首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Thin filament regulation of muscle contraction is believed to be mediated by both Ca2+ and strongly bound myosin cross-bridges. We found that secophalloidin (SPH, 5-8 mM) activates cross-bridge cycling without Ca2+ causing isometric force comparable to that induced by Ca2+. At saturated [SPH], Ca2+ further increased force by 20%. SPH-induced force was reversible upon washing with a relaxing solution. However, there was more than 30% irreversible loss in subsequent Ca2+-activated force. We hypothesize that SPH activates muscle via strongly bound cross-bridges. SPH-activated contraction provides a new model for studying the role of Ca2+ and cross-bridges in muscle regulation.  相似文献   

2.
The tension of single glycerinated rabbit skeletal muscle fiber was desensitized to a Ca(2+)-concentration after treatment with an excessive amount of bovine cardiac troponin T and reached a level of about 70% of the maximum tension of the untreated fiber. A SDS-gel electrophoretic examination indicated that troponin C.I.T complex in the fiber was replaced with the added cardiac troponin T. The Ca(2+)-sensitivity of the tension of the troponin T-treated fiber was then recovered by the addition of bovine cardiac troponins I and C. The rabbit skeletal muscle fiber thus hybridized with bovine cardiac troponin C.I.T showed the same cooperativity of Ca(2+)-activation as the cardiac muscle.  相似文献   

3.
Calcium controls the level of muscle activation via interactions with the troponin complex. Replacement of the native, skeletal calcium-binding subunit of troponin, troponin C, with mixtures of functional cardiac and mutant cardiac troponin C insensitive to calcium and permanently inactive provides a novel method to alter the number of myosin cross-bridges capable of binding to the actin filament. Extraction of skeletal troponin C and replacement with functional and mutant cardiac troponin C were used to evaluate the relationship between the extent of thin filament activation (fractional calcium binding), isometric force, and the rate of force generation in muscle fibers independent of the calcium concentration. The experiments showed a direct, linear relationship between force and the number of cross-bridges attaching to the thin filament. Further, above 35% maximal isometric activation, following partial replacement with mixtures of cardiac and mutant troponin C, the rate of force generation was independent of the number of actin sites available for cross-bridge interaction at saturating calcium concentrations. This contrasts with the marked decrease in the rate of force generation when force was reduced by decreasing the calcium concentration. The results are consistent with hypotheses proposing that calcium controls the transition between weakly and strongly bound cross-bridge states.  相似文献   

4.
Troponin C (TnC) was extracted from skinned skeletal muscle fibers by a method similar to that used previously on myofibrils (Zot, H.G., and Potter, J.D. (1982) J. Biol. Chem. 257, 7678-7683) and replaced with either skeletal (fast-twitch) or cardiac TnC. The relationship between isometric tension and Sr2+ concentration remained essentially the same before removal and after replacement with skeletal or cardiac TnC. Therefore, the origin of the TnC made no difference in the Sr2+ activation properties of the skinned fiber. In contrast, the activation of skinned cardiac fibers is approximately an order of magnitude more sensitive to Sr2+ than skinned skeletal fibers. These results show that the affinity of cardiac TnC for Sr2+ is altered when substituted into skinned skeletal muscle fibers through protein-protein interactions.  相似文献   

5.
The influences of [Ca(2+)] and Ca(2+) dissociation rate from troponin C (TnC) on the kinetics of contraction (k(Ca)) activated by photolysis of a caged Ca(2+) compound in skinned fast-twitch psoas and slow-twitch soleus fibers from rabbits were investigated at 15 degrees C. Increasing the amount of Ca(2+) released increased the amount of force in psoas and soleus fibers and increased k(Ca) in a curvilinear manner in psoas fibers approximately 5-fold but did not alter k(Ca) in soleus fibers. Reconstituting psoas fibers with mutants of TnC that in solution exhibited increased Ca(2+) affinity and approximately 2- to 5-fold decreased Ca(2+) dissociation rate (M82Q TnC) or decreased Ca(2+) affinity and approximately 2-fold increased Ca(2+) dissociation rate (NHdel TnC) did not affect maximal k(Ca). Thus the influence of [Ca(2+)] on k(Ca) is fiber type dependent and the maximum k(Ca) in psoas fibers is dominated by kinetics of cross-bridge cycling over kinetics of Ca(2+) exchange with TnC.  相似文献   

