首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
抗生素抗性基因(Antibiotic resistance genes,ARGs)作为一种新型污染物在不同环境中广泛分布、来源复杂,对生态环境和人类健康造成了很大的潜在风险。同时,Ⅰ型整合子(Int Ⅰ)介导的ARGs水平转移是环境中微生物产生耐药性的重要途径,Ⅰ型整合子整合酶基因(intI1)与ARGs丰度在环境中表现出了较高的正相关性,Int Ⅰ可以作为标记物在一定程度上反映ARGs在环境中的迁移转化规律和人类活动影响程度。本文介绍ARGs与Int Ⅰ在环境中的来源与分布,总结Int Ⅰ介导的ARGs迁移转化机制以及相关研究方法,并展望未来的研究发展趋势。  相似文献   

2.
自抗生素被发现和使用以来,其在人类和动物疾病预防与治疗、提高动物生产等方面均发挥了重要作用。但抗生素的批量生产及大量应用,特别是在养殖业和临床医疗上的滥用,导致抗生素抗性基因(ARGs)在环境中普遍存在,其借助质粒、转座子、整合子等可移动元件通过接合、转座、转化等方式在环境中广泛传播,导致微生物药性不断增强,对人类健康和生态安全造成严重威胁。当前,ARGs对人类健康的影响已受到高度关注,但有关ARGs在环境中的生态风险研究还相对薄弱。本文综述了ARGs污染的现状及其生态风险,并对该领域中未来研究重点进行了展望,以期为今后抗性基因的研究和生态防控提供参考。  相似文献   

3.
抗生素抗性基因(ARGs)传播对人类健康具有潜在的风险。胞内抗性基因(iARGs)和胞外抗性基因(eARGs)是抗生素抗性基因的两种存在形式,其在不同环境介质中的分布与传播过程具有截然不同的特征。本文首先基于ARGs赋存形态的差异,对染色体抗性基因、质粒抗性基因、噬菌体抗性基因等ARGs的胞内/胞外分类给予明确界定,并根据环境样品来源归纳了现有分离检测技术的应用场景,总结了iARGs和eARGs在养殖场、污水处理厂、河道、海洋、大气等环境中的分布特征,同时比较了其在传播方式和传播能力上的差异,以期为ARGs的分类阻控和健康风险评估提供理论参考。  相似文献   

4.
抗生素的不合理使用导致细菌耐药问题日趋严峻,给人类健康造成巨大威胁。学者们对抗生素抗性菌和抗生素抗性基因(antibiotic resistance genes, ARGs)在多种环境介质中的环境行为开展了大量研究。气溶胶作为ARGs的潜在储存库,是抗生素抗性基因在环境中的重要传播途径之一。目前缺乏对其来源、传播、人类接触和健康风险系统性的梳理。本文针对人类生活功能场所、养殖场、城市污水处理厂和医院等4类气溶胶研究的典型场所,重点综述了上述4类典型场所中气溶胶ARGs的来源、传播途径及对人体的暴露和对健康的危害,为气溶胶中ARGs的预防和控制提供参考。  相似文献   

5.
九龙江河口及厦门污水处理设施抗生素抗性基因污染分析   总被引:3,自引:0,他引:3  
【目的】近年来由于抗生素的滥用,导致了多药物抗性超级细菌的产生,有关抗生素抗性基因(Antibiotic resistance genes,ARGs)在环境介质中分布、迁移和扩散已经引起人们的广泛关注。针对九龙江河口及厦门污水处理设施抗生素抗性基因污染情况开展研究。【方法】通过定性PCR研究九龙江河口水体、沉积物和厦门污水处理设施活性污泥中4种磺胺类、13种四环素类ARGs及2种整合子基因的污染情况,并选择四环素类tet(W)基因进行克隆文库测序分析。【结果】除tet(O)和tet(S)外,其他基因均被检出。不同环境介质中的ARGs及整合子基因检出率为活性污泥(0.86)>沉积物(0.57)>水体(0.24)。在淡水和淡盐水中,sul(l)、int(1)、tet(A)、tet(C)、tet(E)、tet(M)和tet(W)的检出率要高于海水,表明九龙江上游可能是ARGs的污染源之一。【结论】主成分分析表明污水处理设施是ARGs的高发载体;沉积物是ARGs的稳定载体;而水体中的ARGs易于分解。此外,tet(W)基因克隆文库分析表明,厦门污水处理设施也可能是九龙江河口及厦门沿岸的ARG污染源。  相似文献   

