首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
宏基因组学分析揭示深古菌Bathyarchaeota B242的代谢特征   总被引:1,自引:0,他引:1  
【背景】海洋沉积物中蕴含着丰富的微生物资源,估算约2.9×1029个细胞,与海水中的微生物总量相当。但是由于缺少可培养物,大部分的微生物缺乏生理特征、代谢方式以及生态功能的相关研究。深古菌(Bathyarchaeota)是一类典型的未培养微生物,在全球海洋沉积物中普遍存在,并且具有很高的丰度。【目的】对深古菌代谢潜能及其在海洋沉积物中发挥的生态功能进行更加深入的研究。【方法】应用宏基因组学的技术手段,对采集自瓜伊马斯盆地的深海热液沉积物样本进行了分析,获得了一个接近完整的深古菌基因组Bathyarchaeota B242。【结果】对Bathyarchaeota B242基因组的分析发现,其具有以降解蛋白质和多种碳水化合物为主的异养代谢途径,同时还具有通过还原型乙酰辅酶A途径实现的自养途径。【结论】同时具有自养和异养代谢途径对Bathyarchaeota B242适应低物质能量供给环境下的生存起到重要作用。  相似文献   

2.
【背景】湿地是重要的甲烷排放源,因为其中栖息着各种产甲烷古菌。已知未培养甲烷古菌Rice Cluster Ⅱ (RCⅡ)类群广泛分布于低温酸性和北方泥炭藓湿地、淡水湿地及草本沼泽等环境,但它们在低温盐碱湿地中的分布及代谢途径尚未知。【目的】分析扎龙盐碱湿地未培养甲烷古菌RCⅡ类群的多样性、推测产甲烷代谢途径及其潜在的盐碱适应机制。【方法】16S rRNA基因扩增子测序分析扎龙湿地土壤中甲烷古菌群组成;构建16S rRNA基因克隆文库分析扎龙湿地土壤RCⅡ的多样性;宏基因组分析推测RCⅡ古菌编码的产甲烷途径及与耐盐碱相关物质的合成基因。【结果】16SrRNA基因高通量测序发现未培养甲烷古菌的RCⅡ类群占扎龙盐碱湿地总甲烷古菌的13.280%±0.019%;系统发育学分析表明该湿地的RCⅡ由3个分支组成;宏基因组分析组装了2个优势的未培养RCⅡ的基因组,均含完整的氢还原二氧化碳产甲烷途径的基因,并编码海藻糖的转运与合成基因。【结论】扎龙盐碱湿地土壤富含未培养RCⅡ甲烷古菌,推测它们通过氢还原二氧化碳产甲烷,利用细胞内高的海藻糖适应盐碱环境。  相似文献   

3.
【目的】蚕豆象是农业上一种重要害虫,本文测序、分析了蚕豆象的线粒体全基因组,以期为更好地理解茎甲亚科分支类群、豆象亚科和蚕豆象的系统发育提供线粒体基因组数据。【方法】在系统发育分析中,内群取样包含茎甲亚科分支类群的22种昆虫,外群选择2个肖叶甲亚科(Basilepta fulvipesBasilepta melanopus)昆虫,分别利用最大似然法和贝叶斯法重建茎甲亚科分支类群的系统发育关系。【结果】蚕豆象的线粒体基因组全长为16586 bp (GenBank序列号:OP650255),包含37个基因(13个蛋白质编码基因、2个核糖体RNA基因和22个转运RNA基因)和一段非编码控制区。所有转运RNA基因中,除trnS1因缺少二氢尿嘧啶(DHU)臂而形成一个简单的环,无法构成稳定的三叶草结构外,其余转运RNA基因均能形成典型的三叶草结构。此外,trnS1的反密码子不是常见的GCU,而是UCU。【结论】本研究首次获得了蚕豆象的线粒体基因组全序列。2种不同的系统发育分析方法构建的系统发育关系显示:豆象亚科、茎甲亚科、水叶甲亚科和负泥虫亚科为单系群;豆象亚科与水叶甲亚科+负泥虫亚科为姐妹群;蚕豆象与四纹豆象为姐妹群。  相似文献   