6.
Binding of Ca2+ to the troponin C (TnC) subunit of troponin is necessary for tension development in skeletal and cardiac muscles. Tension was measured in skinned fibers from rabbit skeletal muscle at various [Ca2+] before and after partial substitution of skeletal TnC with cardiac TnC. Following substitution, the tension-pCa relationship was altered in a manner consistent with the differences in the number of low-affinity Ca2+-binding sites on the two types of TnC and their affinities for Ca2+. The alterations in the tension-pCa relationship were for the most part reversed by reextraction of cardiac TnC and readdition of skeletal TnC into the fiber segments. These findings indicate that the type of TnC present plays an important role in determining the Ca2+ dependence of tension development in striated muscle.  相似文献   

7.
Fast skeletal troponin C (sTnC) has two low affinity Ca(2+)-binding sites (sites I and II), whereas in cardiac troponin C (cTnC) site I is inactive. By modifying the Ca2+ binding properties of sites I and II in cTnC it was demonstrated that binding of Ca2+ to an activated site I alone is not sufficient for triggering contraction in slow skeletal muscle fibers (Sweeney, H.L., Brito, R. M.M., Rosevear, P.R., and Putkey, J.A. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 9538-9542). However, a similar study using sTnC showed that Ca2+ binding to site I alone could partially activate force production in fast skeletal muscle fibers (Sheng, Z., Strauss, W.L., Francois, J.M., and Potter, J.D. (1990) J. Biol. Chem. 265, 21554-21560). The purpose of the current study was to examine the functional characteristics of modified cTnC derivatives in fast skeletal muscle fibers to assess whether or not either low affinity site can mediate force production when coupled to fast skeletal isoforms of troponin (Tn) I and TnT. Normal cTnC and sTnC were compared with engineered derivatives of cTnC having either both sites I and II active, or only site I active. In contrast to what is seen in slow muscle, binding of Ca2+ to site I alone recovered about 15-20% of the normal calcium-activated force and ATPase activity in skinned fast skeletal muscle fibers and myofibrils, respectively. This is most likely due to structural differences between TnI and/or TnT isoforms that allow for partial recognition and translation of the signal represented by binding Ca2+ to site I of TnC when associated with fast skeletal but not slow skeletal muscle.  相似文献   

8.
A recently developed approach for mapping protein-domain orientations in the cellular environment was used to investigate the Ca(2+)-dependent structural changes in the tropomyosin/troponin complex on the actin filament that regulate muscle contraction. Polarized fluorescence from bifunctional rhodamine probes attached along four alpha helices of troponin C (TnC) was measured in permeabilized skeletal muscle fibers. In relaxed muscle, the N-terminal lobe of TnC is less closed than in crystal structures of the Ca(2+)-free domain, and its D helix is approximately perpendicular to the actin filament. In contrast to crystal structures of isolated TnC, the D and E helices are not collinear. On muscle activation, the N lobe orientation becomes more disordered and the average angle between the C helix and the filament changes by 32 degrees +/- 5 degrees. These results illustrate the potential of in situ measurements of helix and domain orientations for elucidating structure-function relations in native macromolecular complexes.  相似文献   

