首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
UDP-D-Galactose:D-xylose galactosyltransferase, a membrane-bound enzyme which catalyzes the second glycosyl transfer reaction in the biosynthesis of chondroitin sulfate chains, has been solubilized and partially purified from embryonic chick cartilage. Solubilization was effected by treatment of a particulate fraction of a homogenate (sedimenting between 10,000 and 100,000 times g) with the nonionic detergent Nonidet P-40 (0.5%) and KCl (0.5 M) or by the alkali-detergent method described previously (Helting, T. (1971) J. Biol. Chem. 246, 815-822). The applicability of the salt-detergent procedure as a general method for solubilization of membrane-bound glycosyltransferases was tested by assay of four other glycosyltransferases involved in chondroitin sulfate synthesis (UDP-D-xylose:core protein xylosyltransferase, UDP-D-galactose:4-O-beta-D-galactosyl-D-xylose galactosyltransferase, UDP-D-glucuronic acid: 3-O-beta-D-galactosyl-D-galactose glucuronosyltransferase, and UDP-N-acetyl-D-galactosamine: (GlcUA-GalNAc-4-sulfate)4 N-acetylgalactosaminyltransferase). In each case, greater than 70% of the activity was solubilized and, on gel chromatography on Sephadex G-200, the enzymes appeared largely in included positions and partially separated from each other. After partial purification by gel chromatography on Sephadex G-200, UDP-D-galactose:D-xylose galactosyltransferase was purified further by chromatography on one of several affinity matrices, i.e. xylosylated core protein of cartilage proteoglycan coupled to CNBr-activated Sepharose, a core protein matrix saturated with UDP-D-xylose:core protein xylosyltransferase or UDP-D-xylose:core protein xylosyltransferase covalently bound to Sepharose. The specific activities of the enzyme preparations obtained by these procedures were approximately 1000-fold greater than that of the crude homogenate.  相似文献   

2.
When the subridge mesoderm of the embryonic chick limb bud is cultured in the absence of the apical ectodermal ridge and adjacent ectoderm, the cells rapidly progress through the various stages of chondrogenesis. During the first day of culture, the cells initiate condensation, and during subsequent days, deposit a cartilage matrix. In the present study, we show that early in the first day there is a progressive 2-fold increase in cell surface galactosyltransferase activity towards endogenous acceptors. Later in the first day, although the cells are still in condensation, endogenous galactosyltransferase activity has decreased, suggesting in situ galactosylation of surface acceptors. During subsequent development, when cartilage matrix is being deposited, surface galactosyltransferase activity remains low. All controls have been performed to insure cell surface localization of enzyme activity. Two other surface glycosyltransferases show very low levels of activity, which do not change significantly during culture. We suggest that during cellular condensation, an interaction between surface galactosyltransferases and acceptors on adjacent cells occurs, and this interaction may be causally related to subsequent chondrogenic differentiation.  相似文献   

3.
Monolayer cultures of embryonic chick chondrocytes were incubated with 35SO42- in the presence and absence of 1.0 mM p-nitrophenyl-beta-d-xyloside for 2 days. The relative amounts of chondroitin sulfate proteoglycan and free polysaccharide chains were measured following gel filtration on Sephadex G-200. Synthesis of beta-xyloside-initiated polysaccharide chains was accompanied by an apparent decrease in chondroitin sulfate proteoglycan production by the treated cultures. When levels of cartilage-specific core protein were determined by a radioimmunoassay, similar amounts of core protein were found in both beta-xyloside and control cultures, indicating that decreased synthesis of core protein is not responsible for the observed decrease in chondroitin sulfate proteoglycan production. Activity levels of the chain-initiating glycosyltransferases (UDP-D-xylose: core protein xylosyltransferase and UDP-D-galactose:D-xylose galactosyltransferase) as well as the extent of xylosylation of core protein were found to be similar in cell extracts from both culture types. Furthermore, beta-xylosides did not inhibit the xylosyltransferase reaction in cell-free studies. In contrast, the beta-xylosides effectively competed with several galactose acceptors, including an enzymatically synthesized xylosylated core protein acceptor, in the first galactosyltransferase reaction.  相似文献   

