首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 950 毫秒
1.
Sugarcane bagasse is a low-cost and abundant by-product generated by the bioethanol industry, and is a potential substrate for cellulolytic enzyme production. The aim of this work was to evaluate the effects of air flow rate (Q AIR), solids loading (%S), sugarcane bagasse type, and particle size on the gas hold-up (ε G) and volumetric oxygen transfer coefficient (k L a) in three different pneumatic bioreactors, using response surface methodology. Concentric tube airlift (CTA), split-cylinder airlift (SCA), and bubble column (BC) bioreactor types were tested. Q AIR and  %S affected oxygen mass transfer positively and negatively, respectively, while sugarcane bagasse type and particle size (within the range studied) did not influence k L a. Using large particles of untreated sugarcane bagasse, the loop-type bioreactors (CTA and SCA) exhibited higher mass transfer, compared to the BC reactor. At higher  %S, SCA presented a higher k L a value (0.0448 s?1) than CTA, and the best operational conditions in terms of oxygen mass transfer were achieved for  %S < 10.0 g L?1 and Q AIR > 27.0 L min?1. These results demonstrated that pneumatic bioreactors can provide elevated oxygen transfer in the presence of vegetal biomass, making them an excellent option for use in three-phase systems for cellulolytic enzyme production by filamentous fungi.  相似文献   

2.
Production of lipopeptides fengycin and surfactin in rotating discs bioreactor was studied. The effects of rotation velocity and the addition of agitators between the discs on volumetric oxygen transfer coefficient k L a were firstly studied in model media. Then the production of lipopeptides was also studied at different agitation conditions in the modified bioreactor (with agitators). The effect of agitation on dissolved oxygen, on submerged and immobilized biomass, on lipopeptide concentrations and yields and on the selectivity of the bioreaction was elucidated and discussed. The proposed modified rotating discs bioreactor allowed to obtain high fengycin concentrations (up to 787 mg L?1), but also better selectivity of the bioreaction towards fengycin (up to 88 %) and better yields of fengycin per glucose (up to 62.9 mg g?1), lipopeptides per glucose (up to 71.5 mg g?1), fengycin per biomass (up to 309 mg g?1) and lipopeptides per biomass (up to 396 mg g?1) than those reported in the literature. Highest fengycin production and selectivity were obtained at agitation velocity of 30 min?1. The proposed non-foaming fermentation process could contribute to the scale-up of lipopeptide fermentors and promote the industrial production of fengycin. The proposed bioreactor and bioprocess could be very useful also for the production of other molecules using bioprocesses requiring bubbleless oxygen supply.  相似文献   

3.
The aims of this research were to screen and characterize a new microbial source of γ-PGA, to optimize aspects of culture conditions and medium composition using central composite design and response surface methodologies. The influence of bioreactor stirring rates on the production of γ-PGA was also investigated and the oxygen volumetric mass transfer coefficients (k La) were established. The most productive strain was identified by 16S rDNA analysis as Bacillus subtilis, and its γ-PGA production in rotatory shaker was threefold increased under optimized conditions (37 °C, pH 6.9, and 1.22 mM Zn2+), compared to conventional medium. In bioreactor, the γ-PGA production was further increased, reaching 17 g l?1, 70 % higher than shaker cultures. γ-PGA production showed high dependency on oxygen transfer. At k La of 210 h?1, the cultivation time could be reduced to 48 h, about 50 % of the time required for operations at k La 55 h?1.  相似文献   

4.
Production of extracellular laccase by the white-rot fungus Pycnoporus sanguineus was examined in batch submerged cultures in shake flasks, baffled shake flasks and a stirred tank bioreactor. The biomass growth in the various culture systems closely followed a logistic growth model. The production of laccase followed a Luedeking-Piret model. A modified Luedeking-Piret model incorporating logistic growth effectively described the consumption of glucose. Biomass productivity, enzyme productivity and substrate consumption were enhanced in baffled shake flasks relative to the cases for the conventional shake flasks. This was associated with improved oxygen transfer in the presence of the baffles. The best results were obtained in the stirred tank bioreactor. At 28 °C, pH 4.5, an agitation speed of 600 rpm and a dissolved oxygen concentration of ~25 % of air saturation, the laccase productivity in the bioreactor exceeded 19 U L?1 days?1, or 1.5-fold better than the best case for the baffled shake flask. The final concentration of the enzyme was about 325 U L?1.  相似文献   