4.
【目的】为了探究乳酸乳球菌乳酸亚种KLDS4.0325的碳水化合物利用能力和乳酸形成潜力。【方法】本文对该菌株进行了全基因组鸟枪法测序,并应用生物信息学方法对该菌株细胞外糖的转运、代谢及产酸途径涉及的一系列基因与其它9株参考菌株进行了比较分析。【结果】与参考菌株相比,该菌株基因组中具有较多涉及整个途径糖代谢途径的关键酶编码基因。【结论】该菌株在基因水平上表现出能够利用多种糖类物质来产乳酸的优良性状,是一株具有高产L-乳酸工业潜能的乳酸菌。  相似文献   

5.
劳盆地深海热液喷口沉积物中细菌多样性研究   总被引:1,自引:1,他引:0  
采用PCR-RFLP技术调查了劳盆地深海热液喷口两位点沉积物中的细菌多样性。结果表明, 在劳盆地深海热液喷口沉积物环境中细菌多样性十分丰富, 样品DY1中发现6个细菌类群, DY2中则存在4个细菌类群, 其中Gammaproteobacteria细菌亚群和Epsilonproteobacteria细菌亚群在两文库中均占据最大比例, 为沉积物样品中的优势菌群。另外, 在克隆文库中还发现了一些与数据库中的已知序列同源性较低的类群, 从而说明劳盆地深海热液喷口沉积物中存在特有的微生物种属。  相似文献   

6.
【目的】青藏高原小柴旦盐湖富含硫酸盐卤水,宏基因组学分析揭示该生境蕴藏着丰富的具有耐盐、固碳和脱硫功能的微生物。本研究拟通过生物信息学分析揭示潜在的固碳脱硫微生物脱硫棒状菌(Desulfotignum)的代谢多样性和环境适应性机制。【方法】利用宏基因组分箱分析和公共数据库下载获得小柴旦盐湖脱硫棒状菌属的基因组,通过文献跟踪和16S rRNA基因数据库检索揭示脱硫棒状菌的全球生境分布,基于基因组分类数据库(genome taxonomy database, GTDB)中120个细菌标记蛋白的系统发育树对脱硫棒状菌属的亚群进行分类,通过重构脱硫棒状菌属不同亚群的生理代谢潜能以及基因组比较分析来解析其环境适应机制和代谢多样性。【结果】脱硫棒状菌属全球分布广泛且主要栖息在高盐生境。小柴旦盐湖沉积物中共得到了9个脱硫棒状菌基因组,结合公共数据库中2个基因组,根据基因组系统发育分析、平均核苷酸一致性(average nucleotide identity,ANI)和平均氨基酸一致性(average amino acid identity, AAI)分析将这11个脱硫棒状菌基因组分为了2个亚群(G1...  相似文献   

7.
可产生铁载体的春兰根内生细菌多样性   总被引:5,自引:0,他引:5  
摘要:【目的】了解可产生铁载体的春兰根内生细菌的多样性,以便筛选到高效的植物促生细菌。【方法】采用CAS检测法测定了189株春兰根内生细菌产生铁载体的能力,并结合16S rRNA基因系统发育分析对可产铁载体的春兰根内生细菌多样性进行了研究。【结果】从189株春兰内生细菌中筛选到47株可产生铁载体的细菌,占菌株总数的24.9%。16S rRNA基因系统发育分析结果表明,47株细菌分属于4个系统发育类群(Alphaproteobacteria,Betaproteobacteria,Firmicutes,Actinobacteria),17个属的31个种。其中放线菌门为最优势类群(42.6%),芽孢杆菌属(Bacillus)和贪噬菌属(Variovorax)为优势菌属,且贪噬菌属为高产铁载体的主体菌属。另外有2个菌株可能代表两个不同属的新物种。【结论】春兰根中可产生铁载体的内生细菌具有丰富的多样性。  相似文献   

