首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Reductant used as cofactor for the prolyl hydroxylase reaction, was measured by a tritium release assay modified from an enzyme assay by making all components of the assay system saturating except for the reductant, but including prolyl hydroxylase. Reduced glutathione (6 mm), which had little activity as a cofactor, and thymol (0.1 mm), an antioxidant which exhibited no cofactor activity at all, were required for optimal proline hydroxylation dependent on reducing cofactor, with thymol fulfilling the previously described requirement for catalase. Ascorbate, cysteine and 6,7-dimethyltetrahydropterin were active as cofactors, in descending order of activity at equimolar concentrations, and activity was concentration dependent for all of these compounds. Sonicates of stationary phase L-929 cells which exhibit ascorbate-independent proline hydroxylation in culture contained reducing cofactor which could replace ascorbate in the cofactor assay, while sonicates of log phase cells which exhibit an ascorbate requirement in culture contained about one-third or less of that amount. NADH and NADPH, which themselves have little or no activity as cofactor, increased the cofactor activity of log phase cell sonicates but had relatively little effect on the activity of stationary cell sonicates suggesting that the cofactor is in a more reduced state in stationary phase. Within 24 h after replating dense, stationary phase cell cultures at low density, conditions where cells return to ascorbate dependence, prolyl hydroxylase activity had decreased to one-fifth the original activity while the concentration of functional reducing cofactor had decreased to less than 1% of its original concentration, largely as a result of oxidation. Ascorbate was not present in L-929 cells sonicates and the levels of tetrahydropterin and cysteine in sonicates could not account for the amount of cofactor activity exhibited by the sonicates in the assay system. Treatment of L-929 cultures with aminopterin did not decrease ascorbate independence, suggesting that tetrahydrofolate did not contribute significantly to cellular proline hydroxylation. These results suggest that an unidentified reductant present in L-929 cells can account for ascorbate-independent proline hydroxylation and also regulate prolyl hydroxylase activity in these cells and that cellular levels of reduced pyridine nucleotides may regulate the reduction state of this substance.  相似文献   

2.
A previous published assay method for tyrosine hydroxylase by the evolution of 14CO2 was modified to a two-step procedure to allow reliable measurement of large numbers of samples containing low tyrosine hydroxylase activity. The reliability of the method was examined in detail. Properties of rat brain and pineal tyrosine hydroxylase solubilized with 0.2% Triton X-100 were as follows. The apparent Km values of the brain enzyme for L-tyrosine with 1 mM-(6-DL)-5,6,7,8-tetrahydro-L-erythro-biopterin (BPH4) as cofactor and for BPH4 with 62 microM-L-tyrosine as substrate were approximately 25 microM and 85 microM, respectively. The Km's for L-tyrosine with 1 mM-(6-DL)-5,6,7,8-tetrahydro-6-methylpterin (6MPH4) as cofactor and for 6MPH4 with 210 microM-L-tyrosine as substrate were 68 microM and 270 microM, respectively. The marked substrate inhibition by high concentrations of L-tyrosine was observed only when BPH4 was used as cofactor. High concentrations of BPH4 inhibited the reaction slightly. The kinetic properties of tyrosine hydroxylase in the pineal extract were similar to those of the brain enzyme, except that a Lineweaver-Burk plot of reciprocal velocity versus the reciprocal concentration of BPH4 with 62 microM-L-tyrosine as substrate deviated downward at a BPH4 concentration of about 100 microM. Analyses of the plot indicated that the peculiar kinetic property may represent either the reaction occurring at two independent sites or with two forms (6L- and 6D-isomers) of the tetrahydrobiopterin cofactor, with apparent Km for BPH4 of 23 microM and 1025 microM, respectively, or the negatively cooperative ligand binding with a Hill coefficient of 0.72. Based on the results obtained as reported above the standard assay conditions of tyrosine hydroxylase in tissue extracts were established. Using the assay method and conditions, the absence of the daily rhythmicity of tyrosine hydroxylase in rat pineal glands and three discrete brain areas was demonstrated. The findings, especially on pineal tyrosine hydroxylase, are discussed in relation to the daily change of noradrenaline turnover.  相似文献   