4.
We have previously described the construction of a P-selectin glycoprotein ligand-1-mouse immunoglobulin Fc fusion protein, which when transiently coexpressed with the porcine alpha1,3 galactosyltransferase in COS cells becomes a very efficient adsorber of xenoreactive, anti-pig antibodies. To relate the adsorption capacity with the glycan expression of individual fusion proteins produced in different cell lines, stable CHO-K1, COS, and 293T cells producing this fusion protein have been engineered. On alpha1,3 galactosyltransferase coexpression, high-affinity adsorbers were produced by both COS and 293T cells, whereas an adsorber of lower affinity was derived from CHO-K1 cells. Stable coexpression of a core 2 beta1,6 N-acetylglucosaminyltransferase in CHO-K1 cells led to increased alpha-Gal epitope density and improved anti-pig antibody adsorption efficacy. ESI-MS/MS of O-glycans released from PSGL-1/mIgG(2b) produced in an alpha1,3 galactosyl- and core 2 beta1,6 N-acetylglucosaminyltransferase expressing CHO-K1 cell clone revealed a number of structures with carbohydrate sequences consistent with terminal Gal-Gal. In contrast, no O-glycan structures with terminal Gal-Gal were identified on the fusion protein when expressed alone or in combination with the alpha1,3 galactosyltransferase in CHO-K1 cells. In conclusion, the density of alpha-Gal epitopes on PSGL-1/mIgG(2b) was dependent on the expression of O-linked glycans with core 2 structures and lactosamine extensions. The structural complexity of the terminal Gal-Gal expressing O-glycans with both neutral as well as sialic acid-containing structures is likely to contribute to the high adsorption efficacy.  相似文献   

5.
In mutants defective in any of eight Caenorhabditis elegans sqv (squashed vulva) genes, the vulval extracellular space fails to expand during vulval morphogenesis. Strong sqv mutations result in maternal-effect lethality, caused in part by the failure of the progeny of homozygous mutants to initiate cytokinesis and associated with the failure to form an extracellular space between the egg and the eggshell. Recent studies have implicated glycosaminoglycans in these processes. Here we report the cloning and characterization of sqv-2 and sqv-6. sqv-6 encodes a protein similar to human xylosyltransferases. Transfection of sqv-6 restored xylosyltransferase activity to and rescued the glycosaminoglycan biosynthesis defect of a xylosyltransferase mutant hamster cell line. sqv-2 encodes a protein similar to human galactosyltransferase II. A recombinant SQV-2 fusion protein had galactosyltransferase II activity with substrate specificity similar to that of human galactosyltransferase II. We conclude that C. elegans SQV-6 and SQV-2 likely act in concert with other SQV proteins to catalyze the stepwise formation of the proteoglycan core protein linkage tetrasaccharide GlcAbeta1,3Galbeta1, 3Galbeta1,4Xylbeta-O-(Ser), which is common to the two major types of glycosaminoglycans in vertebrates, chondroitin and heparan sulfate. Our results strongly support a model in which C. elegans vulval morphogenesis and zygotic cytokinesis depend on the expression of glycosaminoglycans.  相似文献   

6.
Pulse-chase labeling techniques are used in conjunction with subcellular fractionation and quantitative immunoprecipitation to define the kinetics of intracellular translocation and secretion of proteoglycan core protein, along with link protein and type II collagen. In embryonic chick chondrocytes the core protein is processed very rapidly, exhibiting a t 1/2 in both the rough endoplasmic reticulum and golgi region of less than 10 min. Link protein appears to be processed as rapidly as the core protein, but the kinetics of type II collagen secretion is 3-4 times slower. These results are consistent with possible segregation and coordinate intracellular processing of link protein and core protein, macromolecules which are known to associate extracellularly. In contrast, rat chondrosarcoma chondrocytes translocated and secreted the core protein much more slowly (t 1/2 = 40 min) than the chick cells, perhaps due to the significantly reduced levels of galactosyltransferase I observed in the transformed chondrocytes.  相似文献   

7.
β1,4-galactosyltransferase is unusual among the glycosyltransferases in that it is found in two subcellular compartments where it performs two distinct functions. In the trans-Golgi complex, galactosyltransferase participates in oligosaccharide biosynthesis, as do the other glycosyltransferases. On the cell surface, however, galactosyltransferase associates with the cytoskeleton and functions as a receptor for extracellular oligosaccharide ligands. Although we now know much regarding galactosyltransferase function in these two compartments, little is known about how it is targeted to these different sites. By cloning the galactosyltransferase gene products, certain features of the protein have been identified that may be critical for its expression on the cell surface or retention within the Golgi complex. This article discusses recent studies which suggest that a cytoplasmic sequence unique to one galactosyltransferase isoform is required for targeting a portion of this protein to the plasma membrane, enabling it to function as a cell adhesion molecule. These findings allow one to manipulate surface galactosyltransferase expression, either positively or negatively, and perturb galactosyltransferase-dependent cellular interactions during fertilization and development.  相似文献   

8.
The extracellular matrix of cultured human lung fibroblasts contains one major heparan sulfate proteoglycan. This proteoglycan contains a 400-kDa core protein and is structurally and immunochemically identical or closely related to the heparan sulfate proteoglycans that occur in basement membranes. Because heparitinase does not release the core protein from the matrix of cultured cells, we investigated the binding interactions of this heparan sulfate proteoglycan with other components of the fibroblast extracellular matrix. Both the intact proteoglycan and the heparitinase-resistant core protein were found to bind to fibronectin. The binding of 125I-labeled core protein to immobilized fibronectin was inhibited by soluble fibronectin and by soluble cold core protein but not by albumin or gelatin. A Scatchard plot indicates a Kd of about 2 x 10(-9) M. Binding of the core protein was also inhibited by high concentrations of heparin, heparan sulfate, or chrondroitin sulfate and was sensitive to high salt concentrations. Thermolysin fragmentation of the 125I-labeled proteoglycan yielded glycosamino-glycan-free core protein fragments of approximately 110 and 62 kDa which bound to both fibronectin and heparin columns. The core protein-binding capacity of fibronectin was very sensitive to proteolysis. Analysis of thermolytic and alpha-chymotryptic fragments of fibronectin showed binding of the intact proteoglycan and of its isolated core protein to a protease-sensitive fragment of 56 kDa which carried the gelatin-binding domain of fibronectin and to a protease-sensitive heparin-binding fragment of 140 kDa. Based on the NH2-terminal amino acid sequence analyses of the 56- and 140-kDa fragments, the core protein-binding domain in fibronectin was tentatively mapped in the area of overlap of the two fragments, carboxyl-terminally from the gelatin-binding domain, possibly in the second type III repeat of fibronectin. These data document a specific and high affinity interaction between fibronectin and the core protein of the matrix heparan sulfate proteoglycan which may anchor the proteoglycan in the matrix.  相似文献   

9.
We have isolated five Chinese hamster ovary cell mutants defective in galactosyltransferase I (UDP-D-galactose:xylose beta-1,4-D-galactosyltransferase) and studied the effect of p-nitrophenyl-beta-D-xyloside supplementation on glycosaminoglycan biosynthesis in the mutant cells. Assays of galactosyltransferase I showed that the mutants contained less than 2% of the enzyme activity present in wild-type cells, and enzyme activity was additive in mixtures of mutant and wild-type cell extracts, suggesting that the mutations most likely defined the structural gene encoding the enzyme. Cell hybridization studies showed that the mutations in all five strains were recessive and that the mutants belonged to the same complementation group. The mutants contained wild-type levels of xylosyltransferase (UDP-D-xylose:core protein (serine) beta-D-xylosyltransferase), lactose synthase (UDP-D-galactose:N-acetyl-glucosaminide beta-1,4-D-galactosyltransferase), and lactosylceramide synthase (UDP-D-galactose:glucosylceramide beta-1,4-D-galactosyltransferase). Their sensitivity to lectin-mediated cytotoxicity was virtually identical to that of the wild-type, indicating that there were no gross alterations in glycoprotein or glycolipid compositions. Anion-exchange high performance liquid chromatography of 35S-glycosaminoglycans from one of the galactosyltransferase I-deficient mutants showed a dramatic reduction in both heparan sulfate and chondroitin sulfate, demonstrating that galactosyltransferase I is responsible for the formation of both glycosaminoglycans in intact cells. Surprisingly, the addition of 1 mM-p-nitrophenyl-beta-D-xyloside, a substrate for galactosyltransferase I, restored glycosaminoglycan synthesis in mutant cells. This finding suggested that another galactosyltransferase, possibly lactose synthase, can transfer galactose to xylose in intact cells.  相似文献   

