首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[3H]Triamcinolone acetonide glucocorticoid receptor complexes from human salivary gland adenocarcinoma cells (HSG cells) were shown to be activated with an accompanying decrease in molecular weight in intact cells, as analyzed by gel filtration, DEAE chromatography, the mini-column method and glycerol gradient centrifugation. Glucocorticoid receptor complexes consist of steroid-binding protein (or glucocorticoid receptor) and non-steroid-binding factors such as the heat-shock protein of molecular weight 90,000. To determine whether the steroid-binding protein decreases in molecular weight upon activation, affinity labeling of glucocorticoid receptor in intact cells by incubation with [3H]dexamethasone 21-mesylate, which forms a covalent complex with glucocorticoid receptor, was performed. Analysis by gel filtration and a mini-column method indicated that [3H]dexamethasone 21-mesylate-labeled receptor complexes can be activated under culture conditions at 37 degrees C. SDS-polyacrylamide gel electrophoresis of [3H]dexamethasone 21-mesylate-labeled steroid-binding protein resolved only one specific 92 kDa form. Furthermore, only one specific band at 92 kDa was detected in the nuclear fraction which was extracted from the cells incubated at 37 degrees C. These results suggest that there is no change in the molecular weight of steroid-binding protein of HSG cell glucocorticoid receptor complexes upon activation and that the molecular weight of nuclear-binding receptor does not change, although the molecular weight of activated glucocorticoid receptor complexes does decrease. Triamcinolone acetonide induced an inhibitory effect on DNA synthesis in HSG cells. Dexamethasone 21-mesylate exerted no such effect and blocked the action of triamcinolone acetonide on DNA synthesis. These results suggests that dexamethasone 21-mesylate acts as antagonist of glucocorticoid in HSG cells. The fact that dexamethasone 21-mesylate-labeled receptor complexes could be activated and could bind to DNA or nuclei as well as triamcinolone acetonide-labeled complexes suggests that dexamethasone 21-mesylate-labeled complexes can not induce specific gene expression after their binding to DNA.  相似文献   