3.
1. Phenylalanine hydroxylase activity has been analyzed in Drosophila melanogaster using as cofactors the natural tetrahydropteridine 5,6,7,8-tetrahydrobiopterin (H4Bip) and the synthetic one 5,6-dimethyl-5,6,7,8-tetrahydropterin (H4Dmp). 2. The apparent Vmax and KM for substrate and cofactor showed that the enzyme has two times more affinity for the substrate when H4Bip is the cofactor in the reaction. Similarly to what was found with purified rat liver phenylalanine hydroxylase, H4Bip was the most effective cofactor, leading to 4-5 times more activity than that obtained with H4Dmp. 3. With the natural cofactor H4Bip, no activation of the enzyme with Phe was necessary (in contrast to mammalian phenylalanine hydroxylase), and this tetrahydropteridine inhibits phenylalanine hydroxylase activity when the enzyme is exposed to it before phenylalanine addition. With the synthetic H4Dmp, both types of preincubations led to an increase of phenylalanine hydroxylase activity. 4. The enzyme is highly unstable compared to mammalian phenylalanine hydroxylase, even at -20 degrees C. 5. Thorax and abdomen extracts caused significant inhibition of phenylalanine hydroxylase activity from third instar larvae or newborn adult head extracts, when assayed with the synthetic cofactor H4Dmp. This inhibition did not happen with H4Bip. The presence of the pteridine 7-xanthopterin in adult bodies was not the cause of this inhibition.  相似文献   

4.
1. Phenylalanine hydroxylase is inhibited by its cofactor, 6,7-dimethyltetrahydropterin. The rate of inactivation, which is irreversible, increases with the concentration of cofactor. 2. Catalase, in sufficient amount relative to cofactor, prevents this inactivation. More tyrosine is formed in the presence of added catalase. 3. Dithiothreitol in the presence of liver extract also prevents inactivation of the enzyme by the cofactor and stimulates hydroxylation of phenylalanine, probably by protecting the cofactor from oxidation and regenerating it from a dihydropterin reaction product. Dithiothreitol restores linearity of rate at very low enzyme concentrations. 4. Dimethyltetrahydropterin is unstable when the solution is exposed to air but is stabilized by dithiothreitol the aerobic oxidation of which is greatly accelerated by dimethyltetrahydropterin. 5. NADH together with liver extract stabilizes the cofactor but not phenylalanine hydroxylase. 6. It is suggested that either hydrogen peroxide or an organic peroxide formed by oxidation in air of the cofactor is the substance attacking phenylalanine hydroxylase, dithiothreitol and cofactor.  相似文献   

5.
Abstract— The K m for oxygen for rat liver phenylalanine hydroxylase depended on the structure of the reduced pterin cofactor. When the synthetic cofactor, 6,7-dimethyltetrahydropterin, was employed, the apparent K m for oxygen was 20%. When the natural cofactor, tetrahydrobiopterin, was used, the apparent K m for oxygen was 0.35 %. Substrate inhibition (40 per cent inhibition at 43% oxygen) was observed with the natural cofactor but not with the synthetic cofactor. Oxygen also caused substrate inhibition with bovine adrenal medulla and brain tyrosine hydroxylases. The inhibition was more dramatic in the presence of the natural cofactor than with the synthetic cofactor. Substrate inhibition by oxygen of brain tyrosine hydroxylase may explain the lowered brain levels of norepinephrine and dopamine observed after treatment of animals with hyperbaric oxygen.  相似文献   

