首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Further studies have confirmed our earlier observations that in the presence of EDTA, degradation of phage PBS2 [3H]uracil-labeled DNA is effected by an N-glycosidase activity in extracts of Bacillus subtilis that removes free uracil from DNA. In addition, such extracts contain a nuclease activity that attacks PBS2 DNA in the presence of CaCl2. The nuclease activity is not observed under conditions that inactivate N-glycosidase activity but does attack DNA that has been preincubated to remove uracil by N-glycosidase action. We therefore postulate that the nuclease requires N-glycosidase action to generate substrate for its activity, i.e., the nuclease appears to attack depyrimidinated sites rather than uracil sites in phage PBS2 DNA.  相似文献   

2.
When Bacillus subtilis is infected by the uracil-containing DNA phage PBS2, the parental DNA labeled with radioactive uracil and cytosine remains acid insoluble. If the synthesis of the phage-induced uracil-DNA N-glycosidase inhibitor is prevented, the parental DNA is completely degraded to acid-soluble products beginning at about 6 min after infection. The host N-glycosidase probably initiates the degradation pathway, with nucleases being responsible for the remaining degradation of the DNA.  相似文献   

3.
The deoxyribonucleic acid (DNA) of Bacillus subtilis phage PBS2 has been confirmed to contain uracil instead of thymine. PBS2 phage infection of wild-type cells or DNA polymerase-deficient cells results in an increase in the specific activity of DNA polymerase. This induction of DNA polymerase activity is prevented by actinomycin D and chloramphenicol. In contrast to the major B. subtilis DNA polymerase, which prefers deoxythymidine triphosphate (dTTP) to deoxyuridine triphosphate (dUTP), the DNA polymerase in crude extracts of PBS2-infected cells is equally active whether dTTP or dUTP is employed. This phage-induced polymerase may be responsible for the synthesis of uracil-containing DNA during PBS2 phage infection.  相似文献   

4.
Degradation of uracil-containing DNA by Bacillus subtilis extracts and its inhibition after infection by the uracil-containing DNA phage PBS2 have been investigated to resolve differences between the published reports of Tomita and Takahashi (1975) and Friedberg et al. (1975, 1976). The product of hydrolysis of PBS2 DNA, tritium labeled in its uracil and cytosine residues, is solely uracil and not deoxyuridine. The degrading activity is completely inhibited within 7 min after PBS2 infection, before any other known PBS2-induced protein is detectable. The production of the PBS2 inhibitor (a small, heat-stable protein) continues until 10 to 20 min postinfection.  相似文献   

5.
A uracil specific DNA N-glycosidase activity has been partially purified from crude extracts of Bacillus subtilis. The enzyme has a molecular weight of approximately 24 000 with no subunit structure. It has no requirement for any known cofactors but is inhibited in the presence of Co2+, Fe2+, or Zn2+. The enzyme is specific for uracil in single- and double-stranded deoxyribonucleopolymers and does not release free uracil from RNA or from poly(rU):poly(dA). In addition, neither Udr, dUMP, nor dUTP is recognized as substrate. The enzyme will attack small poly(dU) oligomers but the minimum size recognized as substrate is (pU)4. This enzyme may have a role in the repair (by base excision) or uracil in DNA arising either by incorporation during DNA synthesis or by deamination of cytosine in DNA.  相似文献   

6.
A small endodeoxyribonuclease )2.3 S) that is active on single-stranded DNA has been extensively purified from Escherichia coli so as to be free of other known DNases. It has an alkaline pH optimum (9.5), requires Mg2+, and makes 3'-hydroxy and 5'-phosphate termini. The nuclease nicks duplex DNA, particularly if treated with OsO4, irradiated with ultraviolet light, or exposed to pH 5. The uracil-containing duplex DNA from the Bacillus subtilis phage PBS-2 is an especially good substrate; it is made acid-soluble by levels of the enzyme which fail to produce any acid-soluble material in other single-stranded or duplex DNAs. Neither RNA nor RNA-DNA hybrid are degraded by the enzyme. The enzyme specificity suggests that it might act at abnormal regions in DNA, so that its in vivo function could be to initiate an excision repair sequence. Its high activity on uracil-containing DNA could imply that the enzyme provides an alternative mechanism for excising uracil residues from DNA to the pathway utilizing uracil-DNA N-glycosidase. We suggest that this enzyme be designated as endonuclease V of E. coli.  相似文献   