5.
The optimization of bioreactor operations towards swainsonine production was performed using an artificial neural network coupled evolutionary program (EP)-based optimization algorithm fitted with experimental one-factor-at-a-time (OFAT) results. The effects of varying agitation (300–500 rpm) and aeration (0.5–2.0 vvm) rates for different incubation hours (72–108 h) were evaluated in bench top bioreactor. Prominent scale-up parameters, gassed power per unit volume (P g/V L, W/m3) and volumetric oxygen mass transfer coefficient (K L a, s?1) were correlated with optimized conditions. A maximum of 6.59 ± 0.10 μg/mL of swainsonine production was observed at 400 rpm-1.5 vvm at 84 h in OFAT experiments with corresponding P g/VL and K L a values of 91.66 W/m3 and 341.48 × 10?4 s?1, respectively. The EP optimization algorithm predicted a maximum of 10.08 μg/mL of swainsonine at 325.47 rpm, 1.99 vvm and 80.75 h against the experimental production of 7.93 ± 0.52 μg/mL at constant K L a (349.25 × 10?4 s?1) and significantly reduced P g/V L (33.33 W/m3) drawn by the impellers.  相似文献   

6.
Azospirillum brasilense has industrial significance as a growth promoter in plants of commercial interest. However, there is no report in the literature disclosing a liquid product produced in pilot-scale bioreactors and is able to be stored at room temperature for more than 2 years. The aim of this work was to scale up a process from a shake flask to a 10-L lab-scale and 1,000-L pilot-scale bioreactor for the production of plant growth-promoting bacterium A. brasilense for a liquid inoculant formulation. Furthermore, this work aimed to determine the shelf life of the liquid formulation stored at room temperature and to increase maize crops yield in greenhouses. Under a constant oxygen mass transfer coefficient (K L a), a fermentation process was successfully scaled up from shake flasks to 10- and 1,000-L bioreactors. A concentration ranging from 3.5 to 7.5?×?108 CFU/mL was obtained in shake flasks and bioreactors, and after 2 years stored at room temperature, the liquid formulation showed one order of magnitude decrease. Applications of the cultured bacteria in maize yields resulted in increases of up to 95 % in corncobs and 70 % in aboveground biomass.  相似文献   

7.
In this study, we perform mass transfer characterization (kLa) on a novel mechanically driven/stirred Process Scouting Device, PSD, (SuperSpinner D 1000®, SSD) and demonstrate that this novel device can be viewed as disposable bioreactor. Using patch‐based optical sensors, we were able to monitor critical cell culture environmental conditions such as dissolved oxygen (DO) and pH in SSD for comparison to a 1 L standard spinner (SS) flask. We also coupled these mass transfer studies with mixing time studies where we observed relative high mixing times (5.2 min) that are typically observed in production scale bioreactors. Decreasing the mixing time 3.5‐fold resulted in 30% increase in kLa (from 2.3 to 3.0 h?1) and minimum DO level increased from 0% to 20% for our model hybridoma cell line. Finally, maximum viable cell density and protein titer stayed within ±20% of historical data, from our standard 5 L stirred bioreactor (Biostat®) operated under active DO control. Biotechnol. Bioeng. 2012; 109: 2790–2797. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Poly(3-hydroxybutyrate)—P(3HB)—is a natural biodegradable polyester synthesized by several bacteria, produced from renewable resources. The effects of oxygen transfer rate on the intracellular accumulation of P(3HB) was evaluated, aiming at increasing P(3HB) synthesized by Bacillus megaterium DSM 32T in bioreactor batch cultures. Bench-scale bioreactor cultivations were performed under different volumetric oxygen mass transfer coefficients, kLa, setting stirrer speed on specified values. The results of this work show that oxygen transfer is a key factor on P(3HB) accumulation by B. megaterium, increasing the P(3HB) intracellular mass fraction from 39% to 62% of CDW at kLa condition of 0.006 s?1.  相似文献   

