首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Facultative wheat varieties adapt to a particular environment. But the molecular basis for the facultative growth habit is not clear relative to winter and spring growth habit. Two sets of wheat varieties were chosen for this study. Set 1 comprised ten spring accessions and Set 2 comprised ten facultative accessions. All accessions had been tested by the previously described allele-specific markers and shown having the same allelic composition of vrn-A1 vrn-B1 Vrn-D1 and vrn-B3. Here we examined whether differences in growth habit might be associated with as yet unidentified sequence variation at Vrn-D1 locus. A region including the intron 1 deletion, the entire reading frame from a cDNA template and a part of promoter region of the dominant Vrn-D1 gene in each of the accessions was sequenced, and a single nucleotide polymorphism was found between facultative accessions and spring accessions in the CArG-box at the promoter region. The novel allele in facultative accessions was designated as Vrn-D1b. The investigation of an F2 population segregating for Vrn-D1b and Vrn-D1a (previously, Vrn-D1) in the greenhouse under long days without vernalization showed that the plants with Vrn-D1b homozygous allele headed 32?days later and had about three more leaves than the plants with Vrn-D1a homozygous allele. As Vrn-D1b has the same deletion in intron 1 as Vrn-D1a, and, in addition, a single nucleotide mutation at promoter region, and is associated with facultative growth habit, we suggest that the promoter mutation may modify the basal activity level of an allele of VRN1 that is already active (due to the loss of segments in intron 1). Our finding further supports that both the promoter and intron 1 regulatory affect vernalization response and work independently.  相似文献   

2.
Heading of cereals is determined by complex genetic and environmental factors in which genes responsible for vernalization and photoperiod sensitivity play a decisive role. Our aim was to use diagnostic molecular markers to determine the main allele types in VRN-A1, VRN-B1, VRN-D1, PPD-B1 and PPD-D1 in a worldwide wheat collection of 683 genotypes and to investigate the effect of these alleles on heading in the field. The dominant VRN-A1, VRN-B1 and VRN-D1 alleles were present at a low frequency. The PPD-D1a photoperiod-insensitive allele was carried by 57 % of the cultivars and was most frequent in Asian and European cultivars. The PPD-B1 photoperiod-insensitive allele was carried by 22 % of the genotypes from Asia, America and Europe. Nine versions of the PPD-B1-insensitive allele were identified based on gene copy number and intercopy structure. The allele compositions in PPD-D1, PPD-B1 and VRN-D1 significantly influenced heading and together explained 37.5 % of the phenotypic variance. The role of gene model increased to 39.1 % when PPD-B1 intercopy structure was taken into account instead of overall PPD-B1 type (sensitive vs. insensitive). As a single component, PPD-D1 had the most important role (28.0 % of the phenotypic variance), followed by PPD-B1 (12.3 % for PPD-B1_overall, and 15.1 % for PPD-B1_intercopy) and VRN-D1 (2.2 %). Significant gene interactions were identified between the marker alleles within PPD-B1 and between VRN-D1 and the two PPD1 genes. The earliest heading genotypes were those with the photoperiod-insensitive allele in PPD-D1 and PPD-B1, and with the spring allele for VRN-D1 and the winter alleles for VRN-A1 and VRN-B1. This combination could only be detected in genotypes from Southern Europe and Asia. Late-heading genotypes had the sensitivity alleles for both PPD1 genes, regardless of the allelic composition of the VRN1 genes. There was a 10-day difference in heading between the earliest and latest groups under field conditions.  相似文献   

