首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Several phylogenetic approaches have been developed to estimate species trees from collections of gene trees. However, maximum likelihood approaches for estimating species trees under the coalescent model are limited. Although the likelihood of a species tree under the multispecies coalescent model has already been derived by Rannala and Yang, it can be shown that the maximum likelihood estimate (MLE) of the species tree (topology, branch lengths, and population sizes) from gene trees under this formula does not exist. In this paper, we develop a pseudo-likelihood function of the species tree to obtain maximum pseudo-likelihood estimates (MPE) of species trees, with branch lengths of the species tree in coalescent units.  相似文献   

2.
We propose a model based approach to use multiple gene trees to estimate the species tree. The coalescent process requires that gene divergences occur earlier than species divergences when there is any polymorphism in the ancestral species. Under this scenario, speciation times are restricted to be smaller than the corresponding gene split times. The maximum tree (MT) is the tree with the largest possible speciation times in the space of species trees restricted by available gene trees. If all populations have the same population size, the MT is the maximum likelihood estimate of the species tree. It can be shown the MT is a consistent estimator of the species tree even when the MT is built upon the estimates of the true gene trees if the gene tree estimates are statistically consistent. The MT converges in probability to the true species tree at an exponential rate.  相似文献   

3.
Summary A maximum likelihood method for inferring evolutionary trees from DNA sequence data was developed by Felsenstein (1981). In evaluating the extent to which the maximum likelihood tree is a significantly better representation of the true tree, it is important to estimate the variance of the difference between log likelihood of different tree topologies. Bootstrap resampling can be used for this purpose (Hasegawa et al. 1988; Hasegawa and Kishino 1989), but it imposes a great computation burden. To overcome this difficulty, we developed a new method for estimating the variance by expressing it explicitly.The method was applied to DNA sequence data from primates in order to evaluate the maximum likelihood branching order among Hominoidea. It was shown that, although the orangutan is convincingly placed as an outgroup of a human and African apes clade, the branching order among human, chimpanzee, and gorilla cannot be determined confidently from the DNA sequence data presently available when the evolutionary rate constancy is not assumed.  相似文献   

4.
A model for the analysis of growth data from designed experiments   总被引:1,自引:0,他引:1  
A model for growth data from designed experiments is presented which extends the stochastic differential equation of Sandland and McGilchrist (1979, Biometrics 35, 255-272). Residual maximum likelihood (REML) is used to estimate the parameters of the model. The model is easily extended to incomplete data and is shown to overcome some of the practical difficulties encountered with the profile model. The procedure is applied to data from experiments on pigs and sheep.  相似文献   

5.
Quantifying epidemiological dynamics is crucial for understanding and forecasting the spread of an epidemic. The coalescent and the birth-death model are used interchangeably to infer epidemiological parameters from the genealogical relationships of the pathogen population under study, which in turn are inferred from the pathogen genetic sequencing data. To compare the performance of these widely applied models, we performed a simulation study. We simulated phylogenetic trees under the constant rate birth-death model and the coalescent model with a deterministic exponentially growing infected population. For each tree, we re-estimated the epidemiological parameters using both a birth-death and a coalescent based method, implemented as an MCMC procedure in BEAST v2.0. In our analyses that estimate the growth rate of an epidemic based on simulated birth-death trees, the point estimates such as the maximum a posteriori/maximum likelihood estimates are not very different. However, the estimates of uncertainty are very different. The birth-death model had a higher coverage than the coalescent model, i.e. contained the true value in the highest posterior density (HPD) interval more often (2–13% vs. 31–75% error). The coverage of the coalescent decreases with decreasing basic reproductive ratio and increasing sampling probability of infecteds. We hypothesize that the biases in the coalescent are due to the assumption of deterministic rather than stochastic population size changes. Both methods performed reasonably well when analyzing trees simulated under the coalescent. The methods can also identify other key epidemiological parameters as long as one of the parameters is fixed to its true value. In summary, when using genetic data to estimate epidemic dynamics, our results suggest that the birth-death method will be less sensitive to population fluctuations of early outbreaks than the coalescent method that assumes a deterministic exponentially growing infected population.  相似文献   

6.
M Hühn 《Génome》2000,43(5):853-856
Some relationships between the estimates of recombination fraction in two-point linkage analysis obtained by maximum likelihood, minimum chi-square, and general least squares are derived. These theoretical results are based on an approximation for the multinomial distribution. Applications (theoretical and experimental) with RFLP (restriction fragment length polymorphism) markers for a segregating F2 population are given. The minimum chi-square estimate is slightly larger than the maximum likelihood estimate. For applications, however, both estimates must be considered to be approximately equal. The least squares estimates are slightly different (larger or smaller) from these estimates.  相似文献   

7.
What does the posterior probability of a phylogenetic tree mean?This simulation study shows that Bayesian posterior probabilities have the meaning that is typically ascribed to them; the posterior probability of a tree is the probability that the tree is correct, assuming that the model is correct. At the same time, the Bayesian method can be sensitive to model misspecification, and the sensitivity of the Bayesian method appears to be greater than the sensitivity of the nonparametric bootstrap method (using maximum likelihood to estimate trees). Although the estimates of phylogeny obtained by use of the method of maximum likelihood or the Bayesian method are likely to be similar, the assessment of the uncertainty of inferred trees via either bootstrapping (for maximum likelihood estimates) or posterior probabilities (for Bayesian estimates) is not likely to be the same. We suggest that the Bayesian method be implemented with the most complex models of those currently available, as this should reduce the chance that the method will concentrate too much probability on too few trees.  相似文献   

8.
Statistical Analysis of Crossover Interference Using the Chi-Square Model   总被引:10,自引:3,他引:7  
H. Zhao  T. P. Speed    M. S. McPeek 《Genetics》1995,139(2):1045-1056
  相似文献   

9.
Summary The efficiency of obtaining the correct tree by the maximum likelihood method (Felsenstein 1981) for inferring trees from DNA sequence data was compared with trees obtained by distance methods. It was shown that the maximum likelihood method is superior to distance methods in the efficiency particularly when the evolutionary rate differs among lineages.  相似文献   

10.
It is known that under neutral mutation at a known mutation rate a sample of nucleotide sequences, within which there is assumed to be no recombination, allows estimation of the effective size of an isolated population. This paper investigates the case of very long sequences, where each pair of sequences allows a precise estimate of the divergence time of those two gene copies. The average divergence time of all pairs of copies estimates twice the effective population number and an estimate can also be derived from the number of segregating sites. One can alternatively estimate the genealogy of the copies. This paper shows how a maximum likelihood estimate of the effective population number can be derived from such a genealogical tree. The pairwise and the segregating sites estimates are shown to be much less efficient than this maximum likelihood estimate, and this is verified by computer simulation. The result implies that there is much to gain by explicitly taking the tree structure of these genealogies into account.  相似文献   

11.
J Nam  J J Gart 《Biometrics》1985,41(2):455-466
The general method of the discrepancy or heterogeneity chi-square is applied to ABO-like data in which there are no observed double blanks in either the disease or the control group. When the recessive gene frequency is assumed zero, this method leads to an approximate chi-square test identical to that suggested by Smouse and Williams (1982, Biometrics 38, 757-768). When this assumption is relaxed, there arise two cases which are determined by whether the maximum likelihood estimate of this frequency is zero or not. It is shown that the value of the simple score statistic of Gart and Nam (1984, Biometrics 40, 887-894) discriminates between the two cases. The various omnibus test statistics for comparing groups are shown to differ little in several practical examples. However, under the more general assumption the appropriate degrees of freedom is one more than the number previously suggested.  相似文献   

