首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Populations of lactose positive (Lac+) and proteinase positive (Prt+) cells from Streptococcus lactis M18, C10, and ML3 grown at 39 degrees C gave rise to increasing proportions of Lac- Prt- clones. The deficiencies did not appear until after a number of generations at the elevated temperature, and the rate depended on the strain.Lac- Prt+ and Lac+ Prt- mutants were isolated after treatment with ethidium bromide. Plasmid deoxyribonucleic acid was isolated by cesium chloride-ethidium bromide equilibrium density gradient centrifugation from the parent cultures as well as from their Lac- Prt-, Lac- Prt+, and Lac+ Prt- mutants. Five distinct plasmid sizes of approximate molecular weights of 2,4, 8, 21, and 27 million were found in S. lactis C10, whereas the Lac- Prt- derivative lacked the 8- and 21-million-dalton plasmids, but the 8-million-dalton plasmid was present in the Lac-Att mutant. In S. lactis m18 five plasmids possessing molecular weights of about 2, 4, 10, 18 and 27 million were observed. The 10- and 18-million-dalton plasmids were not detected in the Lac- Prt- mutants, whereas the Lac- Prt+ derivative lacked only the 18-million-dalton plasmid and the Lac+ Prt- mutant lacked only the 10-million-dalton plasmid. In S. lactis ML3 five distinct plasmids, with approximate molecular weights of 2, 4, 8, 22, and 30 million, were present. The 8- and 22-million-dalton plasmids were not detected in the Lac- Prt- derivative, but the 8-million-dalton plasmid was present in the Lac- Prt+ mutant. The evidence suggests that lactose-fermenting ability and proteinase activity in these organisms are mediated through two distinct plasmids having molecular weights of 8 x 10(6) to 10 x 10(6) for proteinase activity and 18 x 10(6) to 22 x 10(6) for lactose metabolism.  相似文献   

2.
Present evidence indicates that lactose metabolism in group N streptococci is linked to plasmid deoxyribonucleic acid. Lactose-positive (Lac+) Streptococcus lactis and lactose-negative (Lac-) derivatives were examined for their resistance to various inorganic ions. Lac+ S. lactis strains ML3, M18, and C2 were found more resistant to arsenate (7.5- to 60.2-fold), arsenite (2.25- to 3.0-fold), and chromate (6.6- to 9.4-fold), but more sensitive to copper (10.0- to 13.3-fold) than their Lac- derivatives. These results suggested that genetic information for resistance and/or sensitivity to these ions resides on the "lactose plasmid." Kinetics of ultraviolet irradiation inactivation of transducing ability for lactose metabolism and arsenate resistance confirmed the plasmid location of the two markers. Lac+ transductants from S. lactis C2 received genetic determinants for resistance to arsenate, arsenite, and chromate but not for copper sensitivity. In this case, resistance markers were lost when the transductants became Lac- but the derivatives remained copper resistant. The resistant markers for arsenate and arsenite could not be identified as separate genetic loci, but chromate resistance and copper sensitivity markers were found to be independent genetic loci. The "lactose plasmid" from S. lactis C10 possessed the genetic loci for arsenate and arsenite resistance but not for chromate resistance or copper sensitivity.  相似文献   