6.
A reproducible purification procedure of native tyrosine hydroxylase (L-tyrosine, tetrahydropteridine : oxygen oxidoreductase (3-hydroxylating), EC 1.14.16.2) from the soluble fraction of the bovine adrenal medulla has been established. This procedure accomplished a 90-fold purification with a recovery of 30% of the activity. This purified enzyme served for studying the kinetic properties of tyrosine hydroxylase using (6R)-L-erythro-1',2'-dihydroxypropyltetrahydropterin [(6R)-L-erythro-tetrahydrobiopterin] as cofactor, which is supposed to be a natural cofactor. Two different Km values for tyrosine, oxygen and natural (6R)-L-erythro-tetrahydrobiopterin itself were obtained depending on the concentration of the tetrahydrobiopterin cofactor. In contrast, when unnatural (6S)-L-erythro-tetrahydrobiopterin was used as cofactor, a single Km value for each tyrosine, oxygen and the cofactor was obtained independent of the cofactor concentration. The lower Km value for (6R)-L-erythro-tetrahydrobiopterin was close to the tetrahydrobiopterin concentration in tissue, indicating a high affinity of the enzyme to the natural cofactor under the in vivo conditions. Tyrosine was inhibitory at 100 microM with (6R)-L-erythro-tetrahydrobiopterin as cofactor, and the inhibition by tyrosine was dependent on the concentrations of both pterin cofactor and oxygen. Oxygen at concentrations higher than 4.8% was also inhibitory with (6R)-L-erythro-tetrahydrobiopterin as cofactor.  相似文献   

7.
The interaction between phenylalanine 4-mono-oxygenase and analogues of the natural cofactor (6R)-tetrahydrobiopterin [(6R)-BH4] was studied. The rate of cyclic AMP-dependent phosphorylation of phenylalanine 4-mono-oxygenase was inhibited only by those pterins [(6R)-BH4, (6S)-BH4 and 7,8-dihydrobiopterin (BH2)] that were able to decrease the potency and efficiency of phenylalanine as an allosteric activator of the hydroxylase. Since BH2 lacks cofactor activity, this was not required to modulate either the phosphorylation or the phenylalanine-activation of the hydroxylase. Half-maximal inhibition of the phosphorylation was observed at 1.9 microM-(6R)-BH4, 9 microM-(6S)-BH4 and 17 microM-BH2. Competition experiments indicated that all three pterins acted through binding to the cofactor site of the hydroxylase. Since the phosphorylation site and the cofactor binding site are known to reside, respectively, in the N- and C-terminal domains of the hydroxylase, the pterins were able to induce an interdomain conformational change. BH2, whose dihydroxypropyl group is not subject to epimerization, and (6S)-BH4 both inhibited the phosphorylation less efficiently than did the (6R)-epimer of BH4. Pterins with different spatial arrangements of the dihydroxypropyl side chain thus appeared to elicit different conformations of the phosphorylation site. The hydroxylase reaction showed a higher apparent Km for (6S)-BH4 than for (6R)-BH4 both when the native and the phenylalanine-activated enzyme were tested. For the activated enzyme Vmax was 40% lower with the (6S)-epimer than the (6R)-epimer, also when the more rapid enzyme inactivation occurring with the former cofactor was taken into account.  相似文献   

8.
Phenylalanine hydroxylase purified from rat liver shows positive co-operativity in response to variations in phenylalanine concentration when assayed with the naturally occurring cofactor tetrahydrobiopterin. In addition, preincubation of phenylalanine hydroxylase with phenylalanine results in a substantial activation of the tetrahydrobiopterin-dependent activity of the enzyme. The monoclonal antibody PH-1 binds to phenylalanine hydroxylase only after the enzyme has been preincubated with phenylalanine and is therefore assumed to recognize a conformational epitope associated with substrate-level activation of the hydroxylase. Under these conditions, PH-1 inhibits the activity of phenylalanine hydroxylase; however, at maximal binding of PH-1 the enzyme is still 2-3 fold activated relative to the native enzyme. The inhibition by PH-1 is non-competitive with respect to tetrahydropterin cofactor. This suggests that PH-1 does not bind to an epitope at the active site of the hydroxylase. Upon maximal binding of PH-1, the positive co-operativity normally expressed by phenylalanine hydroxylase with respect to variations in phenylalanine concentration is abolished. The monoclonal antibody may therefore interact with phenylalanine hydroxylase at or near the regulatory or activator-binding site for phenylalanine on the enzyme molecule.  相似文献   