3.
The control of flowering time has important impacts on crop yield. The variation in response to day length (photoperiod) and low temperature (vernalization) has been selected in barley to provide adaptation to different environments and farming practices. As a further step towards unraveling the genetic mechanisms underlying flowering time control in barley, we investigated the allelic variation of ten known or putative photoperiod and vernalization pathway genes between two genotypes, the spring barley elite cultivar ‘Scarlett’ (Hordeum vulgare ssp. vulgare) and the wild barley accession ‘ISR42-8’ (Hordeum vulgare ssp. spontaneum). The genes studied are Ppd-H1, VRN-H1, VRN-H2, VRN-H3, HvCO1, HvCO2, HvGI, HvFT2, HvFT3 and HvFT4. ‘Scarlett’ and ‘ISR42-8’ are the parents of the BC2DH advanced backcross population S42 and a set of wild barley introgression lines (S42ILs). The latter are derived from S42 after backcrossing and marker-assisted selection. The genotypes and phenotypes in S42 and S42ILs were utilized to determine the genetic map location of the candidate genes and to test if these genes may exert quantitative trait locus (QTL) effects on flowering time, yield and yield-related traits in the two populations studied. By sequencing the characteristic regions of the genes and genotyping with diagnostic markers, the contrasting allelic constitutions of four known flowering regulation genes were identified as ppd-H1, Vrn-H1, vrn-H2 and vrn-H3 in ‘Scarlett’ and as Ppd-H1, vrn-H1, Vrn-H2 and a novel allele of VRN-H3 in ‘ISR42-8’. All candidate genes could be placed on a barley simple sequence repeat (SSR) map. Seven candidate genes (Ppd-H1, VRN-H2, VRN-H3, HvGI, HvFT2, HvFT3 and HvFT4) were associated with flowering time QTLs in population S42. Four exotic alleles (Ppd-H1, Vrn-H2, vrn-H3 and HvCO1) possibly exhibited significant effects on flowering time in S42ILs. In both populations, the QTL showing the strongest effect corresponded to Ppd-H1. Here, the exotic allele was associated with a reduction of number of days until flowering by 8.0 and 12.7%, respectively. Our data suggest that Ppd-H1, Vrn-H2 and Vrn-H3 may also exert pleiotropic effects on yield and yield-related traits.  相似文献   

4.
Heading date is one of the most important traits in wheat breeding as it affects adaptation and yield potential. A genome-wide association study (GWAS) using the 90 K iSelect SNP genotyping assay indicated that a total of 306 loci were significantly associated with heading and flowering dates in 13 environments in Chinese common wheat from the Yellow and Huai wheat region. Of these, 105 loci were significantly correlated with both heading and flowering dates and were found in clusters on chromosomes 2, 5, 6, and 7. Based on differences in distribution of the vernalization and photoperiod genes among chromosomes, arms, or block regions, 13 novel, environmentally stable genetic loci were associated with heading and flowering dates, including RAC875_c41145_189 on 1DS, RAC875_c50422_299 on 2BL, and RAC875_c48703_148 on 2DS, that accounted for more than 20% phenotypic variance explained (PVE) of the heading/flowering date in at least four environments. GWAS and t test of a combination of SNPs and vernalization and photoperiod alleles indicated that the Vrn-B1, Vrn-D1, and Ppd-D1 genes significantly affect heading and flowering dates in Chinese common wheat. Based on the association of heading and flowering dates with the vernalization and photoperiod alleles at seven loci and three significant SNPs, optimal linear regression equations were established, which show that of the seven loci, the Ppd-D1 gene plays the most important role in modulating heading and flowering dates in Chinese wheat, followed by Vrn-B1 and Vrn-D1. Additionally, three novel genetic loci (RAC875_c41145_189, Excalibur_c60164_137, and RAC875_c50422_299) also show important effect on heading and flowering dates. Therefore, Ppd-D1, Vrn-B1, Vrn-D1, and the novel genetic loci should be further investigated in terms of improving heading and flowering dates in Chinese wheat. Further quantitative analysis of an F10 recombinant inbred lines population identified a major QTL that controls heading and flowering dates within the Ppd-D1 locus with PVEs of 28.4% and 34.0%, respectively; this QTL was also significantly associated with spike length, peduncle length, fertile spikelets number, cold resistance, and tiller number.  相似文献   

5.
A dominant allele of the vernalization gene Vrn-2 is the wild type conferring winter growth habit, whereas a recessive vrn-2 allele confers spring growth habit. The recessive vrn-2 allele is mutated due to the deletion of the complete gene (a null form) or alternation of a key amino acid in the VRN-2 protein (a nonfunctional form) in diploid wheat or tetraploid wheat. VRN-2 is also denoted ZCCT due to the presence of a zinc finger and a CCT domain in its protein. There are two paralogous ZCCT genes at the VRN-2 locus in diploid Triticum monococcum and three paralogous ZCCT genes on each of the A and B genomes in tetraploid wheat, but little is known about the allelic variation in VRN-2 in hexaploid wheat. In the study reported here, we performed a one-shot PCR to simultaneously amplify the promoter regions of the three ZCCT-1 genes from hexaploid wheat, including the 302-bp fragment from ZCCT-A1, the 294-bp fragment from ZCCT-B1, and the 320-bp fragment from ZCCT-D1. Each amplicon could be differentiated by electrophoresis in an acrylamide/bisacrylamide gel. This PCR marker for different lengths of the three ZCCT-1 genes was used to search for null alleles in hexaploid wheat. A null allele was found in each of ZCCT-A1, ZCCT-B1, and ZCCT-D1 among 74 cultivars and genetic stocks of U.S. hexaploid wheat. Among 54 Chinese wheat cultivars, breeding lines, and landraces, we identified three accessions carrying a single null allele at ZCCT-A1, three accessions carrying a null allele at ZCCT-B1, and one accession carrying a double null allele at both ZCCT-A1 and ZCCT-D1. The potential application of these natural ZCCT-1 mutant materials in wheat breeding programs and studies on the genetics of wheat is discussed.  相似文献   