10.
The ability of cancer cells to invade neighboring tissues is crucial for cell dissemination and tumor metastasis. It is generally assumed that cell adhesion to extracellular matrix proteins is an important stage of cancer progression. Hence, adhesion of cancer cells under in vitro conditions to proteins adsorbed on a substratum surface has been studied to provide a better understanding of cell-protein interaction mechanisms. A protein, adsorbed in an appropriate conformation on a substratum surface, creates a biologically active layer that regulates such cell functions as adhesion, spreading, proliferation and migration. In our study, we examined the interaction of PC-3 cells under in vitro conditions with fibronectin adsorbed on sulfonated polystyrene surfaces of a defined chemical composition and topography. We investigated cell adhesion to fibronectin and cell spreading. Using automatic, sequential microscopic image registration, we are the first to present observations of the dynamics of PC-3 cell spreading and the cell shape during this process. Our results show that cell adhesion and the shape of spreading cells strongly depend on the time interaction with fibronectin. The analysis of images of cytoskeletal protein distribution in the cell region near the cell-substratum interface revealed that induction of a signal cascade took place, which led to the reorganization of the cytoskeletal proteins and the activation of focal adhesion kinase (FAK).  相似文献   

11.
《The Journal of cell biology》1996,134(6):1401-1410
Protein kinase C mu (PKC mu) displays unusual structural features like a pleckstrin homology domain and an amino-terminal hydrophobic region with a putative leader peptide and transmembrane sequence. As a discrete location often is a direct clue to the potential biological function of a kinase, antibodies directed against unique amino- and carboxy-terminal domains of PKC mu were used to localize the protein within intracellular compartments in immunofluorescence and subcellular fractionation studies. Confocal laser scanning microscopy showed colocalization of PKC mu with the resident Golgi marker protein beta 1,4 galactosyltransferase in PKC mu transfectants and in the human hepatocellular carcinoma cell line HepG2, expressing endogenous PKC mu. Long-term treatment of cells with brefeldin A, which disintegrates the Golgi apparatus, disrupted PKC mu-specific staining. Cosegregation of PKC mu with beta 1,4 galactosyltransferase, but not with the endosomal marker rab5, upon density gradient fractionation and Western blot analysis of HepG2 cell extracts, provides independent evidence for a Golgi localization of PKC mu. Moreover, cellular sulfate uptake and Golgi-specific glycosaminoglycan sulfation was enhanced in PKC mu transfectants. Together, these data suggest that PKC mu is a resident protein kinase of the core Golgi compartment and is involved in basal transport processes.  相似文献   

12.
N-Acetyl-, N-propionyl-, N-butyryl- and N-valerylglucosamines were synthesized as topographical probes to localize further the interaction site of alpha-lactalbumin on galactosyltransferase. All these compounds were found to be substrates for galactosyltransferase with Km values in the millimolar range. In the presence of alpha-lactalbumin, the Michaelis-Menten constants were diminished. However, the effect on the initial rates of these reactions varied. Thus, at low N-acylglucosamine concentrations, alpha-lactalbumin activated the enzyme activity, but at high concentrations, alpha-lactalbumin became inhibitory. This mixed-type inhibition kinetics indicated that a quaternary complex between galactosyltransferase, alpha-lactalbumin, Mn2+-UDPgalactose and N-acylglucosamine existed during the catalytic process. The ability of these N-acylglucosamine substrates to bind to lactose synthase complex was further substantiated by the physical association of galactosyltransferase onto the solid-bound alpha-lactalbumin in the presence of any one of these compounds. The data revealed that the presence of the N-acyl group up to five carbons in length did not interfere with the interaction between alpha-lactalbumin and galactosyltransferase, suggesting that alpha-lactalbumin was not bound in the vicinity of the C-2 region of the monosaccharide site. The inhibitory effect of alpha-lactalbumin on N-acyllactosamine formation is probably a consequence of conformational changes of galactosyltransferase.  相似文献   

13.
Lipopolysaccharides, extracted by phenol/chloroform/petroleum ether, from two rough mutants of Salmonella typhimurium of class rfaH were studied by passive haemagglutination inhibition and by methylation analysis. The structural and immunochemical analyses showed that (i) formation of the galactose I unit of the core is defective, but the defect is not complete, and (ii) of those core chains which do receive the galactose I residue, many are not continued to form complete core, but instead terminate at intermediate points. This suggests that the rfaH gene, though involved in formation of the galactose I unit, is not the structural gene for the galactosyltransferase which adds this unit. The rfaH product may be a positive regulator for several rfa genes specifying glycosyltransferases, or it may be a protein needed for the efficient action of several such transferases.  相似文献   

14.
It has been shown that sorption of most proteins with the molecular weight lower than 200 kDa from human blood plasma on the surface of perfluorocarbon emulsion, stabilized with proxanol 268, is mainly based on hydrophobic interaction, whereas sorption of immunoglobulin G is mainly the result of electrostatic interaction. The removal of lipidic components from plasma leads to the increase of a total amount of adsorbed proteins by 35%. Particularly, when lipidic components are removed, sorption of apolipoprotein AI and immunoglobulin G is considerably bettered as well as sorption of other proteins with the molecular weight of about 50 and 60 kDa occurs. It has been out that apolipoprotein AI in the adsorbed condition loses its capability of tryptophan fluorescence, which might be probably determined by the quenching influence of the perfluorocarbon core of nanoparticle. We think that the findings obtained also indicates considerable conformational rearrangements of this protein during adsorption. It was shown, that the fluorescence of proteins with sorption on nanoparticles in emulsion based on the hydrophobic interaction, is completely or partially quenched.  相似文献   

15.
Microsomal membranes were solubilized by incubation with lysolecithin which caused considerable release of galactosyl- and N-acetylglucosaminyl-transferase into a high-speed supernatant fraction. With a critical concentration of lysolecithin (2.5 mg/10 mg protein in 1 mL microsome suspension), there was a maximal binding of radioactive lysolecithin to the sediment fraction obtained after high-speed centrifugation. Increase of lysolecithin concentration (above 2.5 mg/mL) in the incubation mixture caused a progressive release of the enzymes into the supernatant fraction. Lysolecithin binding to the membrane was greatly inhibited by 1 M NaCl, and high salt concentration also inactivated galactosyltransferase in the sediment, suggesting an electrostatic interaction between lysolecithin and membrane enzyme. In contrast, high NaCl concentration had no inhibitory effect on the enzyme activity in the sediment when the fraction was prepared by treatment with Triton X-100. Lysolecithin-treated microsomal sediment and supernatant galactosyltransferase was inactivated by oleoyllysophosphatidic acid but not by palmitoyllysophosphatidic acid or egg yold lysophosphatidic acid. Triton X-100 treated microsomal fractions were also similarly affected by different species of lysophosphatidic acid. The results suggested a similarity of interactions of lysophosphatidic fatty acyl species with lysolecithin and Triton-treated galactosyltransferase.  相似文献   

16.
Embryonal carcinoma (EC) cells possess a complex cell surface glycoconjugate called lactosaminoglycan, whose core structure is composed of repeating N-acetyllactosamine (Gal leads to GlcNAc) disaccharides. Recent studies suggest that the cell surface receptor for lactosaminoglycan is galactosyltransferase, which binds terminal GlcNAc residues on various side chains, thus anchoring the glycoconjugate to the cell surface (Shur, B. D. (1982). J. Biol. Chem. 257, 6871-6878.). The results described in this paper suggest that multivalent lactosaminoglycans mediate EC cell adhesions by binding to their surface galactosyltransferase receptors. In the presence of UDPgalactose, but not other sugar nucleotides, EC cell adhesion is reduced and preformed cell adhesions are dissociated. UDPgalactose interferes with EC cell adhesion by forcing the galactosyltransferase reaction to completion, thus dissociating the enzyme from its galactosylated substrate (i.e., lactosaminoglycan), and thereby dissociating EC cells from one another. Lactosaminoglycans purified from EC cell cultures rapidly agglutinate EC cells, and EC cells preferentially adhere to substrates irreversibly derivatized with protein- and lipid-free lactosaminoglycan side chains. Under identical conditions, EC cells do not adhere to either hyaluronate- or chondroitin sulfate-derivatized substrates, relative to underivatized control surfaces. EC cell adhesion to other cells and to lactosaminoglycan-derivatized surfaces can be inhibited by reagents that selectively interfere with surface galactosyltransferase activity. First, alpha-lactalbumin specifically reduces the galactosyltransferase's affinity for its lactosaminoglycan substrate and simultaneously inhibits adhesion. Similar levels of bovine serum albumin have no effect. Second, selective inhibition of surface galactosyltransferase with UDP-dialdehyde also inhibits adhesion, while similar levels of AMP-dialdehyde do not. Results show that 1 mM Ca2+ protects the surface galactosyltransferase activity from proteolysis, which suggests the galactosyltransferase is one of the Ca2+-dependent EC cell adhesion molecules. SDS-PAGE fluorography and gel chromatography analyses have determined that the principal lactosaminoglycan substrate for EC surface galactosyltransferase has an apparent molecular weight of 90K. Taken together, these results suggest that lactosaminoglycans participate in EC cell adhesion by binding to their surface galactosyltransferase receptors.  相似文献   