3.
Streptococcus lactis subsp. diacetylactis strain WM4 transferred lactose-fermenting and bacteriocin-producing (Bac+) abilities to S. lactis LM2301, a lactose-negative, streptomycin-resistant (Lac- Strr), plasmid-cured derivative of S. lactis C2. Three types of transconjugants were obtained: Lac+ Bac+, Lac+ Bac-, and Lac-Bac+.S. diacetylactis WM4 possessed plasmids of 88, 33, 30, 5.5, 4.8, and 3.8 megadaltons (Mdal). In Lac+ Bac+ transconjugants, lactose-fermenting ability was linked to the 33-Mdal plasmid and bacteriocin-producing ability to the 88-Mdal plasmid. Curing the 33-Mdal plasmid from Lac+ Bac+ transconjugants resulted in loss of lactose-fermenting ability but not bacteriocin-producing ability (Lac- Bac+). These strains retained the 88-Mdal plasmid. Curing of both plasmids resulted in a Lac- Bac- phenotype. The Lac+ Bac- transconjugant phenotype was associated with a recombinant plasmid of 55 or 65 Mdal. When these transconjugants were used as donors in subsequent matings, the frequency of Lac transfer was about 2.0 X 10(-2) per recipient plated, whereas when Lac+ Bac+ transconjugants served as donors, the frequency of Lac transfer was about 2.0 X 10(-5) per recipient plated. Also, Lac- Bac+ transconjugants were found to contain the 88-Mdal plasmid. The data indicate that the ability of WM4 to produce bacteriocin is linked to an 88-Mdal conjugative plasmid and that lactose-fermenting ability resides on a 33-Mdal plasmid.  相似文献   

4.
K M Kamaly  E H Marth 《Cryobiology》1989,26(5):496-507
Two mutant lactose-negative (Lac-), proteinase-negative (Prt-) strains of lactic streptococci, Streptococcus lactis 25Sp and S. cremoris KHA2, and their parents, S. lactis C2 and S. cremoris KH Lac+ Prt+, were grown in a suitable medium with the pH maintained at 6.5 by addition of NH4OH. Cells were harvested by centrifugation, resuspended, and then heated sublethally at 54 or 69 degrees C for 15 sec. Cells also were frozen and stored for 1 week at -20 or -100 degrees C. Cell-free extracts of cells heated at 54 degrees C had more proteinase and aminopeptidase activities than did a similar extract of cells heated at 69 degrees C. The greatest enzyme activities occurred in the cell-free extracts prepared from cells frozen and stored at -100 degrees C. Specific activities of proteinase and dipeptidase generally decreased in extracts of freeze-shocked cells compared to those in extracts of untreated cells. Enzyme activity of extracts also decreased in the presence of 5% NaCl at pH 5.0. Cell-free extracts at pH values of 5 to 8 were heated at 69 degrees C for 1.5, or 10 min. Heating them for 10 min caused a loss of dipeptidase activity which was most pronounced at pH 5.0 and least pronounced at pH 7.0.  相似文献   

5.
Lactose- and proteinase-negative (Lac Prt) mutants of Streptococcus lactis C10, ML3, and M18 were isolated after treatment with ethidium bromide. The Lac Prt mutants of C10 were missing a 40-megadalton plasmid. A 33-megadalton plasmid was absent in the ML3 mutants, and the M18 variants lacked a 45-megadalton plasmid. The results suggest a linkage of these metabolic traits to the respective plasmids. The possible complexity of the interrelationship between lactose metabolism and proteinase activity is presented.  相似文献   

6.
Lactococcus lactis subsp. lactis bv. diacetylactis S50 produces a lactococcin A-like bacteriocin named bacteriocin S50, and cell envelope-associated PI-type proteinase activity. This strain harbours 3 small size plasmids: pS6 (6.3 kb), pS7a (7.31 kb), and pS7b (7.27 kb). Plasmid curing using a combination of novobiocin treatment (10 microg.mL-1) and sublethal temperature (40 degrees C) resulted in a very low yield (0.17%) of Prt-, Bac-, Bacs derivatives, which retained all 3 small size resident plasmids. Pulsed-field gel electrophoresis of DNA isolated from the strain S50 and cured derivatives in combination with restriction enzyme analysis and DNA-DNA hybridization revealed that S50 contains 2 additional large plasmids: pS140 (140 kb) and pS80 (80 kb). Conjugation experiments using strain S50 as a donor and various lactococcal recipients resulted in Prt+, Bac+, Bacr transconjugants. Analysis of these transconjugants strongly indicated that plasmid pS140 harbours the prt and bac genes encoding proteinase and bacteriocin production, and immunity to bacteriocin, since each Prt+, Bac+, Bacr tranconjugant contained pS140. Accordingly, none of the Prt-,Bac-, Bacs transconjugants contained this plasmid. pS140 was a self-transmissible conjugative plasmid regardless of the host lactococcal recipient used in the test. Frequency of conjugation of plasmid pS140 did not depend on either the donor or recipient strain.  相似文献   