2.
Characterization of glucocorticoid receptor in HeLa-S3 cells   总被引:1,自引:0,他引:1  
H Hoschützky  O Pongs 《Biochemistry》1985,24(25):7348-7356
Glucocorticoid receptor of the human cell line HeLa-S3 has been characterized and has been compared to rat and to mouse glucocorticoid receptors. If HeLa cells were lysed in the absence of glucocorticoid, glucocorticoid receptor was isolated in a nonactivated form, which did not bind to DNA-cellulose. If HeLa cells were preincubated with glucocorticoid, glucocorticoid receptor was isolated in an activated, DNA-binding form. HeLa cell glucocorticoid receptor bound [3H]triamcinolone acetonide with a dissociation constant (KD = 1.3 nM at 0 degrees C) that was similar to those of mouse and rat glucocorticoid receptors. Similarly, the relative binding affinities for steroid hormones decreased in the order of triamcinolone acetonide greater than dexamethasone greater than promegestone greater than methyltrienolone greater than aldosterone greater than or equal to moxestrol. Nonactivated and activated receptors were characterized by high-resolution anion-exchange chromatography (FPLC), DNA-cellulose chromatography, and sucrose gradient centrifugation. Human, mouse, and rat nonactivated glucocorticoid receptors had very similar ionic and sedimentation properties. Activated glucocorticoid receptors were eluted at similar salt concentrations from DNA-cellulose columns but at different salt concentrations from the FPLC column. A monoclonal mouse anti-rat liver glucocorticoid receptor antibody [Westphal, H.M., Mugele, K., Beato, M., & Gehring, U. (1984) EMBO J. 3, 1493-1498] did not cross-react with HeLa cell glucocorticoid receptor. Glucocorticoid receptors of HeLa, HTC, and S49.1 cells were affinity labeled with [3H]dexamethasone and with [3H]dexamethasone 21-mesylate. The molecular weights of [3H]dexamethasone 21-mesylate labeled glucocorticoid receptors (MT 96 000 +/- 1000) were undistinguishable by polyacrylamide gel electrophoresis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
[3H]Triamcinolone acetonide glucocorticoid receptor complexes from human salivary gland adenocarcinoma cells (HSG cells) were shown to be activated with an accompanying decrease in molecular weight in intact cells, as analyzed by gel filtration, DEAE chromatography, the mini-column method and glycerol gradient centrifugation. Glucocorticoid receptor complexes consist of steroid-binding protein (or glucocorticoid receptor) and non-steroid-binding factors such as the heat-shock protein of molecular weight 90 000. To determine whether the steroid-binding protein decreases in molecular weight upon activation, affinity labeling of glucocorticoid receptor in intact cells by incubation with [3H]dexamethasone 21-mesylate, which forms a covalent complex with glucocorticoid receptor, was performed. Analysis by gel filtration and a mini-column method indicated that [3H]dexamethasone 21-mesylate-labeled receptor complexes can be activated under culture conditions at 37°C. SDS-polyacrylamide gel electrophoresis of [3H]dexamethasone 21-mesylate-labeled steroid-binding protein resolved only one specific 92 kDa form. Furthermore, only one specific band at 92 kDa was detected in the nuclear fraction which was extracted from the cells incubated at 37°C. These results suggest that there is no change in the molecular weight of steroid-binding protein of HSG cell glucocorticoid receptor complexes upon activation and that the molecular weight of nuclear-binding receptor does not change, although the molecular weight of activated glucocorticoid receptor complexes does decrease. Triamcinolone acetonide induced an inhibitory effect on DNA synthesis in HSG cells. Dexamethasone 21-mesylate exerted no such effect and blocked the action of triamcinolone acetonide on DNA synthesis. These results suggests that dexamethasone 21-mesylate acts as antagonist of glucocorticoid in HSG cells. The fact that dexamethasone 21-mesylate-labeled receptor complexes could be activated and could bind to DNA or nuclei aas well as triamcinolone acetonide-labeled complexes suggests that dexamethasone 21-mesylate-labeled complexes can not induce specific gene expression after their binding to DNA.  相似文献   

4.
Cortisol 21-mesylate, an alkylating derivatives of cortisol, was previously shown to exert an anti-glucocorticoid action in rat hepatoma cell culture (Simons, Thompson and Johnson 1980). In this study the effect of cortisol 21-mesylate on milk protein synthesis induced in cultured mouse mammary gland by glucocorticoid, insulin, and prolactin was investigated. Addition of cortisol 21-mesylate at concentrations ranging from 10(-8) M to 10(-6) M produced no inhibition of casein synthesis that was induced by glucocorticoid, insulin and prolactin in mammary explants from midpregnant mice. On the other hand, cortisol 21-mesylate in combination with insulin and prolactin stimulated casein synthesis in cultured tissue. The potency of cortisol mesylate was about 1/10 to 1/30th of that of cortisol. Cortisol 21-mesylate, like cortisol, also augmented the accumulation of alpha-lactalbumin in midpregnant rat mammary tissue cultured in the presence of insulin and prolactin. A cell-free competition study of glucocorticoid receptors using cytoplasmic extracts from mouse mammary tissue showed that cortisol 21-mesylate competitively inhibited the binding of dexamethasone on glucocorticoid receptors. The apparent affinity of cortisol 21-mesylate for glucocorticoid receptors is about 1/10th of that of cortisol. These results indicate that cortisol 21-mesylate acts as a glucocorticoid but not as an antiglucocorticoid in the mammary gland.  相似文献   