7.
An activity which releases free uracil from bacteriophage PBS1 DNA has been purified over 10,000 fold from extracts of Saccharomyces cerevisiae. The enzyme is active on both native and denatured PBS1 DNA and is active in the absence of divalent cation, and in the presence of 1 mM EDTA. The enzyme has a negative molecular weight of 27,800 as estimated by glycerol gradient centrifugation and gel filtration. Enzyme activity has been recovered after denaturation in SDS and electrophoresis in an SDS polyacrylamide gel. This analysis suggests that the enzyme consists of a single polypeptide chain of about 27,000 daltons. Normal levels of uracil-DNA glycosylase activity were found in partially purified extracts of the nitrous-acid sensitive rad18-2 mutant of yeast.  相似文献   

8.
The DNA polymerase induced by Bacillus subtilis bacteriophage PBS2 (whose DNA contains uracil instead of thymine) has been purified and characterized for its specificity. The enzyme requires a high ionic strength for optimal stability and activity and is sensitive to various anions and to sulfhdryl reagents. Both dUTP and dTTP are incorporated efficiently as substrates and are competitive inhibitors at the same active site. The apparent Km and Ki values are about 6 micrometers for dTTP and 15 micrometers for dUTP, when denatured, uracil-containing B. subtilis or salmon sperm DNA (3.9 micrometers for dUTP and 2.6 micrometers for dTTP). The PBS2 enzyme works best on denatured DNA, on double-stranded DNA activated by DNase to produce gaps, or on primed homopolymeric DNA. Using denatured DNA preparations of average molecular weight 6.2 million, the apparent Km values are 270 micrograms/ml for B. subtilis DNA and 360 micrograms/ml for PBS2 DNA; the Vmax value for denatured PBS2 DNA containing uracil is 7-fold greater than that for denatured B. subtilis DNA containing thymine. However, lower molecular weight DNAs have 10-fold lower apparent Km values and show similar Vmax values for both B. subtilis and PBS2 DNAs. Thus, the PBS2 phage-induced DNA polymerase (which likely replicates only uracil-containing phage DNA using dUTP in vivo) has little selectivity for uracil- versus thymine-containing deoxyribonucleotides or DNA in vitro.  相似文献   

9.
Uracil-DNA glycosylase, which acts specifically on uracil-containing DNA, was purified 250-fold from an extract of Escherichia coli 1100. The enzyme releases free uracil from DNA, producing alkali-labile apyrimidinic sites in the DNA. The enzyme is active on both native and heat-denatured DNA of phage PBS1, which contains uracil in place of thymine. piX174 DNA which had been treated with bisulfite and then at alkaline pH was susceptible to the action of uracil-DNA glycosylase. Since DNA treated with bisulfite alone was less susceptible to the enzyme, it is likely that the enzyme recognizes deaminated cytosine, namely uracil, but not bisulfite adducts of uracil and cytosine in the treated DNA. DNA treated with nitrite or hydroxylamine was not attacked by the enzyme. Enzyme activity acting on bisulfite-treated DNA was absent from an extract of E. coli mutant BD10 (ung). The mutant exhibited higher sensitivity to bisulfite than did the wild-type strain and was unable to reactivate phage T1 pre-exposed to bisulfite and weak alkali.  相似文献   

10.
Effects of 5-azacytosine in DNA on enzymic uracil excision   总被引:1,自引:0,他引:1  
PBS-2 phage DNA, which contains uracil in place of thymine, was used as substrate for both purified B. subtilis uracil-DNA glycosylase and a crude extract from M. luteus. Addition of [3H]5-azacytidine to the medium after phage infection resulted in substitution of 1.2% azacytosine for cytosine in DNA. Substrate DNA was also labeled with [14C]uracil. Neither enzyme preparation released tritiated bases from DNA. Analysis by S1 nuclease digestion show no increase in single-strandedness of the modified DNA. Enzymic release of uracil by the M. luteus extract was reduced by about 50% from the substituted substrate. By contrast, the rate of uracil excision by the purified enzyme was unaffected by the presence of DNA 5-azacytosine.  相似文献   