7.
The stability of plasmids in Lactococcus lactis ssp. lactis strains C2 and ML3, and L. lactis ssp. cremoris strains ML1 and SC607, was investigated by extended incubation of bacterial cells in low nutrient media under acidic conditions. Strains were grown overnight (16-18 h) in skim milk and unbuffered medium (M17-) at 32 degrees C and subsequently held at that temperature for extended periods (greater than or equal to 96 h). Lac- variants were obtained from each strain in milk and (M17-) broth. The plasmid profiles of Lac- variants when compared with their parental Lac+ strains showed loss of one or more plasmid bands. None of the Lac- mutants showed loss of smaller plasmids (less than 5 MDa) indicating that smaller plasmids in lactococci are more stable under these conditions than larger plasmids (greater than 10 MDa). Concomitant loss of the Lac+ phenotype and plasmids by the method used in the present investigation may have application for isolating mutants devoid of one or more plasmids.  相似文献   

8.
The three enzymes of the D-tagatose 6-phosphate pathway (galactose 6-phosphate isomerase, D-tagatose 6-phosphate kinase, and tagatose 1,6-diphosphate aldolase) were absent in lactose-negative (Lac-) derivatives of Streptococcus lactis C10, H1, and 133 grown on galactose. The lactose phosphoenolpyruvate-dependent phosphotransferase system and phospho-beta-galactosidase activities were also absent in Lac- derivatives of strains H1 and 133 and were low (possibly absent) in C10 Lac-. In all three Lac- derivatives, low galactose phosphotransferase system activity was found. On galactose, Lac- derivatives grew more slowly (presumably using the Leloir pathway) than the wild-type strains and accumulated high intracellular concentrations of galactose 6-phosphate (up to 49 mM); no intracellular tagatose 1,6-diphosphate was detected. The data suggest that the Lac phenotype is plasmid linked in the three strains studied, with the evidence being more substantial for strain H1. A Lac- derivative of H1 contained a single plasmid (33 megadaltons) which was absent from the Lac- mutant. We suggest that the genes linked to the lactose plasmid in S. lactis are more numerous than previously envisaged, coding for all of the enzymes involved in lactose metabolism from initial transport to the formation of triose phosphates via the D-tagatose 6-phosphate pathway.  相似文献   

9.
Lac+ plasmid DNA from Streptococcus cremoris H2 was subcloned with an Escherichia coli vector on a 3.5-kilobase-pair PstI-AvaI fragment. Genetic analysis of the cloned DNA was possible because linear Lac+ DNA fragments were productive in the S. sanguis transformation system. Complementation of S. sanguis Lac-mutants showed that the 3.5-kilobase-pair fragment included the structural gene for 6-phospho-beta-D-galactosidase and either enzyme II-lac or factor III-lac of the lactose-specific phosphoenolpyruvate-dependent phosphotransferase system. Expression of the S. cremoris-like 40,000-dalton 6-phospho-beta-D-galactosidase in S. sanguis Lac+ transformants, rather than the 52,000-dalton wild-type S. sanguis enzyme, demonstrated the occurrence of gene replacement and not gene repair. The evidence supports chromosomal integration as the mechanism by which S. sanguis Lac- recipients are converted to a Lac+ phenotype after transformation with Lac+ DNA. Southern blot data suggest that the Lac+ DNA does not reside on a transposon, but that integration always occurs within a specific HincII fragment of the recipient chromosome. Hybridization experiments demonstrate homology between the S. cremoris Lac+ DNA and cellular DNA from Lac+ strains of Streptococcus lactis, S. mutans, S. faecalis, and S. sanguis.  相似文献   

10.
Some lactose-negative (Lac-) mutants of Streptococcus lactis C2 and ML3 exhibited development of very high level streptomycin resistance after incubation with subinhibitory concentrations of the drug for 18 to 22 h. These drug-resistant mutants showed no loss of resistance even after 6 months of subculturing in broth without any drug. The parental Lac+ strains did not show mutation to high-level streptomycin resistance. The Lac+ characteristic of the parental strain was conjugally transferred to Lac- derivatives of C2 and ML3, showing the ability to mutate to high-level resistance. When transconjugants were analyzed for this characteristic, they showed both mutable and nonmutable Lac+ types. The results suggested that genetic information for mutation to high-level streptomycin resistance in lactic streptococci resides on the chromosome, and its expression is affected by a plasmid. The plasmid profiles of strains C2, ML3, C2 Lac-, ML3 Lac-, and two kinds of transconjugants confirmed the presence of a plasmid of approximately 5.5 megadaltons in strains showing no mutation to high-level streptomycin resistance, while strains missing such a plasmid exhibited high-level streptomycin resistance after incubation with subinhibitory concentrations of the drug.  相似文献   

11.
Some lactose-negative (Lac-) mutants of Streptococcus lactis C2 and ML3 exhibited development of very high level streptomycin resistance after incubation with subinhibitory concentrations of the drug for 18 to 22 h. These drug-resistant mutants showed no loss of resistance even after 6 months of subculturing in broth without any drug. The parental Lac+ strains did not show mutation to high-level streptomycin resistance. The Lac+ characteristic of the parental strain was conjugally transferred to Lac- derivatives of C2 and ML3, showing the ability to mutate to high-level resistance. When transconjugants were analyzed for this characteristic, they showed both mutable and nonmutable Lac+ types. The results suggested that genetic information for mutation to high-level streptomycin resistance in lactic streptococci resides on the chromosome, and its expression is affected by a plasmid. The plasmid profiles of strains C2, ML3, C2 Lac-, ML3 Lac-, and two kinds of transconjugants confirmed the presence of a plasmid of approximately 5.5 megadaltons in strains showing no mutation to high-level streptomycin resistance, while strains missing such a plasmid exhibited high-level streptomycin resistance after incubation with subinhibitory concentrations of the drug.  相似文献   

12.
Extrachromosomal Elements in Group N Streptococci   总被引:19,自引:5,他引:14       下载免费PDF全文
The deoxyribonucleic acid (DNA) of Streptococcus lactis C2, S. cremoris B(1), and S. diacetilactis 18-16 was labeled by growing cells in Trypticase soy broth containing (3)H-labeled thymine. The cells were gently lysed with lysozyme, ethylenediaminetetraacetic acid, and sodium lauryl sulfate. The chromosomal DNA was separated from plasmid DNA by precipitation with 1.0 M sodium chloride. The existence of covalently closed circular DNA in the three organisms was shown by cesium chloride-ethidium bromide equilibrium density gradient centrifugation of the cleared lysate material. In an attempt to correlate the loss of lactose metabolism with the loss of plasmid DNA, lactose-negative mutants of these organisms were examined for the presence of extrachromosomal particles. Covalently closed circular DNA was detected in the lactose-negative mutants of S. lactis C2 and S. diacetilactis 18-16. In S. cremoris B(1), however, no covalently closed circular DNA was observed by using cesium chloride-ethidium bromide gradients. Electron micrographs of the satellite band material from S. lactis C2 and its lactose-negative mutant confirmed the presence of plasmid DNA. Three distinct plasmids having approximate molecular weights of 1.3 x 10(6), 2.1 x 10(6), and 5.1 x 10(6) were observed in both organisms.  相似文献   

13.
The consumption of amino acids and peptides was monitored during growth in milk of proteinase-positive (Prt+) and -negative (Prt-) strains of Lactococcus lactis. The Prt- strains showed monophasic exponential growth, while the Prt+ strains grew in two phases. The first growth phases of the Prt+ and Prt- strains were in same, and no hydrolysis of casein was observed. Also, the levels of consumption of amino acids and peptides in the Prt+ and Prt- strains were similar. At the end of this growth phase, not all free amino acids and peptides were used, indicating that the remaining free amino acids and peptides were unable to sustain growth. The consumption of free amino acids was very low (about 5 mg/liter), suggesting that these nitrogen sources play only a minor role in growth. Oligopeptide transport-deficient strains (Opp-) of L. lactis were unable to utilize oligopeptides and grew poorly in milk. However, a di- and tripeptide transport-deficient strain (DtpT-) grew exactly like the wild type (Opp+ Dtpt+) did. These observations indicate that oligopeptides represent the main nitrogen source for growth in milk during the first growth phase. In the second phase of growth of Prt+ strains, milk proteins are hydrolyzed to peptides by the proteinase. Several of the oligopeptides formed are taken up and hydrolyzed internally by peptidases to amino acids, several of which are subsequently released into the medium (see also E.R.S. Kunji, A. Hagting, C.J. De Vries, V. Juillard, A.J. Haandrikman, B. Poolman, and W.N. Konings, J. Biol. Chem. 270:1569-1574, 1995).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Lactose-negative (Lac-) mutants were isolated from a variant of Streptococcus lactis C2 in which the lactose plasmid had become integrated into the chromosome. These mutants retained their parental growth characteristics on galactose (Lac- Gal+). This is in contrast to the Lac- variants obtained when the lactose plasmid is lost from S. lactis, which results in a slower growth rate on galactose (Lac- Gal+). The Lac- Gal+ mutants were defective in [14C]thiomethyl-beta-D-galactopyranoside accumulation, suggesting a defect in the lactose phosphoenolpyruvate-dependent phosphotransferase system, but still possessed the ability to form galactose-1-phosphate and galactose-6-phosphate from galactose in a ratio similar to that observed from the parental strain. The Lac- Gald variant formed only galactose-1-phosphate. The results imply that galactose is not translocated via the lactose phosphoenolpyruvate-dependent phosphotransferase system, but rather by a specific galactose phosphoenolpyruvate-dependent phosphotransferase system for which the genetic locus is also found on the lactose plasmid in S. lactis.  相似文献   