5.
Glucocorticoid receptors in the IM-9 human lymphoblastoid cell line were affinity labeled with [3H]dexamethasone 21-mesylate and activated to a DNA-binding form by filtration through a Bio-Gel A-1.5m column. The 90 kDa heat shock protein, HSP90, was identified by labeling IM-9 cells with 35S-methionine at both 37 degrees C and 42 degrees C and purified to near homogeneity by sequential chromatography through DE52 and hydroxyapatite. Addition of purified HSP90 to activated, affinity labeled glucocorticoid receptors in a molecular ratio of 16 to 1 inhibited the binding of the receptors to DNA-cellulose. HSP90 did not affect the binding of other proteins to DNA-cellulose, indicating that the inhibitory effect of HSP90 was specific for the glucocorticoid receptor. These results suggest that HSP90 may associate with the glucocorticoid receptor, masking its DNA-binding site and thereby inhibiting receptor interaction with DNA.  相似文献   

6.
Human breast epithelial HBL100 cells, which bind both epidermal growth factor (EGF) and glucocorticoids, were labelled to steady state specific activity with 32Pi and the glucocorticoid receptor was immunoprecipitated from cell lysates with polyclonal antiserum GR884. Immunoprecipitated receptor was resolved by NaDodSO4-polyacrylamide gel electrophoresis and identified by autoradiography. Immunoprecipitated receptor also was characterized by western blot analysis and affinity labelling with [3H]dexamethasone-21-mesylate. Phosphoamino acid analysis of 32P-glucocorticoid receptor revealed 89% phosphoserine and 11% phosphotyrosine. Treatment of steady state 32Pi-labelled cells with EGF stimulated total and alkali-stable phosphorylation in the 97 kDa receptor band by about 35%. Prior incubation with dexamethasone inhibited EGF stimulated, alkali-stable phosphorylation of the 97 kDa glucocorticoid receptor band.  相似文献   

7.
The brain tissues of the rat and mouse express two types of corticosteroid binding proteins, the glucocorticoid (GR) and aldosterone (MR) receptors. Unlike the type II (GR) receptor, type I receptor has a high affinity for aldosterone (ALDO) and corticosterone and is structurally similar to the kidney mineralocorticoid receptor (MR). The results reported in this study provide direct evidence for the interaction of dexamethasone (DEX), triamcinolone acetonide (TA), dexamethasone-21-mesylate (DXM) and 11-deoxycorticosterone (DOC) with human MR expressed in cells by transient co-transfection of a hMR expression vector. The interactions of hMR with DEX, TA, DXM, DOC, promegestone (R5020) and methyltrienelone (R1881) were measured by trans-activation of mouse mammary tumor virus long terminal repeat fused to bacterial chloramphenicol acetyltransferase (MMTV-tk-CAT) in gene co-transfection experiments and by cell free hormone binding assay. The incubation of various steroid hormones in the presence of [3H]ALDO in a competition assay with extracts prepared from HeLa cells co-transfected with hMR expression vector, showed that hMR expressed under these conditions has a high relative affinity for DEX which is similar to ALDO, TA and DOC. Incubation with DXM under these conditions showed very little competition, as was observed with R1881 and R5020. Incubation of the co-transfected cells with DEX, ALDO, DOC, R5020, TA, R1881 and DXM demonstrated that the level of trans-activation did not reflect the previously observed order of binding affinity for the hMR. The level of transactivation was always higher with DEX and TA compared to ALDO and DOC. Analysis of the binding of labeled glucocorticoid regulatory element (GRE) and hMR incubated with DEX, ALDO and DXM by gel shift analysis demonstrated that the trans-activation of MMTV-tk-CAT by hMR is a result of the interaction of hMR with GRE in the MMTV-LTR.  相似文献   

