首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Binding of chara Myosin globular tail domain to phospholipid vesicles   总被引:1,自引:0,他引:1  
Binding of Chara myosin globular tail domain to phospholipid vesicles was investigated quantitatively. It was found that the globular tail domain binds to vesicles made from acidic phospholipids but not to those made from neutral phospholipids. This binding was weakened at high KCl concentration, suggesting that the binding is electrostatic by nature. The dissociation constant for the binding of the globular tail domain to 20% phosphatidylserine vesicles (similar to endoplasmic reticulum in acidic phospholipid contents) at 150 mM KCl was 273 nM. The free energy change due to this binding calculated from the dissociation constant was -37.3 kJ mol(-1). Thus the bond between the globular tail domain and membrane phospholipids would not be broken when the motor domain of Chara myosin moves along the actin filament using the energy of ATP hydrolysis (DeltaG degrees ' = -30.5 kJ mol(-1)). Our results suggested that direct binding of Chara myosin to the endoplasmic reticulum membrane through the globular tail domain could work satisfactorily in Chara cytoplasmic streaming. We also suggest a possible regulatory mechanism of cytoplasmic streaming including phosphorylation-dependent dissociation of the globular tail domain from the endoplasmic reticulum membrane.  相似文献   

2.
Recombinant maltose-binding protein from Thermotoga maritima (TmMBP) was expressed in Escherichia coli and purified to homogeneity, applying heat incubation of the crude extract at 75 degrees C. As taken from the spectral, physicochemical and binding properties, the recombinant protein is indistinguishable from the natural protein isolated from the periplasm of Thermotoga maritima. At neutral pH, TmMBP exhibits extremely high intrinsic stability with a thermal transition >105 degrees C. Guanidinium chloride-induced equilibrium unfolding transitions at varying temperatures result in a stability maximum at approximately 40 degrees C. At room temperature, the thermodynamic analysis of the highly cooperative unfolding equilibrium transition yields DeltaG(N-->U)=100(+/-5) kJ mol(-1 )for the free energy of stabilization. Compared to mesophilic MBP from E. coli as a reference, this value is increased by about 60 kJ mol(-1). At temperatures around the optimal growth temperature of T. maritima (t(opt) approximately 80 degrees C), the yield of refolding does not exceed 80 %; the residual 20 % are misfolded, as indicated by a decrease in stability as well as loss of the maltose-binding capacity. TmMBP is able to bind maltose, maltotriose and trehalose with dissociation constants in the nanomolar to micromolar range, combining the substrate specificities of the homologs from the mesophilic bacterium E. coli and the hyperthermophilic archaeon Thermococcus litoralis. Fluorescence quench experiments allowed the dissociation constants of ligand binding to be quantified. Binding of maltose was found to be endothermic and entropy-driven, with DeltaH(b)=+47 kJ mol(-1) and DeltaS(b)=+257 J mol(-1) K(-1). Extrapolation of the linear vant'Hoff plot to t(opt) resulted in K(d) approximately 0.3 microM. This result is in agreement with data reported for the MBPs from E. coli and T. litoralis at their respective optimum growth temperatures, corroborating the general observation that proteins under their specific physiological conditions are in corresponding states.  相似文献   

3.
K H?sler  O P?nke  W Junge 《Biochemistry》1999,38(41):13759-13765
ATP synthase is conceived as a rotary enzyme. Proton flow drives the rotor (namely, subunits c12 epsilon gamma) relative to the stator (namely, subunits ab2 delta(alpha beta)3) and extrudes spontaneously formed ATP from three symmetrically arranged binding sites on (alpha beta)3 into the solution. We asked whether the binding of subunit delta to (alpha beta)3 is of sufficient strength to hold against the elastic strain, which is generated during the operation of this enzyme. According to current estimates, the elastically stored energy is about 50 kJ/mol. Subunit delta was specifically labeled without impairing its function. Its association with solubilized (alpha beta)3 gamma in detergent-free buffer was studied by fluorescence correlation spectroscopy (FCS). A very strong tendency of delta to dimerize in detergent-free buffer was apparent (K(d) 相似文献   

4.
The kinetics of protein-fluorescence change when rabbit skeletal myosin subfragment 1 is mixed with ATP or adenosine 5'-(3-thiotriphosphate) in the presence of Mg(2+) are incompatible with a simple bimolecular association process. A substrate-induced conformation change with DeltaG(0)<-24kJ.mol(-1) (i.e. DeltaG(0) could be more negative) at pH8 and 21 degrees C is proposed as the additional step in the binding of ATP. The postulated binding mechanism is M+ATPright harpoon over left harpoonM.ATPright harpoon over left harpoonM*.ATP, where the association constant for the first step, K(1), is 4.5x10(3)m(-1) at I 0.14m and the rate of isomerization is 400s(-1). In the presence of Mg(2+), ADP binds in a similar fashion to ATP, the rate of the conformation change also being 400s(-1), but with DeltaG(0) for that process being -14kJ.mol(-1). The effect of increasing ionic strength is to decrease K(1), the kinetics of the conformation change being essentially unaltered. Alternative schemes involving a two-step binding process for ATP to subfragment 1 are possible. These are not excluded by the experimental results, although they are perhaps less likely because they imply uncharacteristically slow bimolecular association rate constants.  相似文献   

5.
Flavodoxins are proteins with an alpha/beta doubly wound topology that mediate electron transfer through a non-covalently bound flavin mononucleotide (FMN). The FMN moiety binds strongly to folded flavodoxin (K(D)=0.1 nM, oxidized FMN). To study the effect of this organic cofactor on the conformational stability, we have characterized apo and holo forms of Desulfovibrio desulfuricans flavodoxin by GuHCl-induced denaturation. The unfolding reactions for both holo- and apo-flavodoxin are reversible. However, the unfolding curves monitored by far-UV circular dichroism and fluorescence spectroscopy do not coincide. For both apo- and holo-flavodoxin, a native-like intermediate (with altered tryptophan fluorescence but secondary structure as the folded form) is present at low GuHCl concentrations. There is no effect on the flavodoxin stability imposed by the presence of the FMN cofactor (DeltaG=20(+/-2) and 19(+/-1) kJ/mol for holo- and apo-flavodoxin, respectively). A thermodynamic cycle, connecting FMN binding to folded and unfolded flavodoxin with the unfolding free energies for apo- and holo-flavodoxin, suggests that the binding strength of FMN to unfolded flavodoxin must be very high (K(D)=0.2 nM). In agreement, we discovered that the FMN remains coordinated to the polypeptide upon unfolding.  相似文献   

6.
It is generally accepted that P-glycoprotein binds its substrates in the lipid phase of the membrane. Quantification and characterization of the lipid-transporter binding step are, however, still a matter of debate. We therefore selected 15 structurally diverse drugs and measured the binding constants from water to the activating (inhibitory) binding region of P-glycoprotein, K(tw(1)) (K(tw(2))), as well as the lipid-water partition coefficients, K(lw). The former were obtained by measuring the concentrations of half-maximum activation (inhibition), K(1) (K(2)), in living NIH-MDR-G185 mouse embryo fibroblasts using a Cytosensor microphysiometer, and the latter were derived from surface activity measurements. This allowed determination of the membrane concentration of drugs at half-maximum P-glycoprotein activation (C(b(1)) = (0.02 to 67) mmol/L lipid), which is much higher than the corresponding aqueous concentration (K(1) = (0.02 to 376) microM). Moreover we determined the free energy of drug binding from water to the activating binding region of the transporter (DeltaG degrees (tw(1)) = (-30 to -54) kJ/mol), the free energy of drug partitioning into the lipid membrane (DeltaG degrees (lw) = (-23 to -34) kJ/mol), and, as the difference of the two, the free energy of drug binding from the lipid membrane to the activating binding region of the transporter (DeltaG degrees (tl(1)) = (-7 to -27) kJ/mol). For the compounds tested DeltaG degrees (tl(1)) was less negative than DeltaG degrees (lw) but varied more strongly. The free energies of substrate binding to the transporter within the lipid phase, DeltaG degrees (tl(1)), are consistent with a modular binding concept, where the energetically most efficient binding module comprises two hydrogen bond acceptor groups.  相似文献   

7.
It has been proposed that C-terminal two alpha-helices of the epsilon subunit of F1-ATPase can undergo conformational transition between retracted folded-hairpin form and extended form. Here, using F(1) from thermophilic Bacillus PS3, we monitored this transition in real time by fluorescence resonance energy transfer (FRET) between a donor dye and an acceptor dye attached to N terminus of the gamma subunit and C terminus of the epsilon subunit, respectively. High FRET (extended form) of F1 turned to low FRET (retracted form) by ATP, which then reverted as ATP was hydrolyzed to ADP. 5'-Adenyl-beta,gamma-imidodiphosphate, ADP + AlF4-, ADP + NaN3, and GTP also caused the retracted form, indicating that ATP binding to the catalytic beta subunits induces the transition. The ATP-induced transition from high FRET to low FRET occurred in a similar time scale to the ATP-induced activation of ATPase from inhibition by the epsilon subunit, although detailed kinetics were not the same. The transition became faster as temperature increased, but the extrapolated rate at 65 degrees C (physiological temperature of Bacillus PS3) was still too slow to assign the transition as an obligate step in the catalytic turnover. Furthermore, binding affinity of ATP to the isolated epsilon subunit was weakened as temperature increased, and the dissociation constant extrapolated to 65 degrees C reached to 0.67 mm, a consistent value to assume that the epsilon subunit acts as a sensor of ATP concentration in the cell.  相似文献   

8.
The spike H protein of bacteriophage phiX174 was prepared as a hexa histidine-tagged fusion (HisH). On enzyme-linked plate assaying, HisH was found to bind specifically to the lipopolysaccharides (LPSs) of phiX174-sensitive strains, Escherichia coli C and Salmonella typhimurium Ra chemotype, having the complete oligosaccharide sequence of the R-core on the LPSs. In sharp contrast, HisH bound weakly to the LPSs of phiX174-insensitive strains, i.e. E. coli F583 (Rd(2)) lacking some terminal saccharides and E. coli O111: B4 (smooth strain) having additional O-repeats on the R-core. The fluorescence spectra of HisH changed dose-dependently in the case of the LPS of E. coli C, the intensity increasing and the emission peak shifting to the shorter wavelength side, which was attributable to the hydrophobic interaction of HisH with the LPS. The binding equilibrium was analyzed by fluorometric titration to determine the dissociation constant K(d), 7.02 +/- 0.37 microM, and the Gibbs free energy change DeltaG(0), -29.1 kJ mol(-1) (at 22 degrees C, pH 7.4). Based on the temperature dependence of (K)d in a van't Hoff plot, the standard enthalpy change DeltaH(0) and the entropy change DeltaS(0) were calculated to be +23.7 kJ mol(-1) and 179 J mol(-1) K(-1) at 22 degrees C, respectively, and this binding was thereby concluded to be an entropy-driven reaction.  相似文献   

9.
Xue WF  Carey J  Linse S 《Proteins》2004,57(3):586-595
Accurate and precise determinations of thermodynamic parameters of binding are important steps toward understanding many biological mechanisms. Here, a multi-method approach to binding analysis is applied and a detailed error analysis is introduced. Using this approach, the binding thermodynamics and kinetics of the reconstitution of the protein monellin have been quantitatively determined in detail by simultaneous analysis of data collected with fluorescence spectroscopy, surface plasmon resonance and isothermal titration calorimetry at 25 degrees C, pH 7.0 and 150 mM NaCl. Monellin is an intensely sweet protein composed of two peptide chains that form a single globular domain. The kinetics of the reconstitution reaction are slow, with an association rate constant, k(on) of 8.8 x 10(3) M(-1) s(-1) and a dissociation rate constant, k(off) of 3.1 x 10(-4) s(-1). The equilibrium constant K(A) is 2.8 x 10(7) M(-1) corresponding to a standard free energy of association, DeltaG degrees , of -42.5 kJ/mol. The enthalpic component, DeltaH degrees , is -18.7 kJ/mol and the entropic contribution, DeltaS degrees , is 79.8 J mol(-1) K(-1) (-TDeltaS degrees = -23.8 kJ/mol). The association of monellin is therefore a bimolecular intra-protein association whose energetics are slightly dominated by entropic factors.  相似文献   