11.
The gene that encodes thermostable glucose isomerase in Clostridium thermosulfurogenes was cloned by complementation of glucose isomerase activity in a xylA mutant of Escherichia coli. A new assay method for thermostable glucose isomerase activity on agar plates, using a top agar mixture containing fructose, glucose oxidase, peroxidase, and benzidine, was developed. One positive clone, carrying plasmid pCGI38, was isolated from a cosmid library of C. thermosulfurogenes DNA. The plasmid was further subcloned into a Bacillus cloning vector, pTB523, to generate shuttle plasmid pMLG1, which is able to replicate in both E. coli and Bacillus subtilis. Expression of the thermostable glucose isomerase gene in both species was constitutive, whereas synthesis of the enzyme in C. thermosulfurogenes was inducible by D-xylose. B. subtilis and E. coli produced higher levels of thermostable glucose isomerase (1.54 and 0.46 U/mg of protein, respectively) than did C. thermosulfurogenes (0.29 U/mg of protein). The glucose isomerases synthesized in E. coli and B. subtilis were purified to homogeneity and displayed properties (subunit Mr, 50,000; tetrameric molecular structure; thermostability; metal ion requirement; and apparent temperature and pH optima) identical to those of the native enzyme purified from C. thermosulfurogenes. Simple heat treatment of crude extracts from E. coli and B. subtilis cells carrying the recombinant plasmid at 85 degrees C for 15 min generated 80% pure glucose isomerase. The maximum conversion yield of glucose (35%, wt/wt) to fructose with the thermostable glucose isomerase (10.8 U/g of dry substrate) was 52% at pH 7.0 and 70 degrees C.  相似文献   

12.
The gene that encodes thermostable glucose isomerase in Clostridium thermosulfurogenes was cloned by complementation of glucose isomerase activity in a xylA mutant of Escherichia coli. A new assay method for thermostable glucose isomerase activity on agar plates, using a top agar mixture containing fructose, glucose oxidase, peroxidase, and benzidine, was developed. One positive clone, carrying plasmid pCGI38, was isolated from a cosmid library of C. thermosulfurogenes DNA. The plasmid was further subcloned into a Bacillus cloning vector, pTB523, to generate shuttle plasmid pMLG1, which is able to replicate in both E. coli and Bacillus subtilis. Expression of the thermostable glucose isomerase gene in both species was constitutive, whereas synthesis of the enzyme in C. thermosulfurogenes was inducible by D-xylose. B. subtilis and E. coli produced higher levels of thermostable glucose isomerase (1.54 and 0.46 U/mg of protein, respectively) than did C. thermosulfurogenes (0.29 U/mg of protein). The glucose isomerases synthesized in E. coli and B. subtilis were purified to homogeneity and displayed properties (subunit Mr, 50,000; tetrameric molecular structure; thermostability; metal ion requirement; and apparent temperature and pH optima) identical to those of the native enzyme purified from C. thermosulfurogenes. Simple heat treatment of crude extracts from E. coli and B. subtilis cells carrying the recombinant plasmid at 85 degrees C for 15 min generated 80% pure glucose isomerase. The maximum conversion yield of glucose (35%, wt/wt) to fructose with the thermostable glucose isomerase (10.8 U/g of dry substrate) was 52% at pH 7.0 and 70 degrees C.  相似文献   

13.
Uracil-DNA glycosylase of thermophilic Thermothrix thiopara.   总被引:1,自引:1,他引:0  
An activity which released free uracil from dUMP-containing DNA was purified approximately 1,700-fold from extracts of Thermothrix thiopara, the first such activity to be isolated from extremely thermophilic bacteria. The enzyme appeared homogeneous, according to the results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It had a native molecular weight of 26,000 and existed as a monomer protein in water solution. The enzyme had an optimal activity at 70 degrees C, between pH 7.5 and 9.0, and in the presence of 0.2% Triton X-100. It had no cofactor requirement and was not inhibited by EDTA, but it was sensitive to N-ethylmaleimide. The purified enzyme did not contain any nuclease that acted on native or depurinated DNA. The Arrhenius activation energy was 76 kJ/mol between 30 and 50 degrees C and 11 kJ/mol between 50 and 70 degrees C. The rate of heat inactivation of the enzyme followed first-order kinetics with a half-life of 2 min at 70 degrees C. Ammonium sulfate and bovine serum albumin protected the enzyme from heat inactivation. One T. thiopara cell contains enough activity to release about 2 X 10(8) uracil residues from DNA during one generation time at 70 degrees C.  相似文献   