8.
The steroid binding domain of the rat glucocorticoid receptor is considered as extending from amino acids 550 to 795. However, such a synthetic protein (i.e. amino acids 547-795; Mr approximately 31,000) has been reported to show very little affinity for the potent synthetic glucocorticoid dexamethasone. We now disclose that digestion of steroid-free rat glucocorticoid receptors with low concentrations of trypsin yields a single species, of Mr = 16,000, that is specifically labeled by dexamethasone 21-mesylate. This 16-kDa fragment retains high affinity binding for [3H]dexamethasone that is only approximately 23-fold lower than that seen with the intact 98-kDa receptor. Analysis of the protease digestion patterns obtained both with trypsin and with lysylendopeptidase C allowed us to deduce the proteolytic cleavage maps of the receptor with these enzymes. From these protease maps, the sequence of the 16-kDa fragment was identified as being threonine 537 to arginine 673. These results show that glucocorticoid receptor fragments smaller than 34 kDa do bind steroids and that the amino acids Thr537-Arg673 constitute a core sequence for ligand binding within the larger steroid binding domain. The much slower kinetics in generating the 16-kDa fragment from affinity-labeled receptors suggests that steroid binding causes a conformation change in the receptor near the cleavage sites.  相似文献   

9.
Dexamethasone 21-mesylate is a highly specific synthetic glucocorticoid derivative that binds covalently to glucocorticoid receptors via sulfhydryl groups. We have identified the amino acid that reacts with the dexamethasone 21-mesylate by using enzymatic digestion and microsequencing for radiolabel. Nonactivated glucocorticoid receptors obtained from labeling intact WEHI-7 mouse thymoma cells with [3H]dexamethasone 21-mesylate were immunopurified and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified approximately 100-kDa steroid-binding subunit was eluted from gel slices and subjected to enzymatic digestion. Trypsin digestion followed by reversed-phase high-performance liquid chromatography (reversed-phase HPLC) produced a single [3H]dexamethasone 21-mesylate labeled peptide. Automated Edman degradation of this peptide revealed that the [3H]dexamethasone 21-mesylate was located at position 5 from the amino terminus. Dual-isotope labeling studies with [3H]dexamethasone 21-mesylate and [35S]methionine demonstrated that this peptide contained methionine. Staphylococcus aureus V8 protease digestion of [3H]dexamethasone 21-mesylate labeled steroid-binding subunits generated a different radiolabeled peptide containing label at position 7 from the amino terminus. On the basis of the published amino acid sequence of the murine glucocorticoid receptor, our data clearly identify cysteine-644 as the single residue in the steroid-binding domain that covalently binds dexamethasone 21-mesylate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
B Gametchu  C S Watson  D Pasko 《Steroids》1991,56(8):402-410
The precise mechanism for glucocorticoid-mediated lymphocytolysis is not understood, although it is presumed to be receptor mediated. We have recently presented evidence that this response is mediated by a specialized form of the glucocorticoid receptor (GR) that resides in the plasma membrane (mGR). Confirmation of the previous receptor identification studies in a population of S-49 cells enriched for mGR is now made using another antibody specific for the rodent GR, BUGR-2. The membrane resident receptor could be labeled competitively with the affinity ligand dexamethasone 21-mesylate, and Scatchard analysis of whole cell binding revealed that receptor number, but not the affinity for hormone, varied between the mGR-enriched and -deficient cell populations. Steroid specificity displacement analyses showed an order of affinities as follows: triamcinolone acetonide greater than progesterone greater than dexamethasone greater than testosterone = estrogen. Studies of mGR by one- and two-dimensional gel electrophoresis, immunoblot, autoradiography, and density gradients revealed a species with an equivalent size to cytosolic receptor as well as multiple higher molecular weight species, confirming earlier studies. To offer a possible explanation for the nucleic acid origins of the mGR, RNA from the mGR-enriched cells was probed with rat GR cDNA; mGR-enriched cells contained higher levels of GR mRNA. Possible molecular etiologies of larger receptor species in membrane are discussed.  相似文献   

11.
The presence and distribution of glucocorticoid receptors in the rat testis were examined by using 2 approaches: in vivo quantitative radioautography and immunocytochemistry. Radioautographic localization was made possible through the availability of a glucocorticoid receptor affinity label, dexamethasone 21-mesylate, which binds covalently to the glucocorticoid receptor, thereby preventing dissociation of the steroid-receptor complex. Adrenalectomized adult rats were injected with a tritiated (3H) form of this steroid into the testis and the tissue was processed for light-microscope radioautography. Silver grains were observed primarily over the Leydig cells of the interstitial space and to a lesser extent, over the cellular layers which make up the seminiferous epithelium, with no one cell type showing preferential labeling. To determine the specificity of the labeling, a 25- or 50-fold excess of unlabeled dexamethasone was injected simultaneously with the same dose of (3H)-dexamethasone 21-mesylate. In these control experiments, a marked reduction in label intensity was noted over the Leydig as well as tubular cells. Endocytic macrophages of the interstitium were non-specifically labeled, indicating uptake of the ligand possibly by fluid-phase endocytosis. A quantitative analysis of the label confirmed the presence of statistically significant numbers of specific binding sites for glucocorticoids in both Leydig cells and the cellular layers of the seminiferous epithelium; 86% of the label was found over Leydig cells, and only 14% over the cells of the seminiferous epithelium. These binding data were confirmed by light-microscope immunocytochemistry using a monoclonal antibody to the glucocorticoid receptor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
We have isolated and characterized two clones of the RPMI 3460 Syrian hamster melanoma cell line which exhibit different responses to the synthetic glucocorticoid dexamethasone. In the presence of 10 nM dexamethasone, one clone (clone 6) exhibits the growth inhibition, morphological alterations, and reduction in final cell density observed in the parental RPMI 3460 cell line. In contrast, the other clone (clone 5), although exhibiting a reduction in final cell density, fails to exhibit the growth inhibition and morphological alterations. Thus, the effect of dexamethasone on growth and morphology can be expressed separately from the effect of dexamethasone on final cell density in these cells. This observation suggests that the two sets of responses can be controlled separately and that glucocorticoids may exert their influence through different or divergent biological pathways.In vitro receptor assays suggest that the different phenotypes of clone 5 compared with clone 6 cells cannot be explained by an absence of or reduction in cytosolic glucocorticoid receptor, in clone 5 cells. Additional receptor characterization suggests that the different responses to dexamethasone of clone 5 and clone 6 cells do not reflect changes in the ability of receptor to exist in a stably activated form. Differences in the accumulation or depletion of extracellular components in the growth medium also do not seem to be responsible for the altered phenotype of clone 5 vis-à-vis clone 6 cells.  相似文献   

13.
Several groups have reported that progesterone accelerates the rate of steroid dissociation from the agonist site of the glucocorticoid receptor. It has been proposed that this enhancement reflects the binding of progestins to a second steroid-binding site. Since progestins are frequently antagonists of glucocorticoid hormone action, we decided to characterize this site more fully. In particular, in this study, we investigated whether the cytosolic preparations of four separate glucocorticoid target tissues from the same species all contained this second site and whether it was similar in each case. Cytosolic extracts of rat heart, liver, kidney, and pancreas were examined. In each case it was found that the rate at which prebound tritiated dexamethasone dissociated from the glucocorticoid receptor was faster in the presence of nonradioactive progesterone. The magnitude of this effect was essentially the same in each case. These results indicated that the second site was present in each preparation. To determine if the site was similar in each extract, we studied the steroid specificity of the enhancement of dissociation. This was determined by quantitating the degree to which each of a series of test steroids could cause augmentation of dissociation. Progesterone, R-5020, medroxyprogesterone, deoxycorticosterone, 17-OH-progesterone, and cortexolone were evaluated. The results for all four cytosolic preparations showed that either progesterone or R-5020 was the most potent steroid while both cortexolone and 17-OH-progesterone were essentially without effect. Medroxyprogesterone and deoxycorticosterone were usually of intermediate potency. These results suggest that the cytosolic extracts of all glucocorticoid target tissues have a similar second steroid-binding site which demonstrates a preference for progestins and that interaction with this site causes the glucocorticoid receptor to decrease the affinity with which it binds agonists.  相似文献   

14.
The role of the glucocorticoid receptor in the expression of antiglucocorticoid action has been investigated with a chemically-reactive derivative of three glucocorticoid steroids with differing biological potencies, i.e. the C-21 mesylates of cortisol, dexamethasone and deacylcortivazol. Dexamethasone 21-mesylate (Dex-Mes) was the most useful derivative due to its favorable balance of high receptor affinity and predominantly irreversible antiglucocorticoid activity. A number of criteria have been used to conclude that [3H]Dex-Mes covalently labels glucocorticoid receptors in the steroid-binding cavity. The available data indicate that covalent Dex-Mes-labeled receptors (mol. wt approximately equal to 98,000) are responsible for the irreversible antiglucocorticoid activity while the partial agonist activity of Dex-Mes is due to non-covalent Dex-Mes-bound receptors. Further support for this hypothesis comes from the observations that deacylcortivazol 21-mesylate was a full glucocorticoid and did not affinity label receptors (and marginally labeled cytosol proteins) although it was capable of covalently-labeling bovine serum albumin. Several mechanisms for the expression of irreversible antiglucocorticoid activity by covalent Dex-Mes-labeled receptors were examined and can be eliminated. Covalent receptor-Dex-Mes complexes formed in whole HTC cells were found to have a decreased capacity for nuclear binding. This decreased nuclear-binding capacity could be responsible for the whole-cell irreversible antiglucocorticoid activity of Dex-Mes.  相似文献   

15.
The binding of ten steroids possessing antiglucocorticoid activity has been studied in rat skeletal muscle cytosol. The affinity of these steroids for both the androgen and the glucocorticoid receptors was determined by competition with radioactive R1881 (methyltrienolone, metribolone) and dexamethasone, respectively. The antiglucocorticoid activity of these compounds was assessed in rat hepatoma (HTC) cells by measuring their inhibitory effect on the glucocorticoid-induced tyrosine aminotransferase activity. This led to identification of five novel in vitro glucocorticoid antagonists. All the steroids tested bound to both the glucocorticoid and the androgen receptors in muscle. Four steroids had an affinity for the glucocorticoid receptor higher than for the androgen receptor. The assumption is made that the steroids tested also behave as antagonists when binding to the glucocorticoid receptor in muscle and behave as agonists when binding to the androgen receptor. On this basis, the data allow one to compute a potential anticatabolic (PAG) and a potential anabolic (PAA) index for each compound. These indices might be of predictive value to determine whether these steroids exert their anabolic action in muscle through the glucocorticoid receptor or through the androgen receptor. The data also make it unlikely that satellite cells are a preferential target for anabolic steroids in muscle.  相似文献   

16.
The presence of a thiol in the steroid binding cavity of glucocorticoid receptors has recently been proved by our affinity labeling of Cys-656 in the steroid binding domain of rat receptors (Simons, S. S., Jr., Pumphrey, J. G., Rudikoff, S., and Eisen, H. J. (1987) J. Biol. Chem. 262, 9676-9680). Studies with the sterically small, thiol-specific reagent methyl methanethiolsulfonate (MMTS) now reveal the involvement of at least two sulfhydryl groups in steroid binding. While the dose-response curves for [3H]dexamethasone binding versus thiol reagent are normally sigmoidal, an unusual bimodal curve is obtained with MMTS in which dexamethasone binding is eliminated at low, but maintained at intermediate, MMTS concentrations. This bimodal dose-response curve demands the involvement of two (or more) thiol groups. Those receptors pretreated with intermediate concentrations of MMTS retain approximately 70% of the initial binding capacity and one-fifth the affinity for dexamethasone. Solutions of this low affinity form of receptor contain essentially no accessible -SH groups, and all of the usual covalent labeling by dexamethasone 21-mesylate of various proteins, including the receptor, is blocked. The facts, that this low affinity form of the receptor is not affected by added iodoacetamide, cannot be produced from the nonsteroid binding form of receptor simply by adding more MMTS, and displays different kinetics of formation than does the nonsteroid binding form of receptor all argue that reaction of the receptor with intermediate and low MMTS, concentrations occurs via different pathways. Nevertheless, the effects of both concentrations of MMTS on the receptor are fully reversible with added dithiothreitol. The kinetics of inhibition of [3H]dexamethasone binding at low MMTS concentrations are independent of receptor concentration, indicating an intramolecular reaction. Collectively these data suggest a model of steroid binding involving two thiols, one of which appears to be Cys-656. Low concentrations of MMTS induce the formation of an intramolecular disulfide, which prevents steroid binding, while the intermediate MMTS concentrations convert both thiols directly to mixed disulfides, and steroid binding persists. Thus, reduced thiols do not appear to be required for steroid binding if the steric bulk of the oxidized thiols is small.  相似文献   

17.
FU5-5 rat hepatoma (Reuber H35) cells are hypersensitive in that the same percentages of full induction of tyrosine aminotransferase (TAT) occur at much lower concentrations of glucocorticoids than in the related HTC rat hepatoma (Morris) cells. Unexpectedly, these hypersensitive FU5-5 cells also exhibited more agonist activity with the affinity labeling antiglucocorticoids cortisol 21-mesylate and dexamethasone 21-mesylate than did HTC cells (Mercier et al., Endocrinology 112, 601-609 [1983]). In the present study, several other antiglucocorticoids (11-desoxycortisone, progesterone, dexamethasone oxetanone, and RU 486 in addition to dexamethasone 21-mesylate) and the antiandrogen cyproterone acetate were examined to see if chemically unreactive, reversible antisteroids also would exhibit an altered activity (i.e. increased agonist activity) in FU5-5 cells. Each antiglucocorticoid examined did display a 2-fold increased amount of agonist activity in FU5-5 cells, as compared to HTC cells; only RU 486 was predominantly an antagonist in FU5-5 cells but the potency of RU 486 was about 9-fold less than in HTC cells. Dexamethasone, and especially progesterone, was metabolized in FU5-5 and HTC cells. However, differential metabolism in FU5-5 vs HTC cells cannot account for the increased induction of TAT in FU5-5 cells since the amount of agonist activity seen for dexamethasone mesylate (or its metabolites) depended not on the cell type used but rather on the glucocorticoid inducible enzyme monitored, i.e. TAT or glutamine synthetase. The combined data suggest that the hypersensitivity of FU5-5 cells towards glucocorticoid induction of TAT may be linked with the ability of both reversible and irreversible antiglucocorticoids to display increased TAT agonist activity in FU5-5 cells. This behavior was somewhat steroid specific since the antiandrogen cyproterone acetate did not display increased TAT agonist activity in FU5-5 cells compared to HTC cells and was only 2-fold less effective as an antiglucocorticoid in FU5-5.  相似文献   