9.
A significant inverse correlation between individual hydroxylase cofactor concentration and spontaneous locomotor activity exists in male rat striatum in the light, but not the dark, phase of the diurnal cycle. No relationship exists in the nucleus accumbens. Electric shock stress significantly elevated plasma and hypothalamic cofactor concentration and decreased cofactor concentration in the raphe nuclei without significantly changing it in the striatum and the hippocampus. Alterations of hydroxylase cofactor concentration in brain and blood under stress manipulation may have its functional significance and clinical implications.  相似文献   

10.
Molybdenum, assayed by atomic absorption spectrometry, copurifies with the selenium-containing nicotinic acid hydroxylase from Clostridium barkeri. Fluorescence spectral studies on the enzyme indicate the presence, along with flavin, of another component. The fluorescence spectra of this component obtained after the aerobic denaturation of the nicotinic acid hydroxylase are similar to the fluorescence properties reported for the “pterin-like” cofactor from xanthine oxidase and several other molybdoproteins. Nicotinic acid hydroxylase from C. barkeri contains molybdenum, selenium, iron, acid-labile sulfur, and flavin with the occurrence of a “pterin-like” cofactor also a likely component.  相似文献   

11.
1. Pteridine cofactor of phenylalanine hydroxylase (EC 1.14.16.1) and dihydropteridine reductase (EC 1.6.99.7) in the phenylalanine hydroxylating system have been studied in the fetal rat liver. 2. Activities of pteridine cofactor and dihydropteridine reductase were measured as about 6 and 50%, respectively, of the levels of adult liver in the liver from fetuses on 20 days of gestation, at this stage the activity of phenylalanine hydroxylase was almost negligible in the liver. 3. Development of the activity of sepiapterin reductase (EC 1.1.1.153), an enzyme involved in the biosynthesis of pteridine cofactor, was studied in rat liver during fetal (20-22 days of gestation), neonatal and adult stages comparing with the activity of dihydrofolate reductase (EC 1.5.1.3). Activities of the enzymes were about 80 and 50%, respectively, of the adult levels at 20 days of gestation. 4. Some characteristics of sepiapterin reductase and dihydropteridine reductase of fetal liver were reported.  相似文献   

12.
Abstract: Tryptophan hydroxylase, the initial and rate-limiting enzyme in the biosynthesis of the neurotransmitter serotonin, is inactivated by the nitric oxide generators sodium nitroprusside, diethylamine/nitric oxide complex, and S -nitroso- N -acetylpenicillamine. Physiological concentrations of tetrahydrobiopterin, the natural and endogenous cofactor for the hydroxylase, significantly enhance the inactivation of the enzyme caused by each of these nitric oxide generators. The substrate tryptophan does not have this effect. The chemically reduced (tetrahydro-) form of the pterin is required for the enhancement, because neither biopterin nor dihydrobiopterin is effective. The 6 S -isomer of tetrahydrobiopterin, which has little cofactor efficacy for tryptophan hydroxylase, does not enhance enzyme inactivation as does the natural 6 R -isomer. A number of synthetic, reduced pterins share with tetrahydrobiopterin the ability to enhance nitric oxide-induced inactivation of tryptophan hydroxylase. The tetrahydrobiopterin effect is not prevented by agents known to scavenge hydrogen peroxide, superoxide radicals, peroxynitrite anions, hydroxyl radicals, or singlet oxygen. On the other hand, cysteine partially protects the enzyme from both the nitric oxide-induced inactivation and the combined pterin/nitric oxide-induced inactivation. These results suggest that the tetrahydrobiopterin cofactor enhances the nitric oxide-induced inactivation of tryptophan hydroxylase via a mechanism that involves attack on free protein sulfhydryls. Potential in vivo correlates of a tetrahydrobiopterin participation in the inactivation of tryptophan hydroxylase can be drawn to the neurotoxic amphetamines.  相似文献   