10.
Human apurinic/apyrimidinic (AP) endonuclease (hAPE) initiates the repair of an abasic site (AP site). To gain insight into the mechanisms of damage recognition of hAPE, we conducted surface plasmon resonance spectroscopy to study the thermodynamics and kinetics of its interaction with substrate DNA containing an abasic site (AP DNA). The affinity of hAPE binding toward DNA increased as much as 6-fold after replacing a single adenine (equilibrium dissociation constant, K(D), 5.3 nm) with an AP site (K(D), 0.87 nm). The enzyme-substrate complex formation appears to be thermodynamically stabilized and favored by a large change in Gibbs free energy, DeltaG degrees (-50 kJ/mol). The latter is supported by a high negative change in enthalpy, DeltaH degrees (-43 kJ/mol) and also positive change in entropy, DeltaS degrees (24 J/(K mol)), and thus the binding process is spontaneous at all temperatures. Analysis of kinetic parameters reveals small enthalpy of activation for association, DeltaH degrees++(ass) (-17 kJ/mol), and activation energy for association (E(a), -14 kJ/mol) when compared with the enthalpy of activation for dissociation, DeltaH degrees++(diss) (26 kJ/mol), and activation energy in the reverse direction (E(d), 28 kJ/mol). Furthermore, varying concentration of KCl showed an increase in binding affinity at low concentration but complete abrogation of the binding at higher concentration, implying the importance of hydrophobic, but predominantly ionic, forces in the Michaelis-Menten complex formation. Thus, low activation energy and the enthalpy of activation, which are perhaps a result of dipole-dipole interactions, play critical roles in AP site binding of APE.  相似文献   

11.
The temperature- and solvent-induced denaturation of both the SCP2 wild-type and the mutated protein c71s were studied by CD measurements at 222 nm. The temperature-induced transition curves were deconvoluted according to a two-state mechanism resulting in a transition temperature of 70.5 degrees C and 59.9 degrees C for the wild-type and the c71s, respectively, with corresponding values of the van't Hoff enthalpies of 183 and 164 kJ/mol. Stability parameters characterizing the guanidine hydrochloride denaturation curves were also calculated on the basis of a two-state transition. The transitions of the wild-type occurs at 0.82 M GdnHCl and that of the c71s mutant at 0.55 M GdnHCl. These differences in the half denaturation concentration of GdnHCl reflect already the significant stability differences between the two proteins. A quantitative measure are the Gibbs energies DeltaG(0)(D)(buffer) at 25 degrees C of 15.5 kJ/mol for the wild-type and 8.0 kJ/mol for the mutant. We characterized also the alkyl chain binding properties of the two proteins by measuring the interaction parameters for the complex formation with 1-O-Decanyl-beta-D-glucoside using isothermal titration microcalorimetry. The dissociation constants, K(d), for wild-type SCP2 are 335 microM at 25 degrees C and 1.3 mM at 35 degrees C. The corresponding binding enthalpies, DeltaH(b), are -21. 5 kJ/mol at 25 degrees C and 72.2 kJ/mol at 35 degrees C. The parameters for the c71s mutant at 25 degrees C are K(d)=413 microM and DeltaH(b)=16.6 kJ/mol. These results suggest that both SCP2 wild-type and the c71s mutant bind the hydrophobic compound with moderate affinity.  相似文献   