14.
Thymidine is poorly incorporated into deoxyribonucleic acid (DNA) of Escherichia coli. Its incorporation is greatly increased by uridine, which acts in two ways. Primarily, uridine competitively inhibits thymidine phosphorylase (E.C.2.4.4), and thereby prevents the degradation of thymidine to thymine which is not incorporated into normally growing E. coli. Uridine also inhibits induction of the enzyme by thymidine. It prevents the actual inducer, probably a deoxyribose phosphate, from being formed rather than competing for a site on the repressor. The inhibition of thymidine phosphorylase by uridine also accounts for inhibition by uracil compounds of thymine incorporation into thymine-requiring mutants. Deoxyadenosine also increases the incorporation of thymidine, by competitively inhibiting thymidine phosphorylase. Deoxyadenosine induces the enzyme, in contrast to uridine. But this is offset by a transfer of deoxyribose from deoxyadenosine to thymine. Thus, deoxyadenosine permits incorporation of thymine into DNA, even in cells induced for thymidine phosphorylase. This incorporation of thymine in the presence of deoxyadenosine did not occur in a thymidine phosphorylase-negative mutant; thus, the utilization of thymine seems to proceed by way of thymidine phosphorylase, followed by thymidine kinase. These results are consistent with the data of others in suggesting that wild-type E. coli cells fail to utilize thymine because they lack a pool of deoxyribose phosphates, the latter being necessary for conversion of thymine to thymidine by thymidine phosphorylase.  相似文献   

15.
Sung JS  Mosbaugh DW 《Biochemistry》2000,39(33):10224-10235
Escherichia coli double-strand uracil-DNA glycosylase (Dug) was purified to apparent homogeneity as both a native and recombinant protein. The molecular weight of recombinant Dug was 18 670, as determined by matrix-assisted laser desorption-ionization mass spectrometry. Dug was active on duplex oligonucleotides (34-mers) that contained site-specific U.G, U.A, ethenoC.G, and ethenoC.A targets; however, activity was not detected on DNA containing a T.G mispair or single-stranded DNA containing either a site-specific uracil or ethenoC residue. One of the distinctive characteristics of Dug was that the purified enzyme excised a near stoichiometric amount of uracil from U.G-containing oligonucleotide substrate. Electrophoretic mobility shift assays revealed that the lack of turnover was the result of strong binding by Dug to the reaction product apyrimidinic-site (AP) DNA. Addition of E. coli endonuclease IV stimulated Dug activity by enhancing the rate and extent of uracil excision by promoting dissociation of Dug from the AP. G-containing 34-mer. Catalytically active endonuclease IV was apparently required to mediate Dug turnover, since the addition of 5 mM EDTA mitigated the effect. Further support for this interpretation came from the observations that Dug preferentially bound 34-mer containing an AP.G target, while binding was not observed on a substrate incised 5' to the AP-site. We also investigated whether Dug could initiate a uracil-mediated base excision repair pathway in E. coli NR8052 cell extracts using M13mp2op14 DNA (form I) containing a site-specific U.G mispair. Analysis of reaction products revealed a time dependent appearance of repaired form I DNA; addition of purified Dug to the cell extract stimulated the rate of repair.  相似文献   

16.
B Martin  N Sicard 《Mutation research》1984,132(3-4):87-93
Plasmid DNA, isolated from mutants of E. coli that are deficient in both uracil-DNA glycosylase and deoxyuridine triphosphatase, contains significant amounts of uracil. This can be removed in vitro by the action of uracil-DNA glycosylase, creating apyrimidinic sites. We have used depyrimidinated plasmid DNA isolated in this way to test the ability of E. coli extracts to preferentially incorporate labeled deoxythymidine triphosphate. No pyrimidine-insertase activity was found in extracts of bacteria that were deficient in exonuclease III. The question of the existence of such an activity in E. coli cells is discussed.  相似文献   

17.
The pathway for the acquisition of thymidylate in the obligate bacterial parasite Rickettsia prowazekii was determined. R. prowazekii growing in host cells with or without thymidine kinase failed to incorporate into its DNA the [3H]thymidine added to the culture. In the thymidine kinase-negative host cells, the label available to the rickettsiae in the host cell cytoplasm would have been thymidine, and in the thymidine kinase-positive host cells, it would have been both thymidine and TMP. Further support for the inability to utilize thymidine was the lack of thymidine kinase activity in extracts of R. prowazekii. However, [3H]uridine incorporation into the DNA of R. prowazekii was demonstrable (973 +/- 57 dpm/3 x 10(8) rickettsiae). This labeling of rickettsial DNA suggests the transport of uracil, uridine, uridine phosphates (UXP), or 2'-deoxyuridine phosphates, the conversion of the labeled precursor to thymidylate, and subsequent incorporation into DNA. This is supported by the demonstration of thymidylate synthase activity in extracts of R. prowazekii. The enzyme was determined to have a specific activity of 310 +/- 40 pmol/min/mg of protein and was inhibited greater than or equal to 70% by 5-fluoro-dUMP. The inability of R. prowazekii to utilize uracil was suggested by undetectable uracil phosphoribosyltransferase activity and by its inability to grow (less than 10% of control) in a uridine-starved mutant cell line (Urd-A) supplemented with 50 microM to 1 mM uracil. In contrast, the rickettsiae were able to grow in Urd-A cells that were uridine starved and supplemented with 20 microM uridine (117% of control). However, no measurable uridine kinase activity could be measured in extracts of R. prowazekii. Normal rickettsial growth (92% of control) was observed when the host cell was blocked with thymidine so that the host cell's dUXP pool was depressed to a level inadequate for growth and DNA synthesis in the host cell. Taken together, these data strongly suggest that rickettsiae transport UXP from the host cell's cytoplasm and that they synthesize TTP from UXP.  相似文献   