6.
Winter wheat requires vernalization, a long exposure to low but non-freezing temperatures, to promote reproductive development. The vernalization requirement in bread wheat (Triticum aestivum L.) is mainly controlled by the Vrn-1 genes that are located on chromosomes 5A, 5B and 5D. Dominant alleles confer spring habit and are epistatic to the recessive winter alleles which means that spring varieties carry at least one dominant allele. To date, two dominant and one recessive Vrn-B1 alleles have been described. Vrn-B1a (formerly designated as Vrn-B1) differs from the winter vrn-B1 allele by a large deletion in intron 1. Vrn-B1b has an additional small deletion and is probably derived from Vrn-B1a. The novel allele described here and designated as Vrn-B1c also has a large deletion within intron 1 but with different breakpoints from Vrn-B1a or b, and sequence duplication, showing that this is an independently derived spring allele. By combining an exon 1 primer with previously published PCR primers it was possible to develop a multiplex PCR that distinguished all four alleles simultaneously. The multiplex PCR was validated by testing 320 winter wheat and 137 spring wheat varieties. This demonstrated that the novel Vrn-B1c allele was present in 25 spring varieties of diverse origin, showing this allele to be widely distributed.  相似文献   

7.
8.
9.
Vernalization-2 (Vrn-2) is the major flowering repressor in temperate cereals. It is only expressed under long days in wild-type plants. We used two day-neutral (photoperiod insensitive) mutations that allow rapid flowering in short or long days to investigate the day length control of Vrn-2. The barley (Hordeum vulgare) early maturity8 (eam8) mutation affects the barley ELF3 gene. eam8 mutants disrupt the circadian clock resulting in elevated expression of Ppd-H1 and the floral activator HvFT1 under short or long days. When eam8 was crossed into a genetic background with a vernalization requirement Vrn-2 was expressed under all photoperiods and the early flowering phenotype was partially repressed in unvernalized (UV) plants, likely due to competition between the constitutively active photoperiod pathway and the repressing effect of Vrn-2. We also investigated the wheat (Triticum aestivum) Ppd-D1a mutation. This differs from eam8 in causing elevated levels of Ppd-1 and TaFT1 expression without affecting the circadian clock. We used genotypes that differed in “short-day vernalization”. Short days were effective in promoting flowering in individuals wild type at Ppd-D1, but not in individuals that carry the Ppd-D1a mutation. The latter showed Vrn-2 expression in short days. In summary, eam8 and Ppd-D1a mimic long days in terms of photoperiod response, causing Vrn-2 to become aberrantly expressed (in short days). As Ppd-D1a does not affect the circadian clock, this also shows that clock regulation of Vrn-2 operates indirectly through one or more downstream genes, one of which may be Ppd-1.  相似文献   

10.
11.
12.
Winter varieties of plants can flower only after exposure to prolonged cold. This phenomenon is known as vernalization and has been widely studied in the model plant Arabidopsis thaliana as well as in monocots. Through the repression of floral activator genes, vernalization prevents flowering in winter. In Arabidopsis, FLOWERING LOCUS C or FLC is the key repressor during vernalization, while in monocots vernalization is regulated through VRN1, VRN2 and VRN3 (or FLOWERING LOCUS T). Interestingly, VRN genes are not homologous to FLC but FLC homologs are found to have a significant role in vernalization response in cereals. The presence of FLC homologs in monocots opens new dimensions to understand, compare and retrace the evolution of vernalization pathways between monocots and dicots. In this review, we discuss the molecular mechanism of vernalization-induced flowering along with epigenetic regulations in Arabidopsis and temperate cereals. A better understanding of cold-induced flowering will be helpful in crop breeding strategies to modify the vernalization requirement of economically important temperate cereals.  相似文献   

