首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
CCAAT binding factors (CBFs) positively regulating the expression of the amdS gene (encoding acetamidase) and two penicillin biosynthesis genes (ipnA and aatA) have been previously found in Aspergillus nidulans. The factors were called AnCF and PENR1, respectively. Deletion of the hapC gene, encoding a protein with significant similarity to Hap3p of Saccharomyces cerevisiae, eliminated both AnCF and PENR1 binding activities. We now report the isolation of the genes hapB and hapE, which encode proteins with central regions of high similarity to Hap2p and Hap5p of S. cerevisiae and to the CBF-B and CBF-C proteins of mammals. An additional fungus-specific domain present in HapE was revealed by comparisons with the homologs from S. cerevisiae, Neurospora crassa, and Schizosaccharomyces pombe. The HapB, HapC, and HapE proteins have been shown to be necessary and sufficient for the formation of a CCAAT binding complex in vitro. Strains with deletions of each of the hapB, hapC, and hapE genes have identical phenotypes of slow growth, poor conidiation, and reduced expression of amdS. Furthermore, induction of amdS by omega amino acids, which is mediated by the AmdR pathway-specific activator, is abolished in the hap deletion mutants, as is growth on γ-aminobutyric acid as a sole nitrogen or carbon source. AmdR and AnCF bind to overlapping sites in the promoters of the amdS and gatA genes. It is known that AnCF can bind independently of AmdR. We suggest that AnCF binding is required for AmdR binding in vivo.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
Using AnCP (Aspergillus nidulans CCAAT-binding protein) as a CCAAT-specific binding factor model, the possibility that one factor is able to recognize CCAAT sequences in several different genes in A.?nidulans was examined. DNase I protection analysis showed that AnCP specifically bound to CCAAT sequence-containing regions comprising 21 to 36 bp of the taa, amdS and gatA genes. Furthermore, replacement of the CCAAT sequence with CGTAA was found to abolish the binding of AnCP and to have an inhibitory effect on taa promoter activity. This clearly demonstrates a positive function of the CCAAT element. However, amylase was induced by starch and repressed by glucose in a CCAAT-box disruptant, as in wild-type cells.  相似文献   

14.
15.
16.
17.
We have investigated the regulation by N-acetyl-glucosamine of the nag1 gene of the mycoparasitic biocontrol fungus Trichoderma atroviride (= T. harzianum P1), which encodes a 73-kDa N-acetyl-beta-D-glucosaminidase. The use of translational fusions revealed that a 290-bp fragment of the 5' regulatory region of nag1 is sufficient to confer inducibility on the Aspergillus niger goxA gene. The region between positions -150 and -290, upstream of the nag1 coding region, was investigated using in vivo methylation protection analysis and electrophoretic mobility shift assays (EMSAs). Two neighbouring regions that interacted with regulatory proteins were identified, and bases essential for these interactions were determined in vitro. These data reveal protein binding to a CCCCT element at -240, a CCAGN(13)CTGG motif at -284, and a CCAAT-box which is present in the spacer of the latter motif. Evidence for the binding of a Hap2/3/5 complex to this CCAAT motif is presented. Protein binding to all three motifs was constitutive, and no differences were observed between induced and non-induced cultures. Mutation of either the CCAGN(13)CTGG or the AGGGG motif resulted in loss of inducibility of nag1 expression by N-acetyl-D-glucosamine in vivo.  相似文献   

18.
The heterotrimeric CCAAT-binding complex is evolutionarily conserved in eukaryotic organisms, including fungi, plants and mammals. In the filamentous fungus Aspergillus nidulans, the corresponding complex was designated AnCF (A.nidulans CCAAT-binding factor). AnCF consists of the subunits HapB, HapC and HapE. All three subunits are necessary for DNA binding. HapB contains two putative nuclear localisation signal sequences (NLSs) designated NLS1 and NLS2. Previously, it was shown that only NLS2 was required for nuclear localisation of HapB. Furthermore, HapC and HapE are transported to the nucleus only in complex with HapB via a piggy back mechanism. Here, by using various GFP constructs and by establishing a novel marker gene for transformation of A.nidulans, i.e. the pabaA gene encoding p-aminobenzoic acid synthase, it was shown that the HapB homologous proteins of both Saccharomyces cerevisiae (Hap2p) and human (NF-YA) use an NLS homologous to HapB NLS1 for nuclear localisation in S.cerevisiae. Interestingly, for A.nidulans HapB, NLS1 was sufficient for nuclear localisation in S.cerevisiae. In A.nidulans, HapB NLS1 was also functional when present in a different protein context. However, in A.nidulans, both S.cerevisiae Hap2p and human NF-YA entered the nucleus only when HapB NLS2 was present in the respective proteins. In that case, both proteins Hap2p and NF-YA complemented, at least in part, the hap phenotype of A.nidulans with respect to lack of growth on acetamide. Similarly, A.nidulans HapB and human NF-YA complemented a hap2 mutant of S.cerevisiae. In summary, HapB, Hap2p and NF-YA are interchangeable. Because the A.nidulans hapB mutant was complemented, at least in part, by both the human NF-YA and S.cerevisiae Hap2p this finding suggests that the piggy-back mechanism of nuclear transport found for A.nidulans is conserved in yeast and human.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号