首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
植物TOR激酶响应上游信号的研究进展   总被引:1,自引:0,他引:1  
孟彦彦  张楠  熊延 《植物学报》2022,57(1):1-11
雷帕霉素靶蛋白(TOR)是真核生物中高度保守的丝氨酸/苏氨酸蛋白激酶, 能整合营养、能量、生长因子及环境信号, 协调细胞增殖、生长和代谢等过程, 是真核生物生长发育的核心调控因子。近年来, 随着相关研究系统的建立, 植物TOR的功能和机制研究取得了众多突破, 发现其进化上保守的生物学功能及植物中特有的信号通路。该文概述了TOR蛋白复合体的构成, 以及植物TOR响应糖、营养元素(氮、磷和硫)、激素及逆境胁迫信号来调控下游基因转录、蛋白翻译、代谢、细胞自噬和胁迫应答等生物学过程的分子机制, 并提出了植物TOR领域一些亟待解决的科学问题, 以期为全面揭示植物TOR的生物学功能提供参考。  相似文献   

2.
细胞正常代谢过程需要持续的能量供给,而线粒体是细胞内氧化磷酸化和合成ATP的主要场所.m TOR作为细胞营养感应和能量调节因子,调控细胞的新陈代谢以及细胞周期进程和细胞生长.本文综述了m TOR对细胞线粒体功能的调控机制,m TOR与AMPK在细胞内交互调控能量平衡以及m TOR整合氨基酸和能量感应通路,以期为营养学或药理学中对癌症以及肥胖和糖尿病等代谢性疾病的干预和治疗提供指导.  相似文献   

3.
当营养、生长因子和能量代谢驱动碳水化合物分解功能,加速蛋白质、脂肪及氨基酸的合成代谢时,细胞便加速生长繁殖。哺乳类动物雷帕霉素靶蛋白(mammalian target of rapamycin,m TOR)可整合营养、生长因子及能量等外界因素对细胞的刺激,调控细胞的增殖分化。m TOR存在两种复合体形式:mTORC1和m TORC2。mTORC1可接受来自生长因子、氨基酸、能量及炎症反应等多种信号,促进细胞增殖,在维持代谢稳态中具有重要作用。当缺失mTORC1时,细胞生长及蛋白质合成受到抑制并诱导自噬的发生。m TORC2则与细胞骨架、脂类分解、胰岛素抵抗、Akt等激酶的激活作用相关。本文中我们将综述近期发现的m TOR上下游信号分子,系统解析m TOR通过调节蛋白质、核酸和脂类代谢来促进机体生长和细胞增殖的分子机制。  相似文献   

4.
钙调磷酸酶信号调控真菌生长代谢、毒力及抗逆性能   总被引:1,自引:1,他引:0  
冯莹莹  徐兴然  邹祥 《微生物学报》2021,61(12):3844-3855
钙调磷酸酶是一种丝氨酸/苏氨酸(Ser/Thr)蛋白磷酸酶,在真菌中普遍保守,上游信号途径由Ca2+通道(Cch1)、转运蛋白(Mid1)、钙离子感应蛋白(CaM)、钙调蛋白依赖性磷酸酶等组成。钙调磷酸酶受钙离子和钙调蛋白调节,在调控真菌Ca2+稳态的钙信号级联途径中发挥着中心作用,通过钙信号级联途径参与生物学过程,调控真菌生长、发育和毒力形成来响应外界环境因素的变化,使真菌能够适应不同环境,维持正常的生命活动。本文综述了真菌钙调磷酸酶信号的组成和上下游信号转导途径、调控细胞生长代谢、毒力形成以及抗逆性能调控的研究进展;结合对真菌代谢产物合成的调控作用,对钙调磷酸酶信号作为重要合成生物学元件及调控开关进行了展望。  相似文献   

5.
酵母TOR信号转导途径   总被引:1,自引:0,他引:1  
TOR(target of rapamycin)是真核细胞中一种高度保守的与磷脂酰肌醇激酶相关的蛋白激酶(PIKK),它是免疫抑制剂/抗癌药物雷帕霉素(rapamycin)的靶物质。TOR是细胞生长的中枢控制因子,外界营养因素通过TOR的作用控制酵母、果蝇和哺乳动物细胞的生长。TOR根据细胞环境的营养条件做出相应的应答,参与调控蛋白激酶和蛋白磷酸酯酶的活性,从而控制与蛋白质合成和基因转录相关基因的表达。现对酵母细胞中TOR信号转导途径的研究进行简明的阐述。  相似文献   