13.
14.
The orderly development of winter wheat through its life cycle can be marked at three stages: stem elongation, heading date, and physiological maturity. The duration of a developmental phase between two stages is important in yield component generation. In this study the three developmental stages were characterized and 350 markers were mapped in a population of recombinant inbred lines (RILs) generated from a cross between two winter wheat cultivars (‘Jagger’ and ‘2174’). Three major QTLs were found to control variation in developmental process, and each of them was tightly associated with a known flowering gene, VRN-A1 on chromosome 5A, PPD-D1 on chromosome 2D, and VRN-D3 on chromosome 7D. The average contribution of the gene marker for each QTL to the total phenotypic variation (R 2) was evaluated over 3 years. The effect of VRN-A1 ranged from 21.5% at stem elongation to 17.4% at physiological maturity. The effect of PPD-D1 was minor (6.7%) at stem elongation but increased to 29.7% at heading and 20.1% at physiological maturity. The effect of VRN-D3 was not detected at stem elongation but increased to 14.6% at heading and to 20.5% at physiological maturity. Hence, the VRN-A1 locus, the PPD-D1 locus, and the VRN-D3 locus had greatest impact on development at stem elongation, heading date, and physiological maturity, respectively. Whereas the Jagger VRN-A1 and VRN-D3 alleles accelerated development, the Jagger PPD-D1 allele delayed the developmental process due to its sensitivity to photoperiod. Our findings suggest that through the appropriate combination of alleles at these three loci one would be able to regulate the various developmental phases to accommodate different agricultural needs.  相似文献   

15.

Background

In arabidopsis (Arabidopsis thaliana), FLOWERING LOCUS T (FT) and FLOWERING LOCUS C (FLC) play key roles in regulating seasonal flowering-responses to synchronize flowering with optimal conditions. FT is a promoter of flowering activated by long days and by warm conditions. FLC represses FT to delay flowering until plants experience winter.

Scope

The identification of genes controlling flowering in cereals allows comparison of the molecular pathways controlling seasonal flowering-responses in cereals with those of arabidopsis. The role of FT has been conserved between arabidopsis and cereals; FT-like genes trigger flowering in response to short days in rice or long days in temperate cereals, such as wheat (Triticum aestivum) and barley (Hordeum vulgare). Many varieties of wheat and barley require vernalization to flower but FLC-like genes have not been identified in cereals. Instead, VERNALIZATION2 (VRN2) inhibits long-day induction of FT-like1 (FT1) prior to winter. VERNALIZATION1 (VRN1) is activated by low-temperatures during winter to repress VRN2 and to allow the long-day response to occur in spring. In rice (Oryza sativa) a VRN2-like gene Ghd7, which influences grain number, plant height and heading date, represses the FT-like gene Heading date 3a (Hd3a) in long days, suggesting a broader role for VRN2-like genes in regulating day-length responses in cereals. Other genes, including Early heading date (Ehd1), Oryza sativa MADS51 (OsMADS51) and INDETERMINATE1 (OsID1) up-regulate Hd3a in short days. These genes might account for the different day-length response of rice compared with the temperate cereals. No genes homologous to VRN2, Ehd1, Ehd2 or OsMADS51 occur in arabidopsis.

Conclusions

It seems that different genes regulate FT orthologues to elicit seasonal flowering-responses in arabidopsis and the cereals. This highlights the need for more detailed study into the molecular basis of seasonal flowering-responses in cereal crops or in closely related model plants such as Brachypodium distachyon.Key words: Flowering, vernalization, photoperiod, day length, VRN1, VRN2, FLC, FT, cereals, arabidopsis, MADS  相似文献   

16.
17.
We conducted a molecular analysis of the Vrn-B1 gene in two near-isogenic lines (NILs) carrying the dominant Vrn-B1 S and Vrn-B1 Dm alleles from the Saratovskaya 29 and Diamant 2 cultivars, respectively. These lines are characterized by different times of ear emergence. PCR analysis and subsequent sequencing of the regulatory regions of Vrn-B1 revealed the full identity of the promoter region in both alleles. Simultaneously, we found significant differences in the structure of the first intron of the Vrn-B1 S allele when compared to Vrn-B1 Dm ; specifically, the deletion of 0.8 kb coupled with the duplication of 0.4 kb. We suggest that these changes in intron 1 of Vrn-B1 S caused earlier ear emergence in the corresponding NIL. The unusual structure of intron 1 within the Vrn-B1 S allele was described for the first time in this study. The allele Vrn-B1 Dm was almost identical with the previously studied sequence of the Vrn-B1a allele of T. aestivum, Triple Dirk B. We designated the new Vrn-B1 S allele as Vrn-B1c. PCR analysis of the Vrn-B1 gene in 26 spring wheat cultivars of both Russian and foreign breeding revealed that 16 of them contain the Vrn-B1a allele and 6 contain the Vrn-B1c allele. Other cultivars studied contained the recessive vrn-B1 gene, except for Novosibirskaya 67. This study demonstrates that the traditional system of Vrn-1 markers does not fully encompass the allelic diversity of these genes because none of the cultivars containing the Vrn-B1c allele gave a PCR product using the previously developed set of primers for identification of the Vrn-B1 locus. We showed that the newly characterized Vrn-B1c allele is widely distributed among different genotypes of spring wheat. The findings indicate the impact of structural changes in the first intron of Vrn-1 on the vernalization response and heading time.  相似文献   

18.

Background

The key gene in genetic system controlling the duration of the vegetative period in cereals is the VRN1 gene, whose product under the influence of low temperature (vernalization) promotes the transition of the apical meristem cells into a competent state for the development of generative tissues of spike. As early genetic studies shown, the dominant alleles of this gene underlie the spring forms of plants that do not require vernalization for this transition. In wheat allopolyploids various combinations of alleles of the VRN1 homoeologous loci (VRN1 homoeoalleles) provide diversity in such important traits as the time to heading, height of plants and yield. Due to genetical mapping of VRN1 loci it became possible to isolate the dominant VRN1 alleles and to study their molecular structure compared with the recessive alleles defining the winter type of plants. Of special interest is the process of divergence of VRN1 loci in the course of evolution from diploid ancestors to wheat allopolyploids of different levels of ploidy.

Results

Molecular analysis of VRN1 loci allowed to establish that various dominant alleles of these loci appeared as a result of mutations in two main regulatory regions: the promoter and the first intron. In the diploid ancestors of wheat, especially, in those of A- genome (T. boeoticum, T. urartu), the dominant VRN1 alleles are rare in accordance with a limited distribution of spring forms in these species. In the first allotetraploid wheat species including T. dicoccoides, T. araraticum (T. timopheevii), the spring forms were associated with a new dominant alleles, mainly, within the VRN-A1 locus. The process of accumulation of new dominant alleles at all VRN1 loci was significantly accelerated in cultivated wheat species, especially in common, hexaploid wheat T. aestivum, as a result of artificial selection of spring forms adapted to different climatic conditions and containing various combinations of VRN1 homoeoalleles.

Conclusions

This mini-review summarizes data on the molecular structure and distribution of various VRN1 homoeoalleles in wheat allopolyploids and their diploid predecessors.
  相似文献   

19.
小麦春化发育的分子调控机理研究进展   总被引:5,自引:0,他引:5  
春化发育特性是小麦品种的重要性状,直接影响着小麦品种的种植范围和利用效率.本文就小麦春化相关基因的发现,以及对春化相关基因VRN1、VRN2和VRN3的克隆、表达特性以及春化发育分子调控机理方面的研究进展进行了综述.  相似文献   

20.
Vernalization, a period of low temperature to induce transition from vegetative to reproductive state, is an important environmental stimulus for many cool season grasses. A key gene in the vernalization pathway in grasses is the VRN1 gene. The objective of this study was to identify causative polymorphism(s) at the VRN1 locus in perennial ryegrass (Lolium perenne) for variation in vernalization requirement. Two allelic Bacterial Artificial Chromosome clones of the VRN1 locus from the two genotypes Veyo and Falster with contrasting vernalization requirements were identified, sequenced, and characterized. Analysis of the allelic sequences identified an 8.6-kb deletion in the first intron of the VRN1 gene in the Veyo genotype which has low vernalization requirement. This deletion was in a divergent recurrent selection experiment confirmed to be associated with genotypes with low vernalization requirement. The region surrounding the VRN1 locus in perennial ryegrass showed microcolinearity to the corresponding region on chromosome 3 in Oryza sativa with conserved gene order and orientation, while the micro-colinearity to the corresponding region in Triticum monococcum was less conserved. Our study indicates that the first intron of the VRN1 gene, and in particular the identified 8.6?kb region, is an important regulatory region for vernalization response in perennial ryegrass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号