9.
When Ca2+ binds to troponin C (TnC), all 26 troponin-tropomyosin (Tn-Tm) complexes of a regulatory strand change in concert from the inactive to the active configuration. To see if the complexes respond similarly when they are activated by rigor crossbridges in the absence of Ca2+, we determined the slope (ns) of the bell-shaped pS/tension (pS = -log [MgATP], where S = MgATP2-) relationship between pS 5, where the tension is maximal, and pS 2.3, where fibers are fully relaxed. In control skinned rabbit psoas fibers the ns value is greater than 4; it progressively decreases with TnC extraction. This decrease in ns with TnC extraction is analogous to the decrease in the slope (Hill coefficient) of the pCa/tension (pCa = -log [Ca2+]) relationship with extraction. Complete TnC extraction reduces the maximum substrate-induced tension by only 25%; in contrast, it reduces the maximum Ca2+ induced tension to zero. The effects of TnC extraction on the slope of the pS/tension curve are explained by the assumptions that (1) extracted Tn-Tm complexes no longer change in concert with their neighbors but change independently of them, and (2) co-operative signals cannot cross extracted Tn-Tm complexes. The ns value, therefore, like the nH, is a direct function of the number of contiguous, intact, Tn-Tm complexes in a stretch of a regulatory strand. To describe qualitatively the bi-phasic pS/tension relationship, the mono-phasic pCa/tension relationship, and the effects of TnC extraction on them, we introduce a version of the concerted-transition formalism which includes two activating ligands, Ca2+ and rigor crossbridges.  相似文献   

10.
Ca2+ binding to skeletal muscle troponin C in skeletal or cardiac myofibrils was measured by the centrifugation method using 45Ca. The specific Ca2+ binding to troponin C was obtained by subtracting the amount of Ca2+ bound to the CDTA-treated myofibrils (troponin C-depleted myofibrils) from that to the myofibrils reconstituted with troponin C. Results of Ca2+ binding measurement at various Ca2+ concentrations showed that skeletal troponin C had two classes of binding sites with different affinity for Ca2+. The Ca2+ binding of low-affinity sites in cardiac myofibrils was about eight times lower than that in skeletal myofibrils, while the high-affinity sites of troponin C in skeletal or cardiac myofibrils showed almost the same affinity for Ca2+. The Ca2+ sensitivity of the ATPase activity of skeletal troponin C-reconstituted cardiac myofibrils was also about eight times lower than that of skeletal myofibrils reconstituted with troponin C. These findings indicated that the difference in the sensitivity to Ca2+ of the ATPase activity between skeletal and cardiac CDTA-treated myofibrils reconstituted with skeletal troponin C was mostly due to the change in the affinity for Ca2+ of the low-affinity sites on the troponin C molecule.  相似文献   

11.
Using several independent methods, the interaction between troponin T and troponin C from skeletal and cardiac muscles was studied. It was found that troponin T and troponin C from skeletal muscles form a complex whose stability depends on Ca2+ concentration. Study of interactions between these troponin components demonstrated that both electrostatic and hydrophobic forces are involved in the complex formation. Cardiac troponin T and troponin C weakly interact with each other irrespective of experimental conditions. It was assumed that the weakening of interactions between the components of cardiac troponin is due to structural peculiarities of cardiac troponin T.  相似文献   

12.
Single fibers from glycerinated rabbit psoas muscle were treated with a solution containing CDTA, a strong chelator of metal ions. The CDTA-treated fibers lost all of the troponin C and showed no Ca2+-activated tension development. The addition of troponin C restored the Ca2+-activated tension of CDTA-treated fibers. The tension-pCa relationship in the case of the CDTA-treated fibers reconstituted with troponin C was almost the same as that in the case of the same fibers before the CDTA treatment. These results are consistent with those of the previous study on the Ca2+-activated ATPase of CDTA-treated rabbit skeletal myofibrils.  相似文献   