18.
The activity of RU38486 has been studied in Burkitt's lymphoma cells which are Epstein-Barr virus (EBV) positive. The early antigens (EA) of the virus are induced by dexamethasone (DXM) in Daudi but not in Raji cells, whereas a growth factor (transforming growth factor-beta, TGF-beta) induces the EA in both cell lines. RU38486 blocks the EA induction obtained by DXM or by TGF-beta in either cell line. In order to understand the interaction of RU38486, we considered its binding to specific receptors. We first investigated the binding of the antagonist in whole cells at 22 degrees C. A number of specific binding sites higher for RU38486 than for DXM was found, suggesting that RU38486 may bind to the glucocorticoid receptor and also to other cellular structures which we called the antiglucocorticoid binding sites ("AGBS"). To support this hypothesis, competition experiments have been conducted between RU38486 and other steroid hormones (progesterone and testosterone) since it is known that RU38486 is also able to interact with their cognate receptors. Binding studies of RU38486 in vitro at 4 degrees C in the presence of cytosolic extracts from Daudi and Raji cells led to conclusions similar to those drawn from the whole cell experiments: more complexes were formed with RU38486 than with DXM. Finally, the steroid-receptor complexes were incubated with DNA-cellulose. Since the binding measured for RU38486 was higher than for DXM, we suspect that sites different from the classical glucocorticoid receptor sites are also able to interact with DNA. The blockage exerted by RU38486 on the EA induced by glucocorticoids or by non-steroidal molecules and the lack of responsiveness to glucocorticoids in Raji cells are discussed in the light of the present findings.  相似文献   

19.
Binding studies with [3H]dexamethasone identified a class of binding sites on male rat liver microsomes. The binding sites were glucocorticoid-dependent and specific for glucocorticoids and progestins. Scatchard binding parameters, competition studies with triamcinolone acetonide, a synthetic glucocorticoid which competes well for the glucocorticoid receptor, and immunoblotting with an antiglucocorticoid receptor antibody indicated that these sites are distinct from the cytosolic glucocorticoid receptor. Affinity labelling experiments with [3H]dexamethasone 21-mesylate revealed two specifically labelled peptides, one at approx. 66 kDa and a doublet at 45 kDa. The 66 kDa peptide had been previously identified in serum and may be present as a result of serum contamination of the microsomal preparation. The 45 kDa doublet, on the other hand, had been shown to be absent from rat serum. The characteristics of the 45 kDa peptide(s) were identical to those of the dexamethasone binding site identified in the binding studies. [3H]Dexamethasone binding characteristics and affinity labelling of microsomal subfractions, separated by isopycnic centrifugation, showed that the binding sites are located in the endoplasmic reticulum. The identification and role of the 45 kDa peptide doublet remain to be determined.  相似文献   

20.
The specificity of protein labeling by an affinity label of glucocorticoid receptors, dexamethasone 21-mesylate (Dex-Mes), was investigated using bovine serum albumin (BSA) as a model. During the early stages of [3H]Dex-Mes labeling at pH 8.8, approximately 90% of the covalent bond formation occurred at the one non-oxidized cysteine (Cys-34) of BSA. The nonspecific labeling was equally distributed over the rest of the BSA molecule. [3H]Dex-Mes labeling of Cys-34 was totally, and specifically inhibited by nearly stoichiometric amounts of the thiol-specific reagent methyl methanethiolsulfonate (MMTS). Thus both Dex-Mes and MMTS appear to react very selectively with thiols under our conditions. In reactions with hepatoma tissue culture (HTC) cell glucocorticoid receptors, MMTS was equally efficient in preventing [3H]dexamethasone binding to receptors and [3H]Dex-Mes labeling of the 98-kDa receptor protein. These results indicate that Dex-Mes labeling of the glucocorticoid receptor involves covalent reaction with at least one cysteine in the steroid binding site of the receptor. Small (approximately 1600-dalton) fragments of the [3H]Dex-Mes-labeled 98-kDa receptor were generated by limit proteolysis with trypsin, chymotrypsin, and Staphylococcus aureus V8 protease under denaturing conditions. Data from these fragments on 15% sodium dodecyl sulfate-polyacrylamide gels were consistent with all of the covalent [3H] Dex-Mes being located on one or a few cysteines in one approximately 15-residue stretch of the receptor. Further studies revealed no differences in the limit protease digestion patterns of activated and unactivated [3H]Dex-Mes-labeled receptors with trypsin, chymotrypsin, or V8 protease under denaturing conditions. These data suggest that activation does not cause any major covalent modifications of the amino acids immediately surrounding the affinity-labeled cysteine(s) of the steroid binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号