17.
The sphingolipids galactosylceramide and sulfatide are important for the formation and maintenance of myelin. Transgenic mice overexpressing the galactosylceramide synthesizing enzyme UDP-galactose:ceramide galactosyltransferase in oligodendrocytes display an up to four-fold increase in UDP-galactose:ceramide galactosyltransferase activity, which correlates with an increase in its products monogalactosyl diglyceride and non-hydroxy fatty acid-containing galactosylceramide. Surprisingly, however, we observed a concomitant decrease in alpha-hydroxylated galactosylceramide such that total galactosylceramide in transgenic mice was almost unaltered. These data suggest that UDP-galactose:ceramide galactosyltransferase activity does not limit total galactosylceramide level. Furthermore, the predominance of alpha-hydroxylated galactosylceramide appeared to be determined by the extent to which non-hydroxylated ceramide was galactosylated rather than by the higher affinity of UDP-galactose:ceramide galactosyltransferase for alpha-hydroxy fatty acid ceramide. The protein composition of myelin was unchanged with the exception of significant up-regulation of the myelin and lymphocyte protein. Transgenic mice were able to form myelin, which, however, was apparently unstable and uncompacted. These mice developed a progressive hindlimb paralysis and demyelination in the CNS, demonstrating that tight control of UDP-galactose:ceramide galactosyltransferase expression is essential for myelin maintenance.  相似文献   

18.
It has been shown that sorption of most proteins with the molecular weight lower than 200 kDa from human blood plasma on the surface of perfluorocarbon emulsion stabilized with proxanol 268 is mainly based on hydrophobic interaction, whereas sorption of immunoglobulin G is mainly the result of electrostatic interaction. The removal of lipidic components from plasma leads to an increase in the total amount of adsorbed proteins by 35%. Particularly, when lipidic components are removed, sorption of apolipoprotein AI and fibrinogen is considerably bettered as well as sorption of other proteins with the molecular weight of about 50 and 60 kDa occurs. It has been set that apolipoprotein AI in the adsorbed condition loses its capability of tryptophan fluorescence, which might be probably determined by the quenching influence of the perfluorocarbon core of nanoparticle. We think that the findings obtained also indicate considerable conformational rearrangements of this protein during adsorption. It was shown that the fluorescence of proteins with sorption on nanoparticles in emulsion based on the hydrophobic interaction is completely or partially quenched.  相似文献   

19.
A cDNA encoding a novel galactosyltransferase was identified based on BLAST analysis of expressed sequence tags, and the cDNA clones were isolated from a human melanoma line library. The new cDNA sequence encoded a type II membrane protein with 327 amino acid sequence and showed 38% homology to the Caenorhabditis elegans sqv-3 gene involved in the vulval invagination and oocyte development. Extracts from L cells transfected with the galactosyltransferase cDNA in an expression vector and a fusion protein with protein A exhibited marked galactosyltransferase activity specific for p-nitrophenyl-beta-D-xylopyranoside. Moreover, transfection with the cloned cDNA restored glycosaminoglycan synthesis of galactosyltransferase I-deficient Chinese hamster ovary mutant pgsB-761 cells. Analysis of the enzyme product by beta-galactosidase digestion, mass spectroscopy, and NMR spectroscopy revealed that the reaction product was formed via beta-1,4 linkage, indicating that the enzyme is galactosyltransferase I (UDP-galactose:O-beta-D-xylosylprotein 4-beta-D-galactosyltransferase, EC 2.4.1.133) involved in the synthesis of the glycosaminoglycan-protein linkage region of proteoglycans.  相似文献   

20.
An affinity-purified, monospecific rabbit antibody against soluble human milk galactosyltransferase was used to localize the enzyme in HeLa cells by immunofluorescence and by the protein A-gold technique at the electron microscope level. Specific immunofluorescence was observed in a juxtanuclear cytoplasmic region which was identified, on immunostained thin sections of low-temperature Lowicryl K4M-embedded HeLa cells, as Golgi apparatus. Label by gold particles was limited to two to three trans cisternae of the Golgi apparatus, indicating a compartmentalization of galactosyltransferase in the cisternal stack. Combination of preembedding thiamine pyrophosphatase cytochemistry, with postembedding immunostaining for galactosyltransferase proved codistribution of the two enzymes. However, the acid phosphatase-positive, trans-most cisterna was negative for galactosyltransferase. The close topological association of both galactosyltransferase and thiamine pyrophosphatase (or nucleoside diphosphatase) suggests a concerted action of both enzymes in glycosylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号