8.
【目的】菌株MIM37为具有两种光能利用途径的光合异养细菌,分析其基因组和光照对生长的影响,为理解光能利用途径、光营养生物多样性以及光合作用的进化和功能等提供线索。【方法】采用平板涂布划线法分离菌株,结合形态观察及16S rRNA基因和光合基因序列同源性与系统发育分析进行初步分类鉴定;以分光光度法和荧光显微观察法测定光照和黑暗培养下培养液细胞浓度和单细胞体积;构建片段长度为300?500 bp的Illumina PE文库,以Illumina Hiseq2000进行基因组测序,以SOAPdenovo和GapCloser组装序列,以RAST在线软件注释基因组。【结果】从内蒙古腾格里沙漠天鹅湖表层水中分离获得一株细菌MIM37,经16S rRNA基因、pufM和视紫质基因同源性和系统发育分析均显示其与Sphingomonas属亲缘关系最为密切;相对黑暗培养,光照刺激下的最大细胞浓度和单细胞体积大小分别提高了1.2和5.6倍;基因组注释显示MIM37代谢途径多样,含典型好氧菌的呼吸电子传递链,具有完整的好氧不产氧细菌的光合基因簇及xanthorhodopsin-like视紫质蛋白基因,合成铁载体,还原重金属,降解微囊藻毒素和多环芳烃类等。【结论】MIM37属于Sphingomonas属,具有两种光能利用途径,光照可明显促进其生长,多样的代谢模式可能使其在自然环境中极具竞争力、分布广泛并具有应用于修复环境污染的潜力。  相似文献   

9.
新疆断裂带含硫冷泉泉水细菌群落结构多样性   总被引:2,自引:0,他引:2  
摘要:【目的】为了解新疆断裂带含硫冷泉泉水中细菌群落结构的组成和物种多样性。【方法】采用免培养法直接从冷泉水中提取环境总DNA,采用细菌通用引物对泉水中细菌的16S rRNA基因进行PCR扩增,构建16S rRNA基因克隆文库。使用限制性内切酶Hae Ⅲ对随机挑选的阳性克隆子进行限制性片段长度多态性分析(Restriction Fragment Length Polymorphism, RFLP),选出具有不同酶切图谱的序列进行测序、BLAST比对和构建16S rRNA基因系统发育树。【结果】共从细菌16S rRNA基因文库中筛选了228个阳性克隆,RFLP分型得到33个不同的操作分类单元 (Operational Taxonomic Unites, OTUs),覆盖度 (Coverage C) 为92%。BLAST比对、RDP归类及系统发育分析将这33个OTUs归为:变形菌门 (Proteobacteria)、拟杆菌门 (Bacteroidetes) 和厚壁菌门 (Firmicutes)。变形菌门为绝对优势类群,占整个细菌克隆文库的98%,,其中20%左右的类群与硫化物代谢相关的光合自养和化能自养类群纯培养菌具有高的相似性 (>97%)。此外,还发现大量类群 (总文库的64%,其中57%为军团菌属Legionella spp., 类群)与GenBank中已存细菌16S rRNA基因相似性小于96%。【结论】新疆断裂带含硫冷泉泉水中细菌类群的多样性较低,但可能存在大量潜在细菌新种和新分类。另外,该泉水可能是潜在的新军团菌病传播源,因而可能对下游人畜健康存在潜在威胁。  相似文献   