13.
Summary

A new mechanism of oxygen radical formation in dopaminergic neurons is proposed, based on the oxidative mechanism of tyrosine hydroxylase. The cofactor (6R,6S)-5,6,7,8-tetrahydrobiopterin can rearrange in solution which allows an autoxidation reaction producing O2.-, H2O2 and HO.. The combination of tyrosine hydroxylase and the cofactor produces more oxygen radicals than does the autoxidation of the cofactor. This production of oxygen radicals could be damaging to dopaminergic neurons. In the presence of tyrosine, the enzyme produces less radicals than it does in the absence of tyrosine. Mechanisms are proposed for the generation of reactive oxygen species during the autoxidation of the cofactor and during enzymatic catalysis. The generation, by tyrosine hydroxylase, of very small amounts of oxygen radicals over the period of 65 years could contribute to the oxidative stress that causes Parkinson's disease.  相似文献   

14.
It is established that GABA interacts with tyrosine hydroxylase through the allosteric site which is not identical to sites of tyrosine, DOPA, pterin cofactor, dopamine binding. This interaction is very significant in the GABA influence on the regulation of the tyrosine hydroxylase activity by presynaptic receptors. GABA is supposed to be able to cause dissociation of oligomeric forms of tyrosine hydroxylase.  相似文献   

15.
The role of several reducing systems in the tyrosine hydroxylase reaction has been studied. A significant dependence upon the reducing systems beyond that required to regenerate the oxidized cofactor has been observed. 2-Mercaptoethanol, NADPH, and ascorbate are each effective at reducing the cofactor, but their abilities to stimulate tyrosine hydroxylase vary over a threefold range. NADPH is a suitable reductant for the tyrosine hydroxylase reaction, even in the absence of pteridine reductase. A reducing system containing ascorbate, ferrous ion, and catalase gives unusually high enzyme activity and low blanks. This ascorbate system, in addition to being useful for in vitro enzyme assays, may serve as a model for the in vivo reaction. Ascorbate may play an important role in the hydroxylation of tyrosine in catecholaminergic tissues. This study demonstrates that an efficient reductant for the tyrosine hydroxylase reaction must, in addition to reducing the pterin cofactor, also interact effectively with the enzyme itself.  相似文献   

16.
Salsolinol is one of the dopamine-derived tetrahydroisoquinolines and is synthesized from pyruvate or acetaldehyde and dopamine. As it cannot cross the blood-brain barrier, salsolinol as the R enantiomer in the brain is considered to be synthesized in situ in dopaminergic neurons. Effects of R and S enantiomers of salsolinol on kinetic properties of tyrosine hydroxylase [tyrosine, tetrahydrobiopterin:oxygen oxidoreductase (3-hydroxylating); EC 1.14.16.2], the rate-limiting enzyme of catecholamine biosynthesis, were examined. The naturally occurring cofactor of tyrosine hydroxylase, L-erythro-5,6,7,8-tetrahydrobiopterin, was found to induce allostery to the enzyme polymers and to change the affinity to the biopterin itself. Using L-erythro-5,6,7,8-tetrahydrobiopterin, tyrosine hydroxylase recognized the stereochemical structures of the salsolinols differently. The asymmetric center of salsolinol at C-1 played an important role in changing the affinity to L-tyrosine. The allostery of tyrosine hydroxylase toward biopterin cofactors disappeared, and at low concentrations of biopterin such as in brain tissue, the affinity to the cofactor changed markedly. A new type of inhibition of tyrosine hydroxylase, by depleting the allosteric effect of the endogenous biopterin, was found. It is suggested that under physiological conditions, such a conformational change may alter the regulation of DOPA biosynthesis in the brain.  相似文献   