6.
[目的] 南极洲不同地区环境极端多样,且受人类活动影响不一。本研究旨在探究南极不同纬度地区土壤抗生素抗性基因(ARGs)的分布特征与迁移机制。[方法] 下载南极不同纬度地区及加拿大阿尔伯特地区养殖场附近土壤宏基因组数据集,利用MetaWRAP进行组装,使用CARD、PlasFlow和ICEberg数据库对ARGs与可移动遗传元件(MGEs)进行注释。[结果] 在南极不同纬度地区土壤中,优势菌门为变形菌门、放线菌门、拟杆菌门和厚壁菌门。共注释出25类406种ARGs,以多重耐药类、四环素类及氨基糖苷类抗生素抗性基因为主。NMDS分析结果表明,南极不同纬度地区与养殖场附近土壤中ARGs的分布特征显著不同(ANISOM,P=0.001)。南极高纬度地区ARGs占总基因数的比例为0.28%,显著低于低纬度地区(1.93%,P<0.01)。不同抗生素类型的ARGs呈现不同的区域分布模式,其中硝基咪唑类、氨基糖苷类、糖肽类与大环内酯类ARGs主要分布在南极高纬度地区,四环素类与磺胺类ARGs主要分布在南极低纬度地区(P<0.05)。南极土壤中ARGs的迁移研究表明,质粒携带的ARGs占检测到的ARGs的17%。同时,共发现163个整合与接合元件(ICEs)可携带多抗耐药类、肽类和四环素类等14类ARGs。这些携带ARGs的ICEs主要分布于α-、β-与γ-变形菌纲中。[结论] 南极高纬度与南极低纬度地区土壤中ARGs的分布存在差异性,质粒与ICEs共同介导ARGs的迁移。本研究为进一步了解抗生素时代之前的原始抗性组提供数据基础。  相似文献   

7.
探究新型环境污染物—抗生素抗性基因(ARGs)在校园环境中的分布状况。通过聚合酶链式反应(PCR)对上海某高校使用5年新校区不同区域污水检查井污泥中8种四环素类、4种磺胺类、7种β-内酰胺类、4种链霉素类和5种氯霉素类ARGs进行定性研究,并利用变性梯度凝胶电泳(DGGE)技术分析污泥中细菌群落的多样性。结果显示,校园各区域中共检出19种ARGs,有8种ARGs的检出率大于50%,其中磺胺类抗性基因sulI、sulII的检出率最高,为100%。实验区及餐饮区的ARGs检出种类最多,均为14种,其次为宿舍区(12种),教学区的ARGs检出最少(8种)。通过DGGE分析细菌群落结构,证明该地区的ARGs分布与细菌多样性无明显关系。新校区使用5年但ARGs污染严重,可能是由于人类活动(尤其是科研活动)对ARGs的产生及扩散存在促进作用。此外,细菌群落多样性与ARGs种类的关系表明ARGs在环境中的迁移可能受到除细菌种类之外其他环境因素的影响。  相似文献   

8.
土壤中抗生素耐药性的扩散对全球的公共卫生和食品安全造成威胁,严重挑战人类感染类疾病的预防与治疗.噬菌体介导的抗生素抗性基因(ARGs)的水平转移是环境中抗性基因扩散的重要机制.但是,噬菌体对土壤环境中抗性基因传播的贡献尚未见报道.本文综述了土壤环境中噬菌体的分布特征与影响因子,总结了纯化和富集土壤噬菌体的主要研究方法;...  相似文献   

9.
畜禽养殖中抗生素不当使用导致的抗生素抗性基因(ARGs)污染问题日益严重,引起了国际社会的广泛关注。养殖环境中的ARGs不但可通过吸附、解吸、迁移等途径发生跨介质扩散,也可通过水平基因转移(HGT)使耐药性跨菌属传播,甚至通过食物链传递给人类,对公众健康造成潜在威胁。然而,目前缺少以大健康视角总结分析畜禽养殖环境ARGs赋存特征、关键环境过程和阻控技术的研究,导致对ARGs传播风险的评估和污染阻控对策的制定难以有效开展。本文在分析不同国家、畜种、环境介质中ARGs污染水平差异的基础上,阐述了ARGs在畜禽养殖环境中的关键环境过程和主要影响因素,重点论述了当前畜禽养殖业ARGs的污染阻控技术,最后结合大健康的方法理念,指出了目前研究存在的不足和亟需加强的方面,尤其强调了明确ARGs时空演变规律和环境过程机制、开发绿色高效的污染阻控技术的重要性与紧迫性,以期为畜禽养殖环境中ARGs健康风险评估和污染阻控技术的开发提供理论依据。  相似文献   