9.
In this work, computational fluid dynamics (CFD) technique is used to simulate the complicated unsteady-state turbulent flow field formed in baffled flask. The baffled flask shows advantages both in mass transfer capacity and in shear formation in comparison with unbaffled flasks. Detailed investigations of power consumption, mass transfer and shear rate are carried out in baffled flasks under shaking frequencies ranging from 100 rpm to 250 rpm, and filling volumes from 50 mL to 150 mL. The results show that the specific power input and specific interface area are both greatly influenced by shaking frequency and filling volume. For the positive effect of shaking frequency on both mass transfer coefficient (kL) and specific interface area (a), the volumetric mass transfer coefficient (kLa) increases greatly with shaking frequency. Results also show that filling volume has no significant effect on kL but negative effect on specific interface area. Shear force formed in baffled flask shows great dependent on shaking frequency, but it is insensitive to the filling volume. Based on these investigations, correlations linking these parameters are proposed. Finally, cultivations of filamentous fungus conducted in unbaffled and baffled flasks validated the simulating results.  相似文献   

10.
ABSTRACT:?

This review focuses on the hydrodynamic and mass transfer characteristics of various three-phase, gaslift fluidized bioreactors. The factors affecting the mixing and volumetric mass transfer coefficient (kLa), such as liquid properties, solid particle properties, liquid circulation velocity, superficial gas velocity, bioreactor geometry, are reviewed and discussed. Measurement methods, modeling and empirical correlations are reviewed and compared. To the authors' knowledge, there is no 'generalized' correlation to calculate the volumetric mass transfer coefficient, instead, only 'type-specific' correlations are available in the literature. This is due to the difficulty in modeling the gaslift bioreactor, caused by the variation in geometry, fluid dynamics, and phase interactions. The most important design parameters reported in the literature are: gas hold-up, liquid circulation velocity, 'true' superficial gas velocity, mixing, shear rate, aeration rate and volumetric mass transfer coefficient, kLa.  相似文献   

11.
Scale-up effects on mass transfer and bioremediation of suspended naphthalene particles have been studied in 20 and 58L bead mill bioreactors and compared to data generated earlier with a laboratory scaled bioreactor. The bead mill bioreactor performance with respect to naphthalene mass transfer rate was dependent on the size and loading of the inert particles, as well as the rotational speed of the roller apparatus. The optimum operating conditions were found to be 15mm glass beads at a loading of 50% (total volume of particles/working volume of bioreactor: v/v%) and a bioreactor rotational speed of 50rpm. The highest naphthalene mass transfer coefficients obtained in the large scale system under these optimum conditions (19.6 and 22.4h(-1) for 20 and 58L vessels, respectively) were higher than those determined previously in a 2.5L bead mill bioreactor (0.7h(-1)). The acute toxicity tests indicated that the bioreactor effluent was less toxic than the untreated naphthalene suspension. Biodegradation rates obtained in these large scale bead mill bioreactors under optimum conditions (36-37.4mgL(-1)h(-1)) were higher than those achieved in the control bioreactors of similar sizes (11.4 and 11.6mgL(-1)h(-1)) but were slower than those previously determined in a 2.5L bead mill bioreactor (59-61.5mgL(-1)h(-1)). The limitation of oxygen in the large scale systems and damage of the bacterial cells due to the crushing effects of the large beads are likely contributing factors in the lower observed biodegradation rates. The optimum conditions with respect to naphthalene mass transfer might not necessarily translate to optimum performance with regard to bioremediation.  相似文献   