10.
【目的】通过解析拟茎点霉属XP-8的基因组序列信息,揭示该菌株潜在的代谢途径,并分析松脂醇及其糖苷化合物等次级代谢产物生物合成相关的关键基因。【方法】使用Illumina Hi Seq 2500高通量测序平台对拟茎点霉XP-8菌株进行全基因组测序,并通过不同软件对测序数据进行序列拼接,基因预测与功能注释。【结果】组装后的拟茎点霉XP-8基因组大小为55.2 Mb,GC含量53.5%,含有17094个蛋白编码基因和310个非编码基因。获得了松脂醇及其糖苷化合物等次级代谢产物生物合成相关的基因。系统发育分析揭示出拟茎点霉XP-8与5种子囊菌共有12635个同源基因和5626个基因家族。【结论】拟茎点霉XP-8具有用于合成松脂醇及其糖苷化合物等多种次级代谢物的基因组基础,为下一步的代谢工程改造提供依据。  相似文献   

11.
Viruses play important roles in marine surface ecosystems, but little is known about viral ecology and virus-mediated processes in deep-sea hydrothermal microbial communities. In this study, we examined virus-like particle (VLP) abundances in planktonic and attached microbial communities, which occur in physical and chemical gradients in both deep and shallow submarine hydrothermal environments (mixing waters between hydrothermal fluids and ambient seawater and dense microbial communities attached to chimney surface areas or macrofaunal bodies and colonies). We found that viruses were widely distributed in a variety of hydrothermal microbial habitats, with the exception of the interior parts of hydrothermal chimney structures. The VLP abundance and VLP-to-prokaryote ratio (VPR) in the planktonic habitats increased as the ratio of hydrothermal fluid to mixing water increased. On the other hand, the VLP abundance in attached microbial communities was significantly and positively correlated with the whole prokaryotic abundance; however, the VPRs were always much lower than those for the surrounding hydrothermal waters. This is the first report to show VLP abundance in the attached microbial communities of submarine hydrothermal environments, which presented VPR values significantly lower than those in planktonic microbial communities reported before. These results suggested that viral lifestyles (e.g., lysogenic prevalence) and virus interactions with prokaryotes are significantly different among the planktonic and attached microbial communities that are developing in the submarine hydrothermal environments.  相似文献   

12.
Rogers KL  Schulte MD 《Geobiology》2012,10(4):320-332
Sulfur is central to the metabolisms of many organisms that inhabit extreme environments. While biotic and abiotic cycling of organic sulfur compounds has been well documented in low‐temperature anaerobic environments, cycling of organic sulfur in hydrothermal environments has received less attention. Recently published thermodynamic data have been used to estimate aqueous alkyl thiol and sulfide activities in deep‐sea hydrothermal systems. Here we use geochemical mixing models to predict fluid compositions that result from mixing end‐member hydrothermal fluid from the East Pacific Rise with bottom seawater. These fluid compositions are combined with estimates of methanethiol and dimethylsulfide activities to evaluate energy yields for potential organic sulfur‐based metabolisms under hydrothermal conditions. Aerobic respiration has the highest energy yields (over ?240 kJ/mol e?) at lower temperature; however, oxygen is unlikely to persist at high temperatures, restricting aerobic respiration to mesophilic communities. Nitrite reduction to N2 has the highest energy yields at higher temperatures (greater than ~40 °C). Nitrate and nitrite reduction to ammonium also yield significant energy (up to ?70 kJ/mol e?). Much lower, but still feasible energy yields are calculated for sulfate reduction, disproportionation, and reduction with H2. Organic compound family and the activity of methanethiol and dimethylsulfide were less important than metabolic strategy in determining overall energy yields. All metabolic strategies considered were exergonic within some portion of the mixing regime suggesting that organic sulfur‐based metabolisms may be prevalent within deep‐sea hydrothermal vent microbial communities.  相似文献   

13.
Chemolithoautotrophic Epsilonproteobacteria are ubiquitous in sulfidic, oxygen-poor habitats, including hydrothermal vents, marine oxygen minimum zones, marine sediments and sulfidic caves and have a significant role in cycling carbon, hydrogen, nitrogen and sulfur in these environments. The isolation of diverse strains of Epsilonproteobacteria and the sequencing of their genomes have revealed that this group has the metabolic potential to occupy a wide range of niches, particularly at dynamic deep-sea hydrothermal vents. