首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activated hepatic stellate cells (HSC; lipocytes; Ito cells) proliferate and are responsible for extracellular matrix synthesis during hepatic fibrogenesis. During activation, HSC undergo transdifferentiation into myofibroblasts expressing alpha-smooth muscle actin (alpha-SMA). Adenosine 3', 5'-cyclic monophosphate (cyclic AMP) is an ubiquitous intracellular signaling molecule, and is upregulated by the activation of adenylate cyclase and downregulated via hydrolysis by cyclic nucleotide phosphodiesterases (PDEs). Recently, increased intracellular cyclic AMP has been shown to inhibit HSC activation. The aim of the current study was to determine the effects of inhibition of PDEs on cell proliferation and transdifferentiation in cultured rat HSC. Cell proliferation was determined by [3H]thymidine incorporation, and Western blot analysis was performed for detection of alpha-SMA, a phenotypic marker of transdifferentiation into myofibroblast. When the cells were exposed to 3-isobutyl-1-methylxanthine (IBMX; 50-1000 microM), a nonselective PDE inhibitor, serum-stimulated [3H]thymidine incorporation was suppressed in a dose-dependent manner with a maximum inhibition of 66% at a concentration of 500 microM OPC-13013 (1-60 microM), a selective PDE III isoenzyme inhibitor, induced a dose-dependent inhibitory effect on serum-stimulated DNA synthesis that reached a maximum inhibition of 95% at a concentration of 60 microM, while neither 8-methoxymethyl-3-isobutyl-1-methylxanthine (8-MMX), a PDE I isoenzyme inhibitor, nor Ro-20-1724, a PDE IV isoenzyme inhibitor, had an inhibitory effect. Western blot analysis revealed that IBMX or OPC-13013 decreased alpha-SMA expression, while other selective PDE isoenzyme inhibitors did not have a suppressive effect. IBMX, OPC-13013 or Ro-20-1724, but not 8-MMX augmented forskolin-induced increase in intracellular cyclic AMP levels although cyclic AMP levels were not affected by treatment with any of these PDE inhibitors alone. These data indicate that inhibition of PDEs, especially PDE III isoenzyme, can produce an inhibitory effect on HSC activation. The PDE III isoenzyme may contribute to the regulation of HSC activation during fibrogenesis. In addition, OPC-13013 may have the potential to inhibit initiation and progression of hepatic fibrosis by interfering with HSC activation.  相似文献   

2.
Four cyclic nucleotide phosphodiesterase (PDE) activities were separated from low-speed supernatants of homogenates of human cardiac ventricle by DEAE-Sepharose chromatography, and designated PDE I-PDE IV in order of elution with an increasing salt gradient. PDE I was a Ca2+/calmodulin-stimulated activity, and PDE II was an activity with a high Km for cyclic AMP which was stimulated by low concentrations of cyclic GMP. Human ventricle PDE III had Km values of 0.14 microM (cyclic AMP) and 4 microM (cyclic GMP), and showed simple Michaelis-Menten kinetics with both substrates. PDE IV is a previously unrecognized activity in cardiac muscle, the human enzyme having Km values of 2 microM (cyclic AMP) and 50 microM (cyclic GMP). PDE III and PDE IV were not activated by cyclic nucleotides or calmodulin. Four PDE activities were also isolated from guinea-pig ventricle, and had very similar kinetic properties. By gel filtration, the Mr of PDE III was 60,000, and that of PDE IV 45,000. The drug SK&F 94120 selectively and competitively inhibited PDE III with a Ki value of 0.8 microM (human), showing simple hyperbolic inhibition kinetics. Rolipram (Schering ZK 62711) and Ro 20-1724 (Roche), which have previously been reported to inhibit PDE III-like activities strongly, were shown to be weak inhibitors of human and guinea-pig PDE III enzymes (Ki values greater than 25 microM), but potent inhibitors of PDE IV [Ki values 2.4 microM (Rolipram) and 3.1 microM (Ro 20-1724) with human PDE IV]. The inhibition in all cases demonstrated simple hyperbolic competition. These observations suggest that the previously reported complex inhibition of PDE III-type activities from cardiac muscle was caused by incomplete separation of the PDE III from other enzymes, particularly PDE IV.  相似文献   

3.
This communication describes the synthesis and in vitro evaluation of a novel and potent series of phosphodiesterase type IV (PDE4) inhibitors. The compounds described present substituents in position 4 of the phthalazine ring to replace the commonly observed cyclopentyloxy moiety of rolipram analogues. Preliminary evidences of reduced side effects compared to standards and improved pharmacokinetic properties for selected derivatives are also reported.  相似文献   

4.
Inhibitors of phosphodiesterase 4 (PDE4) are an important class of anti-inflammatory drug that act by inhibiting the production of proinflammatory cytokines, including tumor necrosis factor-α (TNF-α). We have synthesized and evaluated a series of 2-substituted phthalazinone derivatives as PDE4 inhibitors. Structure–activity relationship studies led to the identification of benzylamine-substituted phthalazinones as potent PDE4 inhibitors that also suppressed TNF-α production by whole rat blood cells. The most potent of these, when topically administered, were effective in a mouse model of dermatitis.  相似文献   

5.
Herein we report the synthesis of a new series of aromatic sulfamates designed considering the sulfonamide COX-2 selective inhibitors celecoxib and valdecoxib as lead compounds. These latter were shown to possess important human carbonic anhydrase (CA, EC 4.2.1.1) inhibitory properties, with the inhibition of the tumor-associated isoform hCA IX likely being co-responsible of the celecoxib anti-tumor effects. Bioisosteric substitution of the pyrazole or isoxazole rings from these drugs with the pyrazoline one was considered owing to the multiple biological activities ascribed to this latter heterocycle and paired with the replacement of the sulfonamide of celecoxib and valdecoxib with its equally potent bioisoster sulfamate. The synthesized derivatives were screened for the inhibition of four human carbonic anhydrase isoforms, namely hCA I, II, IV, and IX. All screened sulfamates exhibited great potency enhancement in inhibiting isoform II and IV, widely involved in glaucoma (KIs in the range of 0.4–12.4 nM and 17.7 and 43.3 nM, respectively), compared to the lead compounds, whereas they affected the tumor-associated hCA IX as potently as celecoxib.  相似文献   

6.
New imidazo[1,2-a]quinoxaline derivatives have been synthesised by condensation of an appropriate alpha-aminoalcohol with a quinoxaline followed by intramolecular cyclisation and nucleophilic substitutions. Their phosphodiesterase inhibitory activities have been assessed on a preparation of the PDE4 isoform purified from a human alveolar epithelial cell line (A549). These studies showed potent inhibitory properties that emphasize the importance of a methyl amino group at position 4 and a weakly hindered group at position 1.  相似文献   

7.
Studies by various investigators have demonstrated that the low Km, cAMP-specific phosphodiesterase (PDE IV) is selectively inhibited by a group of compounds typified by rolipram and Ro 20-1724. In addition to inhibiting the catalytic activity of PDE IV, rolipram binds to a high affinity binding site present in brain homogenates. Although it has been assumed that the high affinity rolipram-binding site is PDE IV, no direct evidence has been produced to support this assumption. The present studies were undertaken to determine whether the rolipram-binding site is coexpressed with PDE IV catalytic activity in Saccharomyces cerevisiae genetically engineered to express human recombinant monocytic PDE IV (hPDE IV). Expressing hPDE IV cDNA in yeast resulted in a 20-fold increase in PDE activity that was evident within 1 h of induction and reached a maximum by 3-6 h. The recombinant protein represented hPDE IV as judged by its immunoreactivity, molecular mass (approximately 88 kDa), kinetic characteristics (cAMP Km = 3.1 microM; cGMP Km greater than 100 microM), sensitivity to rolipram (Ki = 0.06 microM), and insensitivity to siguazodan (PDE III inhibitor) and zaprinast (PDE V inhibitor). Saturable, high affinity [3H] (R)-rolipram-binding sites (Kd = 1.0 nM) were coexpressed with PDE activity, indicating that both binding activity and catalytic activity are properties of the same protein. A limited number of compounds were tested for their ability to inhibit hPDE IV catalytic activity and compete for [3H](R)-rolipram binding. Analysis of the data revealed little correlation (r2 = 0.35) in the structure-activity relationships for hPDE IV inhibition versus competition for [3H] (R)-rolipram binding. In fact, certain compounds (e.g. (R)-rolipram Ro 20-1724) possessed a 10-100-fold selectivity for inhibition of [3H] (R)-rolipram binding over hPDE IV inhibition, whereas others (e.g. dipyridamole, trequinsin) possessed a 10-fold selectivity for PDE inhibition. Thus, although the results of these studies demonstrate that hPDE IV activity and high affinity [3H](R)-rolipram binding are properties of the same protein, they do not provide clear cut evidence linking the binding site with the PDE inhibitory activity of rolipram and related compounds.  相似文献   