6.
哺乳类动物雷帕霉素靶蛋白(mammalian target of rapamycin,m TOR)是一种高度保守的丝氨酸-苏氨酸类激酶,通过在体内形成两种不同的复合体对机体生长、代谢产生调控作用。m TOR信号分子可对多种营养信号作出应答而成为细胞内重要的能量感受分子。近年来研究发现能量感受分子m TOR与糖代谢关系密切,可以通过影响胰岛素信号通路、胰岛β细胞发育以及调控ghrelin、nesfatin-1等代谢调节激素的合成分泌等多种途径对糖代谢产生影响。本文就m TOR信号通路及其在糖代谢乃至于糖尿病发生过程中作用作一综述。  相似文献   

7.
不同的逆境条件可引起生物机体不同的应答反应,其中PKR(protein kinase double-stranded RNA-dependent)、PERK(PKR-like endoplasmic reticulum kinase)、HRI(heme-regulated inhibitor)和GCN2(general control non-derepressible-2)激活后使真核蛋白翻译起始因子2(e IF2)磷酸化,抑制蛋白质的翻译起始,帮助生物体适应各种逆境条件。雷帕霉素的靶蛋白(TOR)是一个进化上相对保守的丝氨酸/苏氨酸激酶,参与细胞生长与增殖、新陈代谢以及蛋白质的翻译等进程,对细胞的正常生长发育有重要作用。近几年的研究表明,e IF2和TOR介导的信号途径在植物中是保守的,共同参与了蛋白翻译水平的调控。本文综述了植物中e IF2和TOR介导的信号途径对蛋白翻译过程的调控机制,以及蛋白质翻译在植物响应逆境中的重要作用。  相似文献   

8.
乳脂肪含量与组成是构成牛奶重要营养品质的主要物质基础之一。牛乳脂肪的主要成分是甘油三酯,乳腺细胞以细胞内合成和胞外摄取两种形式获得脂肪酸并进一步合成甘油三酯。哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,m TOR)是一个进化上十分保守的蛋白激酶,与其他蛋白一起组成m TOR信号通路,通过感受细胞内外的营养状况进而调控细胞生长和代谢,在乳脂合成中发挥重要作用。综述了m TOR信号通路在乳脂合成中的作用与机制,并结合研究现状展望了未来研究热点。  相似文献   

9.
营养限制是微生物最常面临的环境胁迫之一。除了在营养物质匮乏的海洋、冰川、沙漠、深层地表等自然环境中,越来越多的人工环境也出现了营养限制的特征,例如各类微污染水体、提标改造的废水生物处理系统等。基质浓度极大地影响着包括细菌在内的许多微生物的生长、代谢及群落结构,最终导致其功能的改变。为了在营养限制条件下维持生存,微生物首先需感知营养供给的减少,其后通过基因、蛋白质、信号分子、代谢产物等对各代谢过程进行全局调控,最后改变基质亲和力、生长速率、运动能力、形态等以适应营养不足。胞内各种信号物质及其触发的响应是微生物应对营养胁迫的关键。本文分别梳理了以细菌为代表的微生物应对碳源、氮源限制时的关键信号物质、受体蛋白/调控过程及响应结果,并分析了碳氮限制响应过程中的相互作用,以期为极端环境微生物的认识、营养限制条件下微生物的应用,尤其是低浓度污染物生物处理、生物监测等领域提供理论基础。  相似文献   

10.
丛枝菌根(AM)真菌是自然生态系统中分布最为广泛的真菌之一,在自然界物质循环和能量流动中发挥着重要作用。经过长期的协同进化,AM真菌和宿主植物之间形成了完美的互惠互利的共生关系,而真菌的脂类代谢可能是揭示共生秘密的关键所在。本文综述了AM真菌脂类代谢在共生关系建立和维持中关键作用的最新研究进展,重点探讨了AM真菌脂类代谢对共生信号调控的响应和反馈机制,主要包括:AM真菌脂类存储和释放对共生和非共生状态的响应,以及脂类代谢产物变化与共生营养传递之间的关系;脂类分解过程在共生建立初期对信号分子调控发生的响应,以及相应的物质转化和能量代谢;菌根共生互惠互利关系维持中,真菌脂类代谢与信号分子交流通道的相互渗透和影响。本文对于理解菌根共生机制,促进菌根在生产中的应用具有促进作用。  相似文献   

