RNA synthesis during influenza virus replication.  相似文献   

19.
Membrane fusion caused by measles virus (MV) is a function of the fusion (F) protein. This process is essential for penetration into the host cell and subsequent initiation of the virus replicative cycle. The biological activity of the MV F protein is generated by endoproteolytic cleavage of a precursor protein (F0) into a large F1 subunit and a smaller F2 subunit held together by disulfide bonds. The cleavage site consists of a cluster of five basic amino acids (amino acids 108 to 112) within the predicted primary structure of the F protein. To investigate the role of the arginine residue at the carboxy terminus of the F2 subunit (arginine 112), site-directed mutagenesis was used to construct a cleavage mutant of the MV F protein in which this arginine residue was changed to a leucine residue. The mutated F gene, encoding four out of the five basic amino acids at the cleavage site, was inserted into the genome of vaccinia virus. The resulting recombinant virus was used to study expression of the mutant F protein in infected cells. Analysis of the Leu-112 mutant protein made in infected cells demonstrated that this single-amino-acid substitution resulted in a reduced rate of transport of the mutant protein to the cell surface, despite its efficient cleavage to yield F1 and F2 subunits. However, the electrophoretic mobilities of the Leu-112 polypeptides suggested that the protein was cleaved incorrectly. This aberrant cleavage appears to have abolished the ability of the F protein to cause syncytium formation. The data indicate that the arginine 112 residue is critical for the correct proteolytic cleavage that is required for the membrane fusion activity of the MV F protein.  相似文献   

20.
Previous studies have shown that cells infected with the herpes simplex virus 1(HFEM) mutant tsB7 and maintained at the nonpermissive temperature fail to accumulate viral polypeptides. Analyses of intertypic recombinants generated by marker rescue of tsB7 with herpes simplex virus 2 DNA fragments localized the mutation between 0.46 and 0.52 map units on the viral genome (Knipe et al., J. Virol. 38:539-547, 1981). In this paper we report that the mutation in tsB7 affects several aspects of the reproductive cycle of the virus at the nonpermissive temperature. Thus, (i) viral capsids accumulate at the nuclear pores and do not release viral DNA for at least 6 h postinfection at 39 degrees C. The DNA was released within 30 min after a shift to the permissive temperature. (ii) Experiments involving shifts from the permissive to the nonpermissive temperature indicated that viral protein synthesis was not sustained in cells maintained at the permissive temperature for less than 4 h. (iii) Viral DNA synthesis was delayed at the permissive temperature for as long as 8 h. Once initiated, it continued at 39 degrees C. (iv) Marker rescue of tsB7 by transfection with herpes simplex virus 1(F) DNA fragments localized the mutation to between 0.501 and 0.503 map units on the viral genome. These results are consistent with the tsB7 lesion being in a gene coding for a virion component which affects release of viral DNA from capsids and onset of viral DNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号