8.
New sildenafil analogues possessing a carboxylic acid group in the 5'-sulfonamide of the phenyl ring, 9a-l, were prepared from the readily available starting compounds 6a-b and cyclic amines 3-5 in a three-step sequence. In the enzyme assays, it has been shown that all the target compounds 9a-l proved to be more potent in inhibiting phosphodiesterase type 5 (PDE5) than sildenafil by 4-38-fold. The effects on the IC(50) values were investigated by varying the alkoxy group (R) of the phenyl ring, the sulfonamide type (X), and the length of the methylene chain linking the carboxylic acid, and the results were discussed in detail. From this study, we have clearly demonstrated that introduction of a carboxylic acid group to the 5'-sulfonamide moiety of the phenyl ring greatly enhanced PDE5 inhibitory activity, probably by mimicking the phosphate group of cGMP. The piperidinyl propionic acid derivative 9i, which showed the highest PDE5 inhibitory activity and comparable to better selectivity over PDE isozymes in comparison with sildenafil, has been selected for more detailed biological investigations.  相似文献   

9.
We attempted to identify and establish the role of cyclic nucleotide phosphodiesterase (PDE) isozymes in human basophils by using standard biochemical techniques as well as describing the effects of isozyme-selective and nonselective inhibitors of PDE. The nonselective PDE inhibitors, theophylline and 3-isobutyl-1-methylxanthine, inhibited anti-IgE-induced release of histamine and leukotriene C4 (LTC4) from basophils. This inhibition was accompanied by elevations in cAMP levels. Rolipram, an inhibitor of the low Km cAMP-specific PDE (PDE IV), inhibited the release of both histamine and LTC4 from activated basophils and increased cAMP levels in these cells. In contrast, mediator release from basophils was not inhibited by either siguazodan or SK&F 95654, inhibitors of the cGMP-inhibited PDE (PDE III) or zaprinast, an inhibitor of the cGMP-specific PDE (PDE V). SK&F 95654 failed to elevate basophil cAMP in these experiments whereas zaprinast induced significant increases in cAMP content. The inhibitory effect of rolipram on mediator release was potentiated by siguazodan or SK&F 95654, but not by zaprinast. SK&F 95654 also enhanced the ability of rolipram to increase cAMP content. Forskolin, a direct activator of adenylate cyclase, inhibited IgE-dependent release of mediators from basophils and increased cAMP levels in these cells. These effects were enhanced by rolipram, but not by SK&F 95654 or zaprinast. The cell permeant analog of cAMP, dibutyryl cAMP, inhibited mediator release from these cells, a property not shared by either dibutyryl-cGMP or sodium nitroprusside, an activator of soluble guanylate cyclase. The presence of both PDE III and PDE IV was confirmed by partially purifying and characterizing PDE activity in broken cell preparations. Overall, these data lend support to the hypothesis that cAMP inhibits mediator release from basophils and suggest that the major PDE isozyme responsible for regulating cyclic AMP content in these cells is PDE IV, with a minor contribution from PDE III. However, the finding that zaprinast caused increases in cAMP without inhibiting mediator release indicates that cAMP accumulation is not invariably linked to an inhibition of basophil activation.  相似文献   

10.
Three phosphodiesterase (PDE) type III inhibitors were tested and found to inhibit Xenopus oocyte maturation induced by insulin with apparent IC50 values of 2.2 +/- 0.2 microM Cl-930, 25 +/- 3 microM imazodan (Cl-914), and 786 +/- 237 microM piroximone (MDL 19,205). The same rank order of potencies was observed for inhibition of insulin-like growth factor-I (IGF-I)-induced oocyte maturation, with IC50 values of 5.5 +/- 0.9 microM Cl-930, 54 +/- 4 microM imazodan, and 1190 +/- 395 microM piroximone. Oocyte maturation induced by microinjection of Ha p21ras was also inhibited by pretreatment of oocytes with Cl-930 or imazodan, with IC50 values of 4.3 +/- 1.2 and 59 +/- 4 microM, respectively. Progesterone-induced maturation was not affected by PDE III inhibitor action; and, neither type IV PDE inhibitors (Ro 20, 1724 or rolipram) nor dipyridamole (a type V PDE inhibitor) inhibited cell division induced by IGF-I or microinjected Ha p21ras. In addition, while insulin-stimulated oocyte PDE activity measured in vivo after microinjection of 200 microM [3H] cAMP was inhibited by nonselective and type III-specific drugs (with IC50 values of 4.2 +/- 1.8 microM Cl-930 and 26 +/- 6 microM imazodan), type IV and type V inhibitors did not inhibit hormone-stimulated enzyme activity. This pharmacological evidence demonstrates a necessary role for PDE III in insulin-, IGF-I-, and p21ras-induced meiotic cell division in Xenopus laevis oocytes.  相似文献   

11.
The growth of many breast carcinoma cell lines is inhibited by vitamin A, and derivatives as well as synthetic retinoids. New retinoidal derivatives have recently been synthesized. These retinoidal benzoic acid derivatives displayed enhanced potency in their ability to reverse hamster tracheal keratinization and inhibit ornithine decarboxylase induction in mouse epidermis. We therefore screened a series of analogues of these compounds for their ability to inhibit human breast carcinoma cell proliferation utilizing three estrogen receptor-positive and two estrogen receptor-negative cell lines. The compound (E)-4-2-(5,6,7,8)tetrahydro-5,5,8,8-tetramethyl-2-naphtalenyl)prop enyl benzoic acid (Ro 1374-10) was approximately 2-3 orders of magnitude more potent than all-trans-retinoic acid in inhibiting breast carcinoma cell proliferation while the compound SRI-6409-40, which differs from Ro 1374-10 only by the position of a methyl group, was 50-fold more potent than Ro 1374-10. All of the compounds tested displayed were inactive against the estrogen receptor-negative breast carcinoma lines.  相似文献   

12.
A novel series of benzodiazepine derivatives have been discovered as inhibitors of PDE4 enzymes. We have found that our compounds are selective versus other PDE enzymes, and that the activity can be modulated by specific structural modifications. One compound exhibited a strong eosinophilic infiltration inhibiting action on sensitized Brown-Norway rats (compound 9, 5.1 mg/kg p.o.), moreover this compound is not emetic at 3 mg/kg i.v.  相似文献   

13.
A novel class of potent Syk inhibitors has been developed from rational design. Highly potent aminopyridine derivatives bearing a 4-trifluoromethyl-2-pyridyl motif and represented by compound 13b IC(50): 0.6nM were identified. Substitution by a 2-pyrazinyl motif and SAR expansion in position 4 of the central core provided diverse potent non-cytotoxic Syk inhibitors showing nanomolar activity inhibiting human mast cell line LAD2 degranulation.  相似文献   