13.
The differential sensitivity of frog twitch and slow-tonic fibers to Ca2+ and Sr2+ suggests that these two fiber types express different troponin C (TnC) isoforms. To date, only one TnC isoform from anurans (resembling the mammalian fast-twitch isoform) has been isolated and characterized. In this study, we examined the possibility that anuran striated muscle contains more than one TnC isoform. Toward this end, we determined the TnC isoform composition of 198 single fibers from the rectus abdominis of the cane toad (a mixed slow-tonic and twitch muscle) and of toad cardiac muscle using a method that enables the identification of TnC isoforms on the basis of the effect of Ca2+ on their electrophoretic mobility. The fibers were typed according to their myosin heavy chain (MHC) isoform composition. The data indicate that striated muscle of the cane toad contains two TnC isoforms, one of which (TnC-t) is present in all fibers displaying only twitch MHC isoforms and the other of which (TnC-T/c) is present in fibers displaying the tonic MHC isoform and in cardiac muscle. For a subpopulation of 15 fibers, the TnC isoform composition was also compared with Ca2+ and Sr2+ activation characteristics. Fibers containing the TnC-T/c isoform were 3-fold more sensitive to Ca2+, 40-fold more sensitive to Sr2+, and responded to a 4.6-fold broader range of [Ca2+] than did fibers containing the TnC-t isoform. The Ca2+ activation properties of toad fibers containing the TnC-T/c isoform appear to be consistent with the previously reported physiological characteristics of amphibian slow-tonic muscle fibers. myofibrillar proteins; sodium dodecyl sulfate-polyacrylamide gel electrophoresis; alanine SDS-PAGE; hybrid fibers; Ca2+-binding proteins; single fiber; muscle protein polymorphism; fiber type  相似文献   

14.
Fast and slow/cardiac troponin C (TnC) are the two different isoforms of TnC. Expression of these isoforms is developmentally regulated in vertebrate skeletal muscle. Therefore, in our studies, the pattern of their expression was analyzed by determining the steady-state levels of both TnC mRNAs. It was also examined if mRNAs for both isoforms of TnC were efficiently translated during chicken skeletal muscle development. We have used different methods to determine the steady-state levels of TnC mRNAs. First, probes specific for the fast and slow TnC mRNAs were developed using a 390 base pair (bp) and a 255 bp long fragment, of the full-length chicken fast and slow TnC cDNA clones, respectively. Our analyses using RNA-blot technique showed that fast TnC mRNA was the predominant isoform in embryonic chicken skeletal muscle. Following hatching, a significant amount of slow TnC mRNA began to accumulate in the skeletal (pectoralis) muscle. At 43 weeks posthatching, the slow TnC mRNA was nearly as abundant as the fast isoform. Furthermore, a majority of both slow and fast TnC mRNAs was found to be translationally active. A second method allowed a more reliable measure of the relative abundance of slow and fast TnC mRNAs in chicken skeletal muscle. We used a common highly conserved 18-nucleotide-long sequence towards the 5'-end of these mRNAs to perform primer extension analysis of both mRNAs in a single reaction. The result of these analyses confirmed the predominance of fast TnC mRNA in the embryonic skeletal muscle, while significant accumulation of slow TnC mRNA was observed in chicken breast (pectoralis) muscle following hatching. In addition to primer extension analysis, polymerase chain reaction was used to amplify the fast and slow TnC mRNAs from cardiac and skeletal muscle. Analysis of the amplified products demonstrated the presence of significant amounts of slow TnC mRNA in the adult skeletal muscle.  相似文献   