18.
An RNA processing activity capable of cleaving Bacillus subtilis phage SP82 early mRNA has been purified to apparent homogeneity from crude extracts of uninfected B. subtilis. The enzyme, a functional monomer of Mr approximately 27,000, cleaves only at the 5' side of adenosine residues at processing sites and is competitively inhibited by double-stranded synthetic RNA polymers. Processed SP82 mRNAs were translated in an Escherichia coli cell-free system and no qualitative or quantitative effects of processing on the synthesis of polypeptides was observed. The processing enzyme does not cleave T7 mRNA, E. coli precursor rRNA, or double-stranded poly(AU). A recombinant plasmid containing portions of two B. subtilis rRNA gene sets was transcribed in vitro and the resulting RNA was cleaved in the spacer region between the 16 S and 23 S rRNA genes. The ability of the B. subtilis processing enzyme to cleave SP82 mRNA and B. subtilis precursor rRNA and the fact that the enzyme has high affinity for double-stranded RNA suggest that it is the functional analog of E. coli RNase III.  相似文献   

19.
The action of T4 endonuclease V on DNA containing various photoproducts was investigated. (1) The enzyme introduced strand breaks in DNA from ultraviolet-irradiated vegetative cells of Bacillus subtilis but not in DNA from irradiated spores of the same organism. DNA irradiated with long wavelength (360 nm peak) ultraviolet light in the presence of 4,5',8-trimethylpsoralen was not attacked by the enzyme. These results indicate that 5-thyminyl 5,6-dihydrothymine (spore photoproduct) and psoralen mediated cross-links in DNA are not recognized by T4 endonuclease V. (2) DNA of phage PBS1, containing uracil in place of thymine, and DNA of phage SPO1, containing hydroxymethyluracil in place of thymine, were fragmented by the enzyme when the DNA's had been irradiated with ultraviolet light. T4 endonuclease V seems to act on DNA with pyrimidine dimers whether the dimers contain thymine residues or not.  相似文献   

20.
Infection of cultured mammalian cells with the Leporipoxvirus Shope fibroma virus (SFV) causes the induction of a novel uracil DNA glycosylase activity in the cytoplasms of the infected cells. The induction of this activity, early in infection, correlates with the early expression of the SFV BamHI D6R open reading frame which possesses significant protein sequence similarity to eukaryotic and prokaryotic uracil DNA glycosylases. The SFV BamHI D6R open reading frame and the homologous HindIII D4R open reading frame from the Orthopoxvirus vaccinia virus were cloned under the regulation of a phage T7 promoter and expressed in Escherichia coli as insoluble high-molecular-weight aggregates. During electrophoresis on sodium dodecyl sulfate-polyacrylamide gels, the E. coli-expressed proteins migrate with an apparent molecular mass of 25 kDa. The insoluble protein aggregate generated by expression in E. coli was solubilized in urea and, following a subsequent refolding step, displayed the ability to excise uracil residues from double-stranded plasmid DNA substrates, with the subsequent formation of apyrimidinic sites. The viral enzyme, like all other characterized uracil DNA glycosylases, is active in the presence of high concentrations of EDTA, is substrate inhibited by uracil, and does not display any endonuclease activity. Attempts to inactivate the HindIII D4R gene of vaccinia virus by targeted insertion of a dominant xanthine-guanine phosphoribosyltransferase selection marker or direct insertion of a frame-shifted oligonucleotide were uniformly unsuccessful demonstrating that, unlike the uracil DNA glycosylase described for herpesviruses, the poxvirus enzyme is essential for virus viability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号