11.
12.
Regulation of TOR by small GTPases   总被引:1,自引:0,他引:1  
Durán RV  Hall MN 《EMBO reports》2012,13(2):121-128
TOR is a conserved serine/threonine kinase that responds to nutrients, growth factors, the bioenergetic status of the cell and cellular stress to control growth, metabolism and ageing. A diverse group of small GTPases including Rheb, Rag, Rac1, RalA and Ryh1 play a variety of roles in the regulation of TOR. For example, while Rheb binds to and activates TOR directly, Rag and Rac1 regulate its localization and RalA activates it indirectly through the production of phosphatidic acid. Here, we review recent findings on the regulation of TOR by small GTPases.  相似文献   

13.
《Autophagy》2013,9(2):256-258
Trypanosomatid protozoa parasites are responsible for tropical diseases, and undergo complex life cycles involving developmental forms adapted to insect vectors and vertebrate hosts. During their life cycle these parasites proceed through different forms in response to dramatic environmental changes and/or developmentally regulated programs. Successful progression of the parasite through its life cycle is highly dependent on the capacity of adaptation to distinct stresses involving processes such as autophagy. In eukaryotes, Target Of Rapamycin (TOR) protein kinases act as a sensor, which integrates the nutritional and energetic status, adjusting cell metabolism and growth. Compromising cell viability in yeast and mammals leads to a reduction of TOR function, triggering processes aimed to overcome unfavourable conditions. This is partly achieved by TOR-mediated regulation of protein synthesis and recycling of cellular components by autophagy. In the last few years, autophagy has been described during developmental differentiation processes in Trypanosomatids. However, no link between TOR signalling, autophagy and differentiation has been described so far. This addendum is a commentary to the work published by our group,1 where we discuss the possible role of TOR kinases, as a controller of cell growth and autophagy, in the regulation of differentiation processes during Trypanosomatids life cycles.  相似文献   

14.
TOR (target of rapamycin) signaling coordinates cell growth, metabolism, and cell division through tight control of signaling via two complexes, TORC1 and TORC2. Here, we show that fission yeast TOR kinases and mTOR are phosphorylated on an evolutionarily conserved residue of their ATP-binding domain. The Gad8 kinase (AKT homologue) phosphorylates fission yeast Tor1 at this threonine (T1972) to reduce activity. A T1972A mutation that blocked phosphorylation increased Tor1 activity and stress resistance. Nitrogen starvation of fission yeast inhibited TOR signaling to arrest cell cycle progression in G1 phase and promoted sexual differentiation. Starvation and a Gad8/T1972-dependent decrease in Tor1 (TORC2) activity was essential for efficient cell cycle arrest and differentiation. Experiments in human cell lines recapitulated these yeast observations, as mTOR was phosphorylated on T2173 in an AKT-dependent manner. In addition, a T2173A mutation increased mTOR activity. Thus, TOR kinase activity can be reduced through AGC kinase–controlled phosphorylation to generate physiologically significant changes in TOR signaling.  相似文献   

15.
Cell growth is a highly regulated, plastic process. Its control involves balancing positive regulation of anabolic processes with negative regulation of catabolic processes. Although target of rapamycin (TOR) is a major promoter of growth in response to nutrients and growth factors, AMP-activated protein kinase (AMPK) suppresses anabolic processes in response to energy stress. Both TOR and AMPK are conserved throughout eukaryotic evolution. Here, we review the fundamentally important roles of these two kinases in the regulation of cell growth with particular emphasis on their mutually antagonistic signaling.An efficient homeostatic response to maintain cellular energy despite a noncontinuous supply of nutrients is crucial for the survival of organisms. Cells have, therefore, evolved a host of molecular pathways to sense both intra- and extracellular nutrients and thereby quickly adapt their metabolism to changing conditions. The target of rapamycin (TOR) and AMP-activated protein kinase (AMPK) signaling pathways control growth and metabolism in a complementary manner with TOR promoting anabolic processes under nutrient- and energy-rich conditions, whereas AMPK promotes a catabolic response when cells are low on nutrients and energy. Both pathways are highly conserved from yeast to human. This review summarizes the cross talk between TOR and AMPK in different organisms.  相似文献   

16.
The insulin/TOR pathway is a conserved regulator of cell and organism growth in metazoans. Over the last several years, an array of signaling inputs to this pathway has been defined. However the growth-regulatory outputs are less clear. Drosophila has proven to be a powerful genetic model system in which to study insulin/TOR signaling. This review highlights recent studies in Drosophila that have identified essential outputs and key effectors of the pathway. These include the regulation of ribosome synthesis, mRNA translation, autophagy and endocytosis, through downstream effectors such as Myc, FOXO, HIF1-alpha, TIF-IA, 4EBP and Atg1. This network of outputs and effectors can regulate cell and organismal metabolism, and is essential for the control of tissue growth, responses to starvation and stress, and aging. The mechanisms identified in Drosophila likely operate in most metazoans, and are relevent to our understanding of diseases caused by aberrent insulin/TOR signaling such as cancer, diabetes and obesity.  相似文献   

17.
Dysregulated signaling by the checkpoint kinase TOR (target of rapamycin) has been linked to numerous human cancers. The tuberous sclerosis tumor suppressors TSC1 and TSC2 form a protein complex that integrates and transmits cellular growth factor and stress signals to negatively regulate TOR activity. Several recent reports have identified the stress response gene REDD1 as an essential regulator of TOR activity through the TSC1/2 complex in both Drosophila and mammalian cells. REDD1 is induced in response both to hypoxia and energy stress, and cells that lack REDD1 exhibit highly defective TOR regulation in response to either of these stress signals. While the precise mechanism of REDD1 function remains to be determined, the finding that REDD1-dependent TOR regulation contributes to cell growth/cell size control in flies and mammals suggests that abnormalities of REDD1-mediated signaling might disrupt energy homeostasis and/or promote tumorigenesis.  相似文献   

18.
Botrytis cinerea is the causal agent of grey mould for more than 200 plant species, including economically important vegetables, fruits and crops, which leads to economic losses worldwide. Target of rapamycin (TOR) acts a master regulator to control cell growth and proliferation by integrating nutrient, energy and growth factors in eukaryotic species, but little is known about whether TOR can function as a practicable target in the control of plant fungal pathogens. Here, we characterize TOR signalling of B. cinerea in the regulation of growth and pathogenicity as well as its potential value in genetic engineering for crop protection by bioinformatics analysis, pharmacological assays, biochemistry and genetics approaches. The results show that conserved TOR signalling occurs, and a functional FK506-binding protein 12 kD (FKBP12) mediates the interaction between rapamycin and B. cinerea TOR (BcTOR). RNA sequencing (RNA-Seq) analysis revealed that BcTOR displayed conserved functions, particularly in controlling growth and metabolism. Furthermore, pathogenicity assay showed that BcTOR inhibition efficiently reduces the infection of B. cinerea in plant leaves of Arabidopsis and potato or tomato fruits. Additionally, transgenic plants expressing double-stranded RNA of BcTOR through the host-induced gene silencing method could produce abundant small RNAs targeting BcTOR, and significantly block the occurrence of grey mould in potato and tomato. Taken together, our results suggest that BcTOR is an efficient target for genetic engineering in control of grey mould, and also a potential and promising target applied in the biocontrol of plant fungal pathogens.  相似文献   

19.
Target of rapamycin (TOR) is an evolutionarily conserved protein kinase that functions as a central signaling hub to integrate diverse internal and external cues to precisely orchestrate cellular and organismal physiology. During evolution, TOR both maintains the highly conserved TOR complex compositions, and cellular and molecular functions, but also evolves distinctive roles and strategies to modulate cell growth, proliferation, metabolism, survival, and stress responses in eukaryotes. Here, we review recent discoveries on the plant TOR signaling network. We present an overview of plant TOR complexes, analyze the signaling landscape of the plant TOR signaling network from the upstream signals that regulate plant TOR activation to the downstream effectors involved in various biological processes, and compare their conservation and specificities within different biological contexts. Finally, we summarize the impact of dysregulation of TOR signaling on every stage of plant growth and development, from embryogenesis and seedling growth, to flowering and senescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号