15.
Restriction endonucleases and agarose gel electrophoresis were used to analyze plasmid pLM2001, which is required for lactose metabolism by Streptococcus lactis LM0232. The enzymes XhoI, SstI, BamHI, and KpnI each cleaved the plasmid into two fragments, whereas EcoRI and BglII cleaved the plasmid into seven and five fragments, respectively. Sizing of fragments and multiple digestions allowed construction of a composite restriction map. The KpnI fragments of pLM2001 were cloned into the KpnI cleavage site of the vector plasmid pDB101. A recombinant plasmid (pSH3) obtained from a lactose-fermenting, erythromycin-resistant (Lac+ Eryr) transformant of Streptococcus sanguis Challis was analyzed by enzyme digestion and agarose gel electrophoresis. Plasmid pSH3 contained 7 of the 11 KpnI-HindIII fragments from pLM2001 and 5 of the 7 fragments from pDB101. It was determined that a 23-kilobase (kb) KpnI-generated fragment from pLM2001 had been cloned into pDB101 with deletion of part of the vector plasmid. The recombinant plasmid could be transformed with high frequency into several Lac- strains of S. sanguis, conferring the ability to ferment lactose and erythromycin resistance. The presence of pSH3 allowed a strain deficient in Enzyme IIlac, Factor IIIlac, and phospho-beta-galactosidase of the lactose phosphoenolpyruvate-dependent phosphotransferase system to efficiently ferment lactose. Under conditions designed to maximize curing of plasmid DNA with acriflavin, no Lac- derivatives could be isolated from cells transformed with pSH3. Seven of the 40 Lac+ colonies isolated after 10 transfers in acriflavin were shown to be sensitive to erythromycin and did not appear to harbor plasmid DNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Restriction endonucleases and agarose gel electrophoresis were used to analyze plasmid pLM2001, which is required for lactose metabolism by Streptococcus lactis LM0232. The enzymes XhoI, SstI, BamHI, and KpnI each cleaved the plasmid into two fragments, whereas EcoRI and BglII cleaved the plasmid into seven and five fragments, respectively. Sizing of fragments and multiple digestions allowed construction of a composite restriction map. The KpnI fragments of pLM2001 were cloned into the KpnI cleavage site of the vector plasmid pDB101. A recombinant plasmid (pSH3) obtained from a lactose-fermenting, erythromycin-resistant (Lac+ Eryr) transformant of Streptococcus sanguis Challis was analyzed by enzyme digestion and agarose gel electrophoresis. Plasmid pSH3 contained 7 of the 11 KpnI-HindIII fragments from pLM2001 and 5 of the 7 fragments from pDB101. It was determined that a 23-kilobase (kb) KpnI-generated fragment from pLM2001 had been cloned into pDB101 with deletion of part of the vector plasmid. The recombinant plasmid could be transformed with high frequency into several Lac- strains of S. sanguis, conferring the ability to ferment lactose and erythromycin resistance. The presence of pSH3 allowed a strain deficient in Enzyme IIlac, Factor IIIlac, and phospho-beta-galactosidase of the lactose phosphoenolpyruvate-dependent phosphotransferase system to efficiently ferment lactose. Under conditions designed to maximize curing of plasmid DNA with acriflavin, no Lac- derivatives could be isolated from cells transformed with pSH3. Seven of the 40 Lac+ colonies isolated after 10 transfers in acriflavin were shown to be sensitive to erythromycin and did not appear to harbor plasmid DNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Streptococcus lactis plasmid DNA, which is required for the fermentation of lactose (plasmid pLM2001), and a potential streptococcal cloning vector plasmid (pDB101) which confers resistance to erythromycin were evaluated by transformation into Streptococcus sanguis Challis. Plasmid pLM2001 transformed lactose-negative (Lac-) mutants of S. sanguis with high efficiency and was capable of conferring lactose-metabolizing ability to a mutant deficient in Enzyme IIlac, Factor IIIlac, and phospho-beta-galactosidase of the lactose phosphoenolpyruvate-phosphotransferase system. Plasmid pDB101 was capable of high-efficiency transformation of S. sanguis to antibiotic resistance, and the plasmid could be readily isolated from transformed strains. However, when 20 pLM2001 Lac+ transformants were analyzed by a variety of techniques for the presence of plasmids, none could be detected. In addition, attempts to cure the Lac+ transformants by treatment with acriflavin were unsuccessful. Polyacrylamide gel electrophoresis was used to demonstrate that the transformants had acquired a phospho-beta-galactosidase characteristic of that normally produced by S. lactis and not S. sanguis. It is proposed that the genes required for lactose fermentation may have become stabilized in the transformants due to their integration into the host chromosome. The efficient transformation into and expression of pLM2001 and pDB101 genes in S. sanguis provides a model system which could allow the development of a system for cloning genes from dairy starter cultures into S. sanguis to examine factors affecting their expression and regulation.  相似文献   