12.
  1. When we collect the growth curves of many individuals, orderly variation in the curves is often observed rather than a completely random mixture of various curves. Small individuals may exhibit similar growth curves, but the curves differ from those of large individuals, whereby the curves gradually vary from small to large individuals. It has been recognized that after standardization with the asymptotes, if all the growth curves are the same (anamorphic growth curve set), the growth curve sets can be estimated using nonchronological data; otherwise, that is, if the growth curves are not identical after standardization with the asymptotes (polymorphic growth curve set), this estimation is not feasible. However, because a given set of growth curves determines the variation in the observed data, it may be possible to estimate polymorphic growth curve sets using nonchronological data.
  2. In this study, we developed an estimation method by deriving the likelihood function for polymorphic growth curve sets. The method involves simple maximum likelihood estimation. The weighted nonlinear regression and least‐squares method after the log‐transform of the anamorphic growth curve sets were included as special cases.
  3. The growth curve sets of the height of cypress (Chamaecyparis obtusa) and larch (Larix kaempferi) trees were estimated. With the model selection process using the AIC and likelihood ratio test, the growth curve set for cypress was found to be polymorphic, whereas that for larch was found to be anamorphic. Improved fitting using the polymorphic model for cypress is due to resolving underdispersion (less dispersion in real data than model prediction).
  4. The likelihood function for model estimation depends not only on the distribution type of asymptotes, but the definition of the growth curve set as well. Consideration of these factors may be necessary, even if environmental explanatory variables and random effects are introduced.
  相似文献   

13.
The consequences of ignoring censored data on the estimation of mean microorganism counts using agglutination assays or certain classes of enzyme linked immuno‐sorbent assays are examined. It is shown that both overestimation and underestimation of the maximum likelihood estimate of the mean number of microorganisms per unit volume may occur if censored data are ignored. It is also shown that the asymptotic variance of the maximum likelihood estimate may either be increased or decreased if censored data are ignored. Data from a trial of vaccines against pig pneumonia and data from an equine health certification process are used as illustrations.  相似文献   

14.
There has been considerable interest in the problem of making maximum likelihood (ML) evolutionary trees which allow insertions and deletions. This problem is partly one of formulation: how does one define a probabilistic model for such trees which treats insertion and deletion in a biologically plausible manner? A possible answer to this question is proposed here by extending the concept of a hidden Markov model (HMM) to evolutionary trees. The model, called a tree-HMM, allows what may be loosely regarded as learnable affine-type gap penalties for alignments. These penalties are expressed in HMMs as probabilities of transitions between states. In the tree-HMM, this idea is given an evolutionary embodiment by defining trees of transitions. Just as the probability of a tree composed of ungapped sequences is computed, by Felsenstein's method, using matrices representing the probabilities of substitutions of residues along the edges of the tree, so the probabilities in a tree-HMM are computed by substitution matrices for both residues and transitions. How to define these matrices by a ML procedure using an algorithm that learns from a database of protein sequences is shown here. Given these matrices, one can define a tree-HMM likelihood for a set of sequences, assuming a particular tree topology and an alignment of the sequences to the model. If one could efficiently find the alignment which maximizes (or comes close to maximizing) this likelihood, then one could search for the optimal tree topology for the sequences. An alignment algorithm is defined here which, given a particular tree topology, is guaranteed to increase the likelihood of the model. Unfortunately, it fails to find global optima for realistic sequence sets. Thus further research is needed to turn the tree-HMM into a practical phylogenetic tool.  相似文献   

15.
Heinze G  Schemper M 《Biometrics》2001,57(1):114-119
The phenomenon of monotone likelihood is observed in the fitting process of a Cox model if the likelihood converges to a finite value while at least one parameter estimate diverges to +/- infinity. Monotone likelihood primarily occurs in small samples with substantial censoring of survival times and several highly predictive covariates. Previous options to deal with monotone likelihood have been unsatisfactory. The solution we suggest is an adaptation of a procedure by Firth (1993, Biometrika 80, 27-38) originally developed to reduce the bias of maximum likelihood estimates. This procedure produces finite parameter estimates by means of penalized maximum likelihood estimation. Corresponding Wald-type tests and confidence intervals are available, but it is shown that penalized likelihood ratio tests and profile penalized likelihood confidence intervals are often preferable. An empirical study of the suggested procedures confirms satisfactory performance of both estimation and inference. The advantage of the procedure over previous options of analysis is finally exemplified in the analysis of a breast cancer study.  相似文献   

16.
It is natural to want to relax the assumption of homoscedasticity and Gaussian error in ANOVA models. For a two-way ANOVA model with 2 x k cells, one can derive tests of main effect for the factor with two levels (referred to as group) without assuming homoscedasticity or Gaussian error. Empirical likelihood can be used to derive testing procedures. An approximate empirical likelihood ratio test (AELRT) is derived for the test of group main effect. To approximate the distributions of the test statistics under the null hypothesis, simulation from the approximate empirical maximum likelihood estimate (AEMLE) restricted by the null hypothesis is used. The homoscedastic ANOVA F -test and a Box-type approximation to the distribution of the heteroscedastic ANOVA F -test are compared to the AELRT in level and power. The AELRT procedure is shown by simulation to have appropriate type I error control (although possibly conservative) when the distribution of the test statistics are approximated by simulation from the constrained AEMLE. The methodology is motivated and illustrated by an analysis of folate levels in the blood among two alcohol intake groups while accounting for gender.  相似文献   

17.
Abstract This study is concerned with statistical methods used for the analysis of comparative data (in which observations are not expected to be independent because they are sampled across phylogenetically related species). The phylogenetically independent contrasts (PIC), phylogenetic generalized least‐squares (PGLS), and phylogenetic autocorrelation (PA) methods are compared. Although the independent contrasts are not orthogonal, they are independent if the data conform to the Brownian motion model of evolution on which they are based. It is shown that uncentered correlations and regressions through the origin using the PIC method are identical to those obtained using PGLS with an intercept included in the model. The PIC method is a special case of PGLS. Corrected standard errors are given for estimates of the ancestral states based on the PGLS approach. The treatment of trees with hard polytomies is discussed and is shown to be an algorithmic rather than a statistical problem. Some of the relationships among the methods are shown graphically using the multivariate space in which variables are represented as vectors with respect to OTUs used as coordinate axes. The maximum‐likelihood estimate of the autoregressive parameter, ρ, has not been computed correctly in previous studies (an appendix with MATLAB code provides a corrected algorithm). The importance of the eigenvalues and eigenvectors of the connection matrix, W, for the distribution of ρ is discussed. The PA method is shown to have several problems that limit its usefulness in comparative studies. Although the PA method is a generalized least‐squares procedure, it cannot be made equivalent to the PGLS method using a phylogenetic model.  相似文献   

18.
Maximum likelihood supertrees   总被引:2,自引:0,他引:2  
  相似文献   

19.
M. K. Kuhner  J. Yamato    J. Felsenstein 《Genetics》1995,140(4):1421-1430
We present a new way to make a maximum likelihood estimate of the parameter 4N(e)μ (effective population size times mutation rate per site, or θ) based on a population sample of molecular sequences. We use a Metropolis-Hastings Markov chain Monte Carlo method to sample genealogies in proportion to the product of their likelihood with respect to the data and their prior probability with respect to a coalescent distribution. A specific value of θ must be chosen to generate the coalescent distribution, but the resulting trees can be used to evaluate the likelihood at other values of θ, generating a likelihood curve. This procedure concentrates sampling on those genealogies that contribute most of the likelihood, allowing estimation of meaningful likelihood curves based on relatively small samples. The method can potentially be extended to cases involving varying population size, recombination, and migration.  相似文献   

20.
Presence-only data and the em algorithm   总被引:1,自引:0,他引:1  
Summary .  In ecological modeling of the habitat of a species, it can be prohibitively expensive to determine species absence. Presence-only data consist of a sample of locations with observed presences and a separate group of locations sampled from the full landscape, with unknown presences. We propose an expectation–maximization algorithm to estimate the underlying presence–absence logistic model for presence-only data. This algorithm can be used with any off-the-shelf logistic model. For models with stepwise fitting procedures, such as boosted trees, the fitting process can be accelerated by interleaving expectation steps within the procedure. Preliminary analyses based on sampling from presence–absence records of fish in New Zealand rivers illustrate that this new procedure can reduce both deviance and the shrinkage of marginal effect estimates that occur in the naive model often used in practice. Finally, it is shown that the population prevalence of a species is only identifiable when there is some unrealistic constraint on the structure of the logistic model. In practice, it is strongly recommended that an estimate of population prevalence be provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号