17.
18.
The state of phosphorylation of phenylalanine hydroxylase was determined in isolated intact rat hepatocytes. 32P-labeled phenylalanine hydroxylase was immunoisolated from cells loaded with 32Pi or from cell extracts 'back-phosphorylated' with [gamma-32P]ATP by cAMP-dependent protein kinase. The rate of phenylalanine hydroxylase phosphorylation in cells with elevated cAMP was similar to that observed for the isolated enzyme phosphorylated by homogeneous cAMP-dependent protein kinase. The phosphorylation rate in cAMP-stimulated cells was increased up to four times (reaching 0.018 s-1) by the presence of phenylalanine, the phosphate content (mol/mol hydroxylase) increasing to 0.5 from the basal level (0.17) in 50 s. The half maximal effect of phenylalanine was obtained at a physiologically relevant concentration (110 microM). The synthetic phenylalanine hydroxylase cofactor dimethyltetrahydropterin also enhanced the cAMP-stimulated phosphorylation of phenylalanine hydroxylase, presumably by displacing the endogenous cofactor, tetrahydrobiopterin. Phenylalanine was a negative modulator of the phosphorylation of phenylalanine hydroxylase induced by incubating cells with vasopressin or with the phosphatase inhibitor okadaic acid. The same site on the phenylalanine hydroxylase was phosphorylated in response to these two agents as in response to elevated cAMP. The available evidence suggested that not only vasopressin, but also okadaic acid, acted by stimulating the multifunctional Ca2+/calmodulin-dependent protein kinase II or a kinase with closely resembling properties.  相似文献   

19.
Allostery of tyrosine hydroxylase was found by kinetical studies of partially purified tyrosine hydroxylase from clonal rat pheochromocytoma PC12h cells. Positive cooperativity toward the cofactors, (6R)-L-erythro-5,6,7,8-tetrahydrobiopterin [(6R)BH4] and (6S)-L-erythro-5,6,7,8-tetrahydrobiopterin [(6S)BH4], was observed. It is indicated that biopterin might be the regulatory factor of the enzyme polymers, which changes the affinity for the cofactor itself. Moreover, the stereochemical structure of (6R)BH4, the naturally-occurring cofactor, took an important role on the kinetical properties of the enzyme in concern with L-tyrosine.  相似文献   

20.
1. Four stereochemical isomers of tetrahydrobiopterin, i.e., 6-L-erythro-, 6-D-erythro-, 6-L-threo-, or 6-D-threo-1,2-dihydroxypropyltetrahydropterin, have been synthesized and used as cofactors for tyrosine hydroxylase (EC 1.14.18.-) purified from the soluble fraction of bovine adrenal medulla. The L-erythro- (the putative natural cofactor) and D-threo isomers showed a striking similarity in their cofactor activities for tyrosine hydroxylase; the remaining two isomeric tetrahydrobiopterins, D-erythro and L-threo isomers, also had very similar cofactor characteristics. 2. The Km values of the L-erythro and D-threo isomers as cofactor were found to be dependent on their concentrations. When their concentrations were below 100 muM, the Km values of the L-erythro and D-threo isomers were fairly low (about 20 muM). However, the Km values were markedly higher (about 150 muM) at concentrations above 100 muM. The same kinetic behavior was also observed with the tetrahydrobiopterin prepared from a natural source (bullfrog). In contrast, the Km value of the L-threo or D-erythro isomer was found to be independent of the concentration and remained constant throughout the concentration examined. 3. The Km values of tyrosine did not show much difference (from 20 muM to 30 muM) with respect to the structure of the four isomeric cofactors. At high concentrations tyrosine inhibited the enzymatic reaction with any one of the four tetrahydrobiopterin cofactors. 4. Oxygen at high concentrations was also inhibitory with any one of the four stereochemical isomers as cofactor. Approximate Km values for oxygen with the tetrahydrobiopterins as cofactor were 1-5%. 5. In contrast to the four isomers of tetrahydrobiopterin, when 6-methyltetrahydropterin or 6,7-dimethyltetrahydropterin was used as cofactor tyrosine or oxygen did no inhibit the enzymatic reaction at high concentrations, and the Km values toward the pterin cofactor, tyrosine, and oxygen were significantly higher than the Km values with the tetrahydrobiopterins as cofactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号