14.
Novel 1,7- and 2,7-naphthyridine derivatives, designed by the introduction of nitrogen atom into the phenyl ring of previously reported 4-aryl-1-isoquinolinone derivatives, were disclosed as a new structural class of potent and specific PDE5 inhibitors. Among them, 2,7-naphthyridine 4c showed potent PDE5 inhibition (IC(50)=0.23 nM) and one of the best PDE5 specificities against PDEs1-4,6 (>100,000-fold selective versus PDE1-4, 240-fold selective vs PDE6). This compound showed more potent relaxant effects on isolated rabbit corpus cavernosum (EC(30)=5.0 nM) than Sildenafil (EC(30)=8.7 nM). The compound 4c (T-0156) was selected for further biological and pharmacological evaluation of erectile dysfunction.  相似文献   

15.
Four main phosphodiesterase (PDE) forms were resolved and partially purified from rat liver and Morris hepatoma 5123tc(h). The activities of the high Km cyclic nucleotide PDE (form II) in hepatoma were markedly reduced compared to liver, while the activities of the low Km cAMP PDE (form III) and low Km cyclic nucleotide PDE (form IV) in hepatoma were markedly higher than those of liver. The partially purified low Km cAMP PDE's (forms III and IV) from liver showed non-linear Lineweaver-Burk plots, whereas the same enzyme forms in hepatoma displayed linear kinetics. Activation of low Km cGMP PDE activity by calmodulin was found with form I in liver whereas in hepatoma form II was responsive to calmodulin.  相似文献   

16.
Compared with oocytes matured in vivo, in vitro-matured oocytes are compromised in their capacity to support early embryo development. Delaying spontaneous in vitro meiotic maturation using specific phosphodiesterase (PDE) isoenzyme inhibitors may permit more complete oocyte cytoplasmic maturation, possibly by prolonging cumulus cell (CC)-oocyte gap junctional communication during meiotic resumption. This study aimed to investigate the effect of the isoenzyme 3- (oocyte) and isoenzyme 4- (granulosa cell) specific PDE inhibitors on the kinetics of in vitro maturation and on subsequent oocyte developmental competence. Cumulus-oocyte complexes from antral bovine follicles were isolated and cultured in the presence of the specific PDE inhibitors milrinone (type 3) or rolipram (type 4) (100 microM). In the presence of FSH, both PDE inhibitors only slightly extended CC-oocyte gap junctional communication over the first 9 h, but they completely blocked meiotic resumption during this period (P < 0.001). The indefinite inhibitory effect of milrinone on meiotic resumption (30% at germinal vesicle stage after 48 h) was overridden by 24 h when treated with FSH, but not with hCG, suggesting a form of induced meiotic resumption. Oocytes treated with FSH with or without either PDE inhibitor were inseminated at either 24, 26, or 28 h. Treated with either the type 3 or type 4 PDE inhibitor significantly (P < 0.05) increased embryo development to the blastocyst stage by 33%-39% (to an average of 52% blastocysts) compared with control oocytes (38%) after insemination at 28 h, and significantly (P < 0.05) increased blastocyst cell numbers when inseminated at 24 h. These results suggest that delayed spontaneous meiotic maturation, coupled with extended gap junctional communication between the CCs and the oocyte has a positive effect on oocyte cytoplasmic maturation, thereby improving oocyte developmental potential.  相似文献   