12.
Gas–liquid mass transfer was investigated in an up-flow cocurrent packed-bed biofilm reactor. In aerobic processes gas–liquid mass transfer can be considered as a key operational parameter as well as in reactor scale-up. The present paper investigates the influence of the liquid phase mixing in the determination of the volumetric gas–liquid mass transfer coefficient (kLa) coefficient. Residence time distribution (RTD) experiments were performed in the reactor to determine the flow pattern of the liquid phase and to model mathematically the liquid phase mixing. The mathematical model derived from RTD experiments was used to evaluate the influence of the liquid mixing on the experimental estimation of the (kLa) in this reactor type. The methods used to estimate the kLa coefficient were: (i) dynamic gassing-out, (ii) sulphite method, and (iii) in-process estimation through biological conversion obtained in the reactor. The use of standard chemical engineering correlations to determine the kLa in this type of bioreactors is assessed. Experimental and modelling results show how relevant can be to take into consideration the liquid phase mixing in the calculations of the most-used methods for the estimation of kLa coefficient. kLa coefficient was found to be strongly heterogeneous along the reactor vertical axis. The value of the kLa coefficient for the packed-bed section ranged 0.01–0.12 s−1. A preliminary correlation was established for up-flow cocurrent packed-bed biofilm reactors as a function of gas superficial velocity.  相似文献   

13.
Gas–liquid mass transfer is often rate‐limiting in laboratory and industrial cultures of aerobic or autotrophic organisms. The volumetric mass transfer coefficient kLa is a crucial characteristic for comparing, optimizing, and upscaling mass transfer efficiency of bioreactors. Reliable dynamic models and resulting methods for parameter identification are needed for quantitative modeling of microbial growth dynamics. We describe a laboratory‐scale stirred tank reactor (STR) with a highly efficient aeration system (kLa ≈ 570 h?1). The reactor can sustain yeast culture with high cell density and high oxygen uptake rate, leading to a significant drop in gas concentration from inflow to outflow (by 21%). Standard models fail to predict the observed mass transfer dynamics and to identify kLa correctly. In order to capture the concentration gradient in the gas phase, we refine a standard ordinary differential equation (ODE) model and obtain a system of partial integro‐differential equations (PIDE), for which we derive an approximate analytical solution. Specific reactor configurations, in particular a relatively short bubble residence time, allow a quasi steady‐state approximation of the PIDE system by a simpler ODE model which still accounts for the concentration gradient. Moreover, we perform an appropriate scaling of all variables and parameters. In particular, we introduce the dimensionless overall efficiency κ, which is more informative than kLa since it combines the effects of gas inflow, exchange, and solution. Current standard models of mass transfer in laboratory‐scale aerated STRs neglect the gradient in the gas concentration, which arises from highly efficient bubbling systems and high cellular exchange rates. The resulting error in the identification of κ (and hence kLa) increases dramatically with increasing mass transfer efficiency. Notably, the error differs between cell‐free and culture‐based methods of parameter identification, potentially confounding the determination of the “biological enhancement” of mass transfer. Our new model provides an improved theoretical framework that can be readily applied to aerated bioreactors in research and biotechnology. Biotechnol. Bioeng. 2012; 109: 2997–3006. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
Azo dyes are recalcitrant and xenobiotic nature makes these compounds a challenging task for continuous biodegradation up to satisfactorily levels in large-scale. In the present report, the biodegradation efficiency of alginate immobilized indigenous Aeromonas sp. MNK1 on Methyl Orange (MO) in a packed bed reactor was explored. The experimental results were used to determine the external mass transfer model. Complete MO degradation and COD removal were observed at 0.20 cm bead size and 120 ml/h flow rate at 300 mg/l of initial dye concentration. The degradation of MO decreased with increasing bead sizes and flow rates, which may be attributed to the decrease in surface of the beads and higher flux of MO, respectively. The experimental rate constants (k ps) for various beads sizes and flow rates were calculated and compared with theoretically obtained rate constants using external film diffusion models. From the experimental data, the external mass transfer effect was correlated with a model J D = K Re ?(1 ? n). The model was tested with K value (5.7) and the Colburn factor correlation model for 0.20, 0.40 and 0.60 bead sizes were J D = 5.7 Re ?0.15, J D = 5.7 Re ?0.36 and J D = 5.7 Re ?0.48, respectively. Based on the results, the Colburn factor correlation models were found to predict the experimental data accurately. The proposed model was constructive to design and direct industrial applications in packed bed reactors within acceptable limits.  相似文献   

15.
Effects of oxygen transfer on recombinant protein production by Pichia pastoris under glyceraldehyde-3-phosphate dehydrogenase promoter were investigated. Recombinant glucose isomerase was chosen as the model protein. Two groups of oxygen transfer strategies were applied, one of which was based on constant oxygen transfer rate where aeration rate was Q O/V = 3 and 10 vvm, and agitation rate was N = 900 min?1; while the other one was based on constant dissolved oxygen concentrations, C DO = 5, 10, 15, 20 and 40 % in the fermentation broth, by using predetermined exponential glucose feeding with μ o = 0.15 h?1. The highest cell concentration was obtained as 44 g L?1 at t = 9 h of the glucose fed-batch phase at C DO = 20 % operation while the highest volumetric and specific enzyme activities were obtained as 4440 U L?1 and 126 U g?1 cell, respectively at C DO = 15 % operation. Investigation of specific enzyme activities revealed that keeping C DO at 15 % was more advantageous with an expense of relatively higher by-product formation and lower specific cell growth rate. For this strategy, the highest oxygen transfer coefficient and oxygen uptake rate were K L a = 0.045 s?1 and OUR = 8.91 mmol m?3 s?1, respectively.  相似文献   

16.
During the past decade, novel disposable cell culture vessels (generally referred to as Process Scouting Devices or PSDs) have become increasingly popular for laboratory scale studies and seed culture generation. However, the lack of engineering characterization and online monitoring tools for PSDs makes it difficult to elucidate their oxygen transfer capabilities. In this study, a mass transfer characterization (kLa) of sensor enabled static and rocking T‐flasks is presented and compared with other non‐instrumented PSDs such as CultiFlask 50®, spinner flasks, and SuperSpinner D 1000®. We have also developed a mass transfer empirical correlation that accounts for the contribution of convection and diffusion to the volumetric mass transfer coefficient (kLa) in rocking T‐flasks. We also carried out a scale‐down study at matched kLa between a rocking T75‐flask and a 10 L (2 L filling volume) wave bioreactor (Cultibag®) and we observed similar DO and pH profiles as well as maximum cell density and protein titer. However, in this scale‐down study, we also observed a negative correlation between cell growth and protein productivity between the rocking T‐flask and the wave bioreactor. We hypothesize that this negative correlation can be due to hydrodynamic stress difference between the rocking T‐flask and the Cultibag. As both cell culture devices share key similarities such as type of agitation (i.e., rocking), oxygen transfer capabilities (i.e., kLa) and disposability, we argue that rocking T‐flasks can be readily integrated with wave bioreactors, making the transition from research‐scale to manufacturing‐scale a seamless process. Biotechnol. Bioeng. 2012;109: 2295–2305. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
Culture conditions in shake flasks affect filamentous Streptomyces lividans morphology, as well the productivity and O-mannosylation of recombinant Ala-Pro-rich O-glycoprotein (known as the 45/47 kDa or APA antigen) from Mycobacterium tuberculosis. In order to scale up from previous reported shake flasks to bioreactor, data from the literature on the effect of agitation on morphology of Streptomyces strains were used to obtain gassed volumetric power input values that can be used to obtain a morphology of S. lividans in bioreactor similar to the morphology previously reported in coiled/baffled shake flasks by our group. Morphology of S. lividans was successfully scaled-up, obtaining similar mycelial sizes in both scales with diameters of 0.21 ± 0.09 mm in baffled and coiled shake flasks, and 0.15 ± 0.01 mm in the bioreactor. Moreover, the specific growth rate was successfully scaled up (0.09 ± 0.02 and 0.12 ± 0.01 h?1, for bioreactors and flasks, respectively), and the recombinant protein productivity measured by densitometry, as well. More interestingly, the quality of the recombinant glycoprotein measured as the amount of mannoses attached to the C-terminal of APA was also scaled- up; with up to five mannose residues in cultures carried out in shake flasks; and six in the bioreactor. However, final biomass concentration was not similar, indicating that although the process can be scaled-up using the power input, others factors like oxygen transfer rate, tip speed or energy dissipation/circulation function can be an influence on bacterial metabolism.  相似文献   