15.
Glycerinated rabbit fast skeletal muscle fibers were chemically skinned with 1% Brij 35 and partially depleted of endogenous troponin C subunit (TnC) by exposure of the fibers to EDTA (Zot, H. G., and Potter, J. D. (1982) J. Biol. Chem. 257, 7678-7683). The TnC-depleted fibers exhibited a decrease in maximal tension that was mostly restored by readdition of TnC or by the addition of the fluorescent 5-dimethylaminonaphthalene-1-sulfonyl aziridine analogue, TnCDanz. TnCDanz is known to undergo an increase in fluorescence intensity when Ca2+ binds to the two low affinity Ca2+-specific regulatory sites of TnC. Steady-state fractional fluorescence and tension changes were measured simultaneously as a function of Ca2+. The Ca2+ sensitivity of the fluorescence curve was about 0.6 log unit greater than the tension curve. This difference in sensitivity could be explained if separate conformational states of TnC, brought about by Ca2+ binding to the Ca2+-specific sites, produce the fluorescence and tension changes. TnC-depleted fibers were also reconstituted with the fluorescent 2-[(4'-iodoacetamido)analino]naphthalene-6-sulfonic acid analogue, cardiac TnCIaans, which undergoes an increase in fluorescence intensity when Ca2+ binds to the single Ca2+- specific regulatory site. The steady-state fractional fluorescence and tension curves for fibers reconstituted with cardiac TnCIaans had nearly the same Ca2+ sensitivity. The steady-state fractional fluorescence of myofibrils reconstituted with TnCDanz was found to have a greater sensitivity to Ca2+ than the simultaneously measured ATPase. In all cases paired fractional fluorescence and activity curves tended to have parallel dependence on Ca2+. These procedures make it possible to study the Ca2+ binding properties of the Ca2+- specific sites in intact myofibrils and skinned fibers; the results presented suggest that the Ca2+ affinity of the Ca2+-specific sites of troponin are reduced in the thin filament compared to that of troponin in solution.  相似文献   

16.
Myosin binding-induced activation of the thin filament was examined in isolated cardiac myocytes and single slow and fast skeletal muscle fibers. The number of cross-bridge attachments was increased by stepwise lowering of the [MgATP] in the Ca(2+)-free solution bathing the preparations. The extent of thin filament activation was determined by monitoring steadystate isometric tension at each MgATP concentration. As pMgATP (where pMgATP is -log [MgATP]) was increased from 3.0 to 8.0, isometric tension increased to a peak value in the pMgATP range of 5.0-5.4. The steepness of the tension-pMgATP relationship, between the region of the curve where tension was zero and the peak tension, is hypothesized to be due to myosin-induced cooperative activation of the thin filament. Results showed that the steepness of the tension-pMgATP relationship was markedly greater in cardiac as compared with either slow or fast skeletal muscle fibers. The steeper slope in cardiac myocytes provides evidence of greater myosin binding-induced cooperative activation of the thin filament in cardiac as compared with skeletal muscle, at least under these experimental conditions of nominal free Ca2+. Cooperative activation is also evident in the tension-pCa relation, and is dependent upon thin filament molecular interactions, which require the presence of troponin C. Thus, it was determined whether myosin-based cooperative activation of the thin filament also requires troponin C. Partial extraction of troponin C reduced the steepness of the tension-pMgATP relationship, with the effect being significantly greater in cardiac than in skeletal muscle. After partial extraction of troponin C, muscle type differences in the steepness of the tension-pMgATP relationship were no longer apparent, and reconstitution with purified troponin C restored the muscle lineage differences. These results suggest that, in the absence of Ca2+, myosin-mediated activation of the thin filament is greater in cardiac than in skeletal muscle, and this apparent cooperativity requires the presence of troponin C on thin filament regulatory strands.  相似文献   

17.
The rate constant of tension redevelopment (ktr; 1986. Proc. Natl. Acad. Sci. USA. 83:3542-3546) was determined at various levels of thin filament activation in skinned single fibers from mammalian fast twitch muscles. Activation was altered by (a) varying the concentration of free Ca2+ in the activating solution, or (b) extracting various amounts of troponin C (TnC) from whole troponin complexes while keeping the concentration of Ca2+ constant. TnC was extracted by bathing the fiber in a solution containing 5 mM EDTA, 10 mM HEPES, and 0.5 mM trifluoperazine dihydrochloride. Partial extraction of TnC resulted in a decrease in the Ca2+ sensitivity of isometric tension, presumably due to disruption of near-neighbor molecular cooperativity between functional groups (i.e., seven actin monomers plus associated troponin and tropomyosin) within the thin filament. Altering the level of thin filament activation by partial extraction of TnC while keeping Ca2+ concentration constant tested whether the Ca2+ sensitivity of ktr results from a direct effect of Ca2+ on cross-bridge state transitions or, alternatively, an indirect effect of Ca2+ on these transitions due to varying extents of thin filament activation. Results showed that the ktr-pCa relation was unaffected by partial extraction of TnC, while steady-state isometric tension exhibited the expected reduction in Ca2+ sensitivity. This finding provides evidence for a direct effect of Ca2+ on an apparent rate constant that limits the formation of force-bearing cross-bridge states in muscle fibers. Further, the kinetics of this transition are unaffected by disruption of near-neighbor thin filament cooperativity subsequent to extraction of TnC. Finally, the results support the idea that the steepness of the steady-state isometric tension-calcium relationship is at least in part due to mechanisms involving molecular cooperativity among thin filament regulatory proteins.  相似文献   

18.
Troponin C was isolated from the skeletal muscle of bullfrog (Rana catesbeiana), and its relative molecular mass was estimated to be 18,000 by SDS/polyacrylamide gel electrophoresis. In its amino acid composition, bullfrog troponin C was similar to that of the frog (Rana esculenta) but different from that of rabbit. Its ultraviolet spectrum was consistent with its amino acid composition. The ultraviolet difference spectrum of the Ca(2+)-loaded form vs. the metal-free form indicated that the single Tyr residue and some Phe residues in the bullfrog troponin C molecule were affected by the conformational change associated with Ca2+ binding. On electrophoresis in polyacrylamide gel in 14 mM Tris and 90 mM glycine, the metal-free and Mg(2+)-loaded forms migrated slower than the Ca(2+)-loaded form. The property is shared by rabbit troponin C but not parvalbumins or calmodulin. The ATPase activity of CDTA-treated myofibrils reconstituted with bullfrog troponin C showed the same Ca(2+)- and Sr(2+)-sensitivity as that of those reconstituted with rabbit troponin C. Bullfrog troponin C is, thus, physiologically the same as rabbit troponin C, in spite of several marked differences in their physicochemical properties.  相似文献   

19.
The primary structure of the troponin C from skeletal muscle of the frog Rana esculenta has been determined. The amino acid sequence was deduced from amino acid determinations of peptides obtained after cleavage with cyanogen bromide. Overlapping peptides were isolated from tryptic digests of performic-acid-oxidized troponin C and phthalylated performic-acid-oxidized troponin C. All overlaps have been determined except for the Arg-Ile sequence at position 103--104, which has been obtained by comparison with homologous troponins C. Frog troponin C consists of one polypeptide chain containing 152 amino acids. The calculated molecular weight is 18299. There is a single cysteine residue at position 101 and a single tyrosine residue at position 112. No histidine or tryptophan residues are present. The amino-terminal amino acid is N-acetylated. The homology of frog troponin C with other skeletal and cardiac troponin C is briefly discussed.  相似文献   

20.
We examined the effect of troponin I (TnI) phosphorylation by cAMP-dependent protein kinase (PKA) on the length-dependent tension activation in skinned rat cardiac trabeculae. Increasing sarcomere length shifted the pCa (-log[Ca2+])-tension relation to the left. Treatment with PKA decreased the Ca2+ sensitivity of the myofilament and also decreased the length-dependent shift of the pCa-tension relation. Replacement of endogenous TnI with phosphorylated TnI directly demonstrated that TnI phosphorylation is responsible for the decreased length-dependence. When MgATP concentration was lowered in the absence of Ca2+, tension was elicited through rigorous cross-bridge-induced thin filament activation. Increasing sarcomere length shifted the pMgATP (-log[MgATP])-tension relation to the right, and either TnI phosphorylation or partial extraction of troponin C (TnC) abolished this length-dependent shift. We conclude that TnI phosphorylation by PKA attenuates the length-dependence of tension activation in cardiac muscle by decreasing the cross-bridge-dependent thin filament activation through a reduction of the interaction between TnI and TnC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号