10.
土壤中抗生素抗性基因(ARGs)污染是全世界面临的重大环境和健康挑战,开发有效技术以减少其负面影响对维护土壤和人类健康至关重要。生物炭具有高碳含量、大表面积、良好的吸附性能和经济优势,可能是一种非常合适的阻控材料。其对ARGs的阻控作用可能归因于以下3种机制: 1) 吸附某些污染物,如抗生素和重金属,减弱ARGs的共选择性压力;2) 通过改变土壤理化特性影响微生物种群结构,从而限制细菌之间ARGs的水平转移;3) 通过吸附或破坏质粒、转座子、整合子等水平转移载体,直接减弱基因水平转移能力。但生物炭对ARGs的阻控效果取决于生物炭的物料来源、热解工艺和添加水平等。此外,生物炭的老化可能会降低其阻控ARGs的效果。生物炭的内源性污染物,如多环芳烃和重金属,也可能导致环境中特定抗生素抗性细菌的富集或诱导水平基因转移。在后续研究中,应根据土壤环境选择合适的生物炭种类,并采取生物炭老化控制措施,以进一步提高生物炭对ARGs的阻控作用。  相似文献   

11.
Antimicrobial and antibiotics resistance caused by misuse or overuse of antibiotics exposure is a growing and significant threat to global public health. The spread and horizontal transfer of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) by the selective pressure of antibiotics in an aquatic environment is a major public health issue. To develop a better understanding of potential ecological risks die to antibiotics and ARGs, this study mainly summarizes research progress about: (i) the occurrence, concentration, fate, and potential ecological effects of antibiotics and ARGs in various aquatic environments, (ii) the threat, spread, and horizontal gene transfer (HGT) of ARGs, and (iii) the relationship between antibiotics, ARGs, and ARB. Finally, this review also proposes future research direction on antibiotics and ARGs.  相似文献   

12.
环境中抗生素抗性基因的水平传播扩散   总被引:1,自引:0,他引:1  
抗生素抗性基因作为一类新型环境污染物,其在不同环境介质中的传播扩散可能比抗生素本身的环境危害更大,其中,水平基因转移是抗生素抗性基因传播的重要方式,是造成抗性基因环境污染日益严重的原因之一.本文系统阐述了抗生素抗性基因在环境中发生水平转移的主要分子传播元件及其影响因素,这对于正确揭示抗性基因的分子传播机制具有重要意义.结合多重抗药性的传播扩散机制,探讨了行之有效的遏制抗生素抗性基因传播扩散的方法和途径,并针对目前的污染现状,对今后有关抗生素抗性基因水平转移的研究重点进行了展望.  相似文献   

13.
抗生素抗性基因在环境中的传播扩散及抗性研究方法   总被引:5,自引:0,他引:5  
抗生素在医药、畜牧和水产养殖业的大量使用造成了环境中抗性耐药菌和抗性基因日益增加,抗生素抗性基因作为一种新型环境污染物引起人们的广泛关注.本文综述了近年来国内外有关抗生素抗性基因的研究进展,其在水、土壤、空气等环境介质中和动,植物体内的传播扩散,以及开展环境中抗生素抗性基因研究的必要性,重点介绍了有关抗生素抗性(包括抗性细菌和抗性基因)的研究方法,指出抗性基因研究中存在的问题,并对未来的相关研究进行了展望.  相似文献   

14.
近几十年来,病原菌耐药性的出现和蔓延已上升为严峻的公共卫生问题。越来越多研究表明,抗菌素抗性基因(antibiotic resistance genes,ARGs)不仅仅见于临床所分离的病原体,而是包括所有的致病菌、共生菌以及环境中的细菌,它们都能在可移动遗传元件和噬菌体的作用下,通过水平基因转移(horizontal gene transfer,HGT)途径获得耐药性,进而形成抗菌素耐药基因簇(耐药基因组)。HGT可导致抗菌素的耐药性在环境共生菌和病原菌之间传播扩散,这可通过临床上一些重要的抗菌素耐药基因的传播证实。传统观念认为HGT的三种机制中,接合对ARGs的传播影响最大,最近研究表明转化和转导对ARGs播散起到不可忽视的作用。通过深入了解耐药基因组的传播及其在动员病原菌耐药中发挥的作用,对于控制这些基因的播散是至关重要的。将讨论耐药基因组的概念,提供临床相关的抗菌素抗性基因水平基因转移的例子,对当前已研究的促使抗菌素耐药性传播的各种HGT机制进行回顾。  相似文献   