18.
Two gas spargers, a novel membrane-tube sparger and a perforated plate sparger, were compared in terms of hydrodynamics and mass transfer (or oxygen transfer) performance in an internal-loop airlift bioreactor. The overall gas holdup ε T, downcomer liquid velocity V d, and volumetric mass transfer coefficient K L a were examined depending on superficial gas velocity U G increased in Newtonian and non-Newtonian fluids for the both spargers. Compared with the perforated plate sparger, the bioreactor with the membrane-tube sparger increased the values of ε T by 4.9–48.8 % in air–water system when the U G was from 0.004 to 0.04 m/s, and by 65.1–512.6 % in air–CMC solution system. The V d value for the membrane-tube sparger was improved by 40.0–86.3 %. The value of K L a was increased by 52.8–84.4 % in air–water system, and by 63.3–836.3 % in air–CMC solution system. Empirical correlations of ε T, V d, and K L a were proposed, and well corresponding with the experimental data with the deviation of 10 %.  相似文献   

19.
We modelled the production of hydroxy fatty acids from oleic acid by Pseudomonas aeruginosa 42A2 in a bioreactor with a non-dispersive aeration system. First, we designed an adapted wetted-wall gas-absorption column, offering a k La value of 39.9 h?1, to enhance oxygen absorption in the culture media and prevent foam formation. Then, we analysed different kinetic models to simulate the yield coefficients and the kinetic constants in this bacterial transformation. Monod model fitting (μ max1?=?0.51 h?1, K S1?=?1.60 C-mol l?1, μ max2?=?0.12 h?1, K S2?=?0.035 C-mol l?1, and k 2?=?0.033 h?1) showed a good accuracy with the experimental data sets and was chosen for its simplicity. Lastly, mass balances were carried out to establish the stoichiometry of this biotransformation with the following yield coefficients, Υ X/OA, Υ X/(10S)-HPOME and Υ (10S)-HPOME/(7S10S)-HPOME of 0.172, 0.347 and 2.388 C-mol C-mol?1, respectively.  相似文献   

20.
This study aims to develop a low-cost microalgae culture system which uses a simple closed vessel as photobioreactor to save manufacturing cost, waves for mixing to save energy cost, and high concentration of bicarbonate for carbon supply to avoid the high cost of CO2-bubbling pipeline construction on the ocean as well as to control pH by buffering the effect of bicarbonate/carbonate. To test this idea, the alkalihalophilic cyanobacterium Euhalothece sp. was cultured with 1.0 M NaHCO3 in small-scale floating photobioreactors (PBRs) on 10-cm-high artificial waves at first. The final biomass concentration was up to 0.91 and 1.47 g L?1 for indoor and outdoor cultures, respectively. However, the recorded dissolved oxygen (DO) was occasionally over-saturated (> 500% of air saturation), indicating mass transfer problem. k L a in these PBRs with different culture depth was measured then, and the results showed great variation, from 0.13 to 4.87 h?1. At the scale of 1.0 m2, this floating PBR was made with low-cost membrane and inflatable design. It was placed on the ocean surface and mixed with natural waves. Biomass concentration of 1.63 g L?1 and productivity of 8.27 g m?2 day?1 were obtained in this culture. With these results, the feasibility of a low-cost microalgae culture system was proven, which could systematically reduce the cost of photobioreactor manufacturing, operating, and maintenance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号