18.
Streptococcus lactis plasmid DNA, which is required for the fermentation of lactose (plasmid pLM2001), and a potential streptococcal cloning vector plasmid (pDB101) which confers resistance to erythromycin were evaluated by transformation into Streptococcus sanguis Challis. Plasmid pLM2001 transformed lactose-negative (Lac-) mutants of S. sanguis with high efficiency and was capable of conferring lactose-metabolizing ability to a mutant deficient in Enzyme IIlac, Factor IIIlac, and phospho-beta-galactosidase of the lactose phosphoenolpyruvate-phosphotransferase system. Plasmid pDB101 was capable of high-efficiency transformation of S. sanguis to antibiotic resistance, and the plasmid could be readily isolated from transformed strains. However, when 20 pLM2001 Lac+ transformants were analyzed by a variety of techniques for the presence of plasmids, none could be detected. In addition, attempts to cure the Lac+ transformants by treatment with acriflavin were unsuccessful. Polyacrylamide gel electrophoresis was used to demonstrate that the transformants had acquired a phospho-beta-galactosidase characteristic of that normally produced by S. lactis and not S. sanguis. It is proposed that the genes required for lactose fermentation may have become stabilized in the transformants due to their integration into the host chromosome. The efficient transformation into and expression of pLM2001 and pDB101 genes in S. sanguis provides a model system which could allow the development of a system for cloning genes from dairy starter cultures into S. sanguis to examine factors affecting their expression and regulation.  相似文献   

19.
Streptococcus lactis ME2 exhibits at least three mechanisms which confer resistance to virulent bacteriophage. These include plasmid-induced interference with phage adsorption, host-controlled restriction and modification activities, and a heat-sensitive mechanism which suppresses development of virulent phage. Conjugal mating experiments were done with S. lactis ME2 to determine if phage-defence mechanisms present in this strain could be mobilized, associated with plasmid DNA elements and phenotypically characterized in transconjugants. Agar-surface matings of S. lactis ME2 with S. lactis LM0230 demonstrated that lactose-fermenting ability (Lac+) was transferred in a conjugation-like process at frequencies of 10(-6) per donor cell and was associated with a 40 MDal plasmid designated pTR1040. Resistance to nisin (Nisr) was acquired or lost simultaneously with Lac+, indicating that pTR1040 carried determinants for both phenotypes. Lac+ Nisr transconjugants that carried a 30 MDal plasmid (pTR2030) exhibited a heat-sensitive phage-defence mechanism (Hsp+) which limited the burst size and plaque size of phage c2 without altering the efficiency of plaquing (e.o.p.) or the level of adsorption. The ability of phage c2 to initiate plaquing at an e.o.p. of 1.0 indicated that DNA injection and early viral gene expression are not affected in the Hsp+ transconjugants. We suggest, therefore, that the Hsp+ phenotype may result from plasmid-induced abortive infection of phage dependent on the presence of pTR2030. Hsp+ transconjugants carrying pTR2030 also promoted high-frequency conjugal transfer of Lac+ Nisr associated with pTR1040 (greater than 10(-1) per donor cell). It was concluded that Hsp+ and determinants for conjugal transfer ability (Tra+) are located on pTR2030.  相似文献   

20.
A combination of plasmid curing and DNA-DNA hybridization data facilitated the identification of proteinase plasmids of 75 (pCI301) and 35 kilobases (pCI203) in the multi-plasmid-containing strains Lactococcus lactis subsp. lactis UC317 and L. lactis subsp. cremoris UC205, respectively. Both plasmids were transferred by conjugation to a plasmid-free background only after introduction of the conjugative streptococcal plasmid, pAMbeta1. All Prt transconjugants from matings involving either donor contained enlarged recombinant Prt plasmids. UC317-derived transconjugants were separable into different classes based on the presence of differently sized cointegrate plasmids and on segregation of the pCI301-derived Lac and Prt markers. All UC205-derived transconjugants harbored a single enlarged plasmid that was a cointegrate between pCI203 and pAMbeta1. The identification of prt genes on pCI301 and pCI203 derivatives was achieved by a combination of restriction enzyme and hybridization analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号