17.
Phosphodiesterase-5 (PDE5) inhibitors act by competing with the substrate, cGMP, for the catalytic site of the enzyme. Two commercialized PDE5 inhibitors, sildenafil and vardenafil, are being used to treat erectile dysfunction. These two compounds differ in the heterocyclic ring system used to mimic the purine ring of cGMP. They also differ in the substituent (ethyl/methyl) of a piperazine side chain. Although these are the only two structural differences, vardenafil has more than 20-fold greater potency than sildenafil for inhibiting purified PDE5. The molecular structural basis for the difference in potency of the two compounds was investigated by synthesizing an analog of sildenafil ("methyl-sildenafil") that contained the sildenafil ring system but with the appended ethyl group found in vardenafil, and an analog of vardenafil ("demethyl-vardenafil") that contained the vardenafil ring system but with the appended methyl group found in sildenafil. The IC50 of methyl-sildenafil for inhibiting PDE5 indicated that it was 64 times less potent than demethyl-vardenafil, which was similar to the finding that, based on IC50, sildenafil was 40 times less potent than vardenafil. Similarly, the EC50 of methyl-sildenafil for inhibiting [3H]vardenafil binding to PDE5 indicated that it was 84 times less potent than demethyl-vardenafil, while the EC50 for sildenafil indicated that it was 31 times less potent than vardenafil. It is concluded that the methyl/ethyl appended group on the piperazine moiety plays very little role in the difference in potency between sildenafil and vardenafil for inhibiting PDE5, whereas the differences in the ring systems play a critical role in higher potency of vardenafil over sildenafil.  相似文献   

18.
Changes in the activities and isoenzyme distribution of hexokinase were determined in a number of tissues during the development of the guinea pig. The total activity in the fetal liver showed a large fall during the second half of gestation to reach adult values by term. With normal diet the fetal, neonatal, and adult livers had isoenzymes I and III but little or no detectable IV (glucokinase). The fetal liver had predominantly type I, but the proportion of type III increased during development. The kinetics of the guinea pig isoenzymes were similar to those reported for the rat. Two additional isoenzymes with mobility between I and II were detected in the fetal liver and blood. They appear to have kinetic properties similar to type I. Detectable liver glucokinase activity was induced by glucose administration to adult guinea pigs. The total activity in kidney, brain and skeletal muscle showed a postnatal rise while in the fetal heart it was high and declined after birth. These tissues contained predominantly type I with varying proportions of type III hexokinase. The ratio of particulate-bound to soluble hexokinase varied from tissue to tissue. All except the liver showed a significant increase in binding after birth. The changes are discussed in relation to the control of glucose utilization in the fetal and neonatal periods.  相似文献   

19.
Synthesis and evaluation of new combretastatin analogues with varied modifications on the bridge and the aromatic rings, have shown that the 2-naphthyl moiety is a good surrogate for the 3-hydroxy-4-methoxyphenyl (B-ring) of combretastatin A-4. Other bicyclic systems, such as 6(7)-quinolyl and 5-indolyl, can replace the B-ring, but they produce less potent analogues in the cytotoxicity and tubulin polymerization inhibition assays. Other modifications are detrimental for the potency of the studied analogues. The 2-naphthyl combretastatin 53 and the related 6-quinolyl combretastatin 106 analogues are the most potent among the derivatives of this type, whereas 92 and 95 are the most potent among the naphthalene derivatives with a heterocycle in the bridge. Previous and new results in this family of combretastatin analogues are discussed.  相似文献   

20.
The synthesis and biological evaluation of caffonyl pyrrolidine derivatives as MMPs inhibitors are reported in this paper. Inhibiting activities of synthesized compounds on gelatinase (MMP-2 and -9) were tested by using succinylated gelatin as substrate. Structure-activity relationship results from these tested compounds demonstrated that longer and more flexible side chain linked to the pyrrolidine ring at C(4) produced higher activity at gelatinase. Furthermore, aromatic heterocycle and sulfamide in the same position could enhance the activities. Compounds with free phenol hydroxyl group showed higher activity compared to methylated derivatives (or counterparts), which confirms the importance of phenol hydroxyl functionality in the interaction with gelatinase. The anti-metastasis model of mice bearing H(22) tumor cell was used to evaluate their in vivo inhibiting activities. All tested compounds were orally administered at a dose of 50 or 100mg/kg, 6days/week for two weeks. The test results demonstrated that most of these inhibitors showed significant anti-cancer activities (inhibitory rate>35%) and were devoid of toxic effects. Compound 29 showed the highest inhibitory rate at 69.25%, indicating that it might be a promising lead compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号