15.
抗生素耐药基因作为一种新型的环境污染物已引起研究者的高度关注。畜禽养殖业长期将抗生素添加到饲料中,在促进动物生长、预防和治疗动物疾病等方面起了重要作用。这些抗生素大多数不能被动物完全吸收,在动物肠道中诱导出耐抗生素细菌和抗生素耐药基因,并随着粪便排出体外。畜禽粪便作为重要的抗生素、耐抗生素细菌和抗生素耐药基因储存库,通过堆粪、施肥等农业活动进入土壤环境中,可刺激土壤中耐抗生素细菌和抗生素耐药基因的富集。耐药基因借助于基因水平转移等方式在土壤介质中进一步传播扩散,甚至进入植物中随食物链传播,对生态环境和人类健康造成极大的威胁。为了正确评估抗生素耐药基因的生态风险,本文结合国内外相关研究,系统阐述了畜禽粪便-土壤系统中抗生素耐药基因的来源、分布及扩散机制,同时探讨了细菌耐药性的主要研究方法,指出堆肥化处理仍是目前去除抗生素耐药基因的主要手段,并对今后的研究方向进行展望。  相似文献   

16.
The aqueous environment is one of many reservoirs of antibiotic resistance genes (ARGs). Fish, as important aquatic animals which possess ideal intestinal niches for bacteria to grow and multiply, may ingest antibiotic resistance bacteria from aqueous environment. The fish gut would be a suitable environment for conjugal gene transfer including those encoding antibiotic resistance. However, little is known in relation to the impact of ingested ARGs or antibiotic resistance bacteria (ARB) on gut microbiota. Here, we applied the cultivation method, qPCR, nuclear molecular genetic marker and 16S rDNA amplicon sequencing technologies to develop a plasmid‐mediated ARG transfer model of zebrafish. Furthermore, we aimed to investigate the dissemination of ARGs in microbial communities of zebrafish guts after donors carrying self‐transferring plasmids that encode ARGs were introduced in aquaria. On average, 15% of faecal bacteria obtained ARGs through RP4‐mediated conjugal transfer. The hindgut was the most important intestinal region supporting ARG dissemination, with concentrations of donor and transconjugant cells almost 25 times higher than those of other intestinal segments. Furthermore, in the hindgut where conjugal transfer occurred most actively, there was remarkable upregulation of the mRNA expression of the RP4 plasmid regulatory genes, trbBp and trfAp. Exogenous bacteria seem to alter bacterial communities by increasing Escherichia and Bacteroides species, while decreasing Aeromonas compared with control groups. We identified the composition of transconjugants and abundance of both cultivable and uncultivable bacteria (the latter accounted for 90.4%–97.2% of total transconjugants). Our study suggests that aquatic animal guts contribute to the spread of ARGs in water environments.  相似文献   

17.
污水处理厂是抗生素抗性基因(antibiotic resistance genes,ARGs)和抗生素抗性细菌(antibiotic resistant bacteria,ARB)重要的源和汇,生物气溶胶是ARGs和ARB自污水处理厂向周边环境释放的关键载体。目前缺乏对污水处理厂生物气溶胶抗生素抗性污染特征、来源及潜在风险的系统性总结。本文从采样方法、检测方法、逸散特征、来源、潜在危害和风险评估等方面对污水处理厂抗生素抗性污染研究现状进行综述。惯性采样法和过滤法是常用的污水处理厂抗生素抗性生物气溶胶主要采集方法,而宏基因组测序、组装和分箱为其ARGs组成、可移动性和宿主提供了有效的检测方法,抗多药类、抗杆菌肽类、抗氨基糖苷类、抗四环素类、抗β-内酰胺类、抗磺胺类、抗大环内酯类和抗糖肽类等抗性基因在污水处理厂PM10、PM2.5和PM1.0颗粒物中广泛检出。格栅间、生化反应池和污泥处理单元是污水处理厂PM10、PM2.5和PM1.0负载ARGs和ARB的主要释放单元。污水处理厂不同粒径生物气溶胶中致病性ARB的存在增加了抗生素治疗的难度,而污水和污泥对ARGs和ARB的释放起到了重要的源的贡献。本文在研究内容、研究技术和控制策略等方面也提出了相关展望,以期为污水厂生物气溶胶抗生素抗性污染的监测和防护提供参考和借鉴。  相似文献   

18.
Antibiotic resistance genes in water environment   总被引:9,自引:0,他引:9  
The use of antibiotics may accelerate the development of antibiotic resistance genes (ARGs) and bacteria which shade health risks to humans and animals. The emerging of ARGs in the water environment is becoming an increasing worldwide concern. Hundreds of various ARGs encoding resistance to a broad range of antibiotics have been found in microorganisms distributed not only in hospital wastewaters and animal production wastewaters, but also in sewage, wastewater treatment plants, surface water, groundwater, and even in drinking water. This review summarizes recently published information on the types, distributions, and horizontal transfer of ARGs in various aquatic environments, as well as the molecular methods used to detect environmental ARGs, including specific and multiplex PCR (polymerase chain reaction), real-time PCR, DNA sequencing, and hybridization based techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号