12.
Non-specific binding of proteins and peptides to charged membrane interfaces depends upon the combined contributions of hydrophobic (DeltaG(HPhi)) and electrostatic (DeltaG(ES)) free energies. If these are simply additive, then the observed free energy of binding (DeltaG(obs)) will be given by DeltaG(obs)=DeltaG(HPhi)+DeltaG(ES), where DeltaG(HPhi)=-sigma(NP)A(NP) and DeltaG(ES)=zFphi. In these expressions, A(NP) is the non-polar accessible area, sigma(NP) the non-polar solvation parameter, z the formal peptide valence, F the Faraday constant, and phi the membrane surface potential. But several lines of evidence suggest that hydrophobic and electrostatic binding free energies of proteins at membrane interfaces, such as those associated with cell signaling, are not simply additive. In order to explore this issue systematically, we have determined the interfacial partitioning free energies of variants of indolicidin, a cationic proline-rich antimicrobial peptide. The synthesized variants of the 13 residue peptide covered a wide range of hydrophobic free energies, which allowed us to examine the effect of hydrophobicity on electrostatic binding to membranes formed from mixtures of neutral and anionic lipids. Although DeltaG(obs) was always a linear function of DeltaG(HPhi), the slope depended upon anionic lipid content: the slope was 1.0 for pure, zwitterionic phosphocholine bilayers and 0.3 for pure phosphoglycerol membranes. DeltaG(obs) also varied linearly with surface potential, but the slope was smaller than the expected value, zF. As observed by others, this suggests an effective peptide valence z(eff) that is smaller than the formal valence z. Because of our systematic approach, we were able to establish a useful rule-of-thumb: z(eff) is reduced relative to z by about 20 % for each 3 kcal mol(-1) (1 kcal=4.184 kJ) favorable increase in DeltaG(HPhi). For neutral phosphocholine interfaces, we found that DeltaG(obs) could be predicted with remarkable accuracy using the Wimley-White experiment-based interfacial hydrophobicity scale.  相似文献   

13.
To identify residues involved in ATP binding in the N-domain of the alpha1-subunit of Na,K-ATPase, mutations were directed to the segment Arg(544)-Asp(567), a beta-strand-loop-helix structure with Arg(544) positioned at the mouth of the ATP-binding pocket near the interface to the P-domain. Substitution of Arg(544) with Gln abolished high-affinity binding of free ATP, while substitution with lysine reduced ADP affinity with minor effects on ATP binding. The contribution of Arg(544) to the change in free energy of ATP binding was estimated to 6.9 kJ/mol (DeltaDeltaG(b)) from double mutations with Asp(369) and to 7.8 kJ/mol from the MgATP dependence of phosphorylation. The phosphorylation data show that binding of Mg(2+) may increase the apparent affinity of wild-type enzyme for ATP [K(1/2)(ATP) 12 nM]. Moderately reduced affinities for ATP were seen after mutations of Asp(555), Glu(556), Asp(565), or Asp(567) with DeltaDeltaG(b) approximately equals 0.5-3 kJ/mol. Mutations of Cys(549) did not affect ATP binding. In conclusion, Arg(544) is important for binding of ATP or ADP, probably by stabilizing the beta- or gamma-phosphate moieties and aligning the gamma-phosphate for interaction with the carboxylate group of Asp(369).  相似文献   

14.
S Wakabayashi  M Shigekawa 《Biochemistry》1990,29(31):7309-7318
The mechanism for activation of sarcoplasmic reticulum ATPase by Ca2+ was investigated in 2 mM MgCl2 and 0.1 M KCl at pH 6.5 and 11 degrees C by using enzyme preparations in which a specific amino acid residue (Cys-344) was labeled with 4-nitrobenzo-2-oxa-1,3-diazole (NBD) [Wakabayashi, S., Imagawa, T., & Shigekawa, M. (1990) J. Biochem. (Tokyo) 107, 563-571]. We compared the kinetics of binding and dissociation of Ca2+ from the enzyme with those of the accompanying NBD fluorescence changes. The fluorescence rise following addition of Ca2+ proceeded monoexponentially. At 2-100 microM Ca2+ and in the absence of nucleotides, the Ca2(+)-induced fluorescence rise and Ca2+ binding to the enzyme proceeded at similar rates, which were almost independent of the Ca2+ concentration. In contrast, the fluorescence decrease induced by Ca2+ removal was slower than the Ca2+ dissociation, and both of these processes were inhibited markedly by increasing medium Ca2+. ATP by binding at 1 mol/mol of the phosphorylation site markedly accelerated both the Ca2(+)-induced fluorescence rise and Ca2+ binding, ADP and AMPPNP but not GTP also being effective. In contrast, ADP minimally affected the NBD fluorescence decrease and the Ca2+ dissociation. These data are consistent with a reaction model in which binding of Ca2+ occurs after the conformational transition of the free enzyme from a state (E2) having low affinity for Ca2+ to one (E1) having high affinity for Ca2+ and in which ATP bound at the catalytic site of E2, whose affinity for ATP is about 30-fold less than that of E1, accelerates this conformational transition.  相似文献   

15.
Interaction of formononetin with a model transport protein, human serum albumin (HSA), has been studied using fluorescence anisotropy, FT-IR spectroscopy, and molecular modeling methods. Upon binding with HSA, the fluorescence spectrum of formononetin exhibits appreciable hypsochromic shift along with an enhancement in the fluorescence intensity. Gradual addition of HSA led to a marked increase in fluorescence anisotropy (r). From the value of fluorescence anisotropy, it is argued that the drug is located in a restricted environment of protein. The binding constant (K approximately 1.6 x 10(5) M(-1)) and the standard free energy change (DeltaG(0) approximately -29.9 kJ/mol) of formononetin-HSA interaction have been calculated according to the relevant fluorescence data. Fourier transform infrared measurements have shown that the secondary structures of the protein have been changed by the interaction of formononetin with HSA. Computational mapping of the possible binding sites of formononetin revealed the molecule to be bound in the large hydrophobic cavity of subdomain IIA.  相似文献   

16.
2-Methyl,8-(phenylmethoxy)imidazo(1,2-a)pyridine 3-acetonitrile (SCH 28080) is a freely reversible K+ site inhibitor of the gastric (H+ + K+)-ATPase. In the presence of 2 mMMgSO4, [14C]SCH 28080 bound saturably to gastric vesicle preparations containing the (H+ + K+)-ATPase and was displaced by lumenal K+. A binding stoichiometry of 2.2 +/- 0.1 mol of SCH 28080/mol of catalytic phosphorylation sites was observed. The affinity of SCH 28080 binding was increased approximately 10-fold (to 45 nM) in the presence of 2 mM ATP. High affinity binding also occurred with 2 microM ATP but not with up to 200 microM D-[beta, gamma-CH2]ATP, suggesting that high affinity binding was to a phosphorylated form of the enzyme. In the presence of ATP, the association rate constant was linearly related to the concentration of SCH 28080. However, the association and dissociation rates of SCH 28080 binding were slow, especially at low temperature (at 1.5 degrees C half-maximal binding of 50 nM SCH 28080 was calculated to occur after 232 s). Binding appeared to be predominantly entropy driven with a high activation energy (40 kJ/mol at 37 degrees C). In the absence of ATP, the association rate constant was not linearly related to the concentration of SCH 28080, suggesting that a conformational change in the enzyme was required before binding could occur.  相似文献   

17.
Kernchen U  Lipps G 《Biochemistry》2006,45(2):594-603
The single-stranded DNA binding protein from Sulfolobus solfataricus (Sso-RPA) binds single-stranded DNA with dissociation constants in the range of 10-30 nM at room temperature. The affinity for DNA decreases at higher temperatures. At 85 degrees C, the optimal growth temperature of the crenarchaeot S. solfataricus, the dissociation constant is only about 1 microM. We analyzed the equilibrium between Sso-RPA and a fluorescently labeled 13 nucleotide oligonucleotide by fluorescence anisotropy measurements in the presence of four different salts and in the temperature range between 10 and 60 degrees C. In the presence of potassium chloride and choline chloride, three to four ions are released upon complexation, independent of the temperature. In contrast, in the presence of potassium fluoride and potassium glutamate, we observed a significant change of the number of ions released when the temperature was varied. The binding reaction is strongly exothermic with enthalpies of about -55 to -70 kJ/mol, depending upon the salt. Van't Hoff analysis suggests that the binding enthalpy is temperature independent.  相似文献   

18.
Beef liver mitochondrial F1ATPase was inactivated by the 2',3'-dialdehyde derivative of ethenoATP (epsilon ATP) in a pseudo-first order reaction. The kinetics of protection of the enzyme against inactivation by various nucleoside triphosphates (NTPs) revealed that the dial-epsilon ATP was bound to the catalytic site as an affinity label. Certain anions (sulfate or bicarbonate) were ineffective for protection. In the early phase of the reaction, inactivation was due to the binding of 1 mol dial-epsilon ATP per mol enzyme. In this phase, dial-epsilon ATP bound exclusively to the subunit beta of the enzyme, indicating that the catalytic site is in this subunit. The fluorescence of the ethenoadenosine moiety, bound exclusively to the subunit beta of the enzyme, was measured as a conformational probe of the catalytic site region. Addition of ATP or CTP to the labeled enzyme resulted in a decrease in the fluorescence intensity. GTP and other NTPs were less effective than ATP or CTP. The anions (sulfate of bicarbonate) suppressed the ability of ATP to decrease the fluorescence in a competitive manner. Quantitative analysis of these fluorescence changes suggested that they might originate from the binding of the NTP to the regulatory site of the enzyme. These findings are in good agreement with the two-site model proposed by us (Wakagi, T. & Ohta, T. (1981) J. Biochem. 89, 1205) which was deduced from the steady state kinetics of the NTPase reactions catalyzed by the F1ATPase.  相似文献   

19.
High hydrostatic pressure coupled with fluorescence polarization has been used to investigate protein subunit interactions and protein-operator association in lac repressor labeled with a long-lived fluorescent probe. On the basis of observation of a concentration-dependent sigmoidal decrease in the dansyl fluorescence polarization, we conclude that application of high hydrostatic pressure results in dissociation of the lac repressor tetramer. The 2-fold decrease in the rotational relaxation time and the high-pressure plateau are consistent with a tetramer to dimer transition. The volume change for tetramer dissociation to dimer is -82 +/- 5 mL/mol. The dissociation constant calculated from the data taken at 4.5 degrees C is 4.3 +/- 1.3 nM. The tetramer dissociation constant increases by a factor of 3 when the temperature is raised from 4.5 to 21 degrees C. A very small effect of inducer binding on the subunit dissociation is observed at 4.5 degrees C; the Kd increases from 4.5 to 7.1 nM. At 21 degrees C, however, inducer binding stabilizes the tetramer by approximately 0.8 kcal/mol. Pressure-induced monomer formation is indicated by the curves obtained upon raising the pH to 9.2. The addition of IPTG shifts the pressure transition to only slightly higher pressures at this pH, indicating that the stabilization of the tetramer by inducer is not as marked as that observed at pH 7.1. From the decrease in the polarization of the dansyl repressor-operator complexes, we also conclude that the application of pressure results their dissociation and that the volume change is large in absolute value (approximately 200 mL/mol). The lac repressor-operator complex is more readily dissociated upon the application of pressure than the tetramer alone, indicating that operator binding destabilizes the lac repressor tetramer.  相似文献   

20.
The thermodynamics of 5'-ATGCTGATGC-3' binding to its complementary DNA and RNA strands was determined in sodium phosphate buffer under varying conditions of temperature and salt concentration from isothermal titration calorimetry (ITC). The Gibbs free energy change, DeltaG degrees of the DNA hybridization reactions increased by about 6 kJ mol(-1) from 20 degrees C to 37 degrees C and exhibited heat capacity changes of -1.42 +/- 0.09 kJ mol(-1) K(-1) for DNA/DNA and -0.87 +/- 0.05 kJ mol(-1) K(-1) for DNA/RNA. Values of DeltaG degrees decreased non-linearly by 3.5 kJ mol(-1) at 25 degrees C and 6.0 kJ mol(-1) at 37 degrees C with increase in the log of the sodium chloride concentration from 0.10 M to 1.0 M. A near-linear relationship was observed, however, between DeltaG degrees and the activity coefficient of the water component of the salt solutions. The thermodynamic parameters of the hybridization reaction along with the heat capacity changes were combined with thermodynamic contributions from the stacking to unstacking transitions of the single-stranded oligonucleotides from differential scanning calorimetry (DSC) measurements, resulting in good agreement with extrapolation of the free energy changes to 37 degrees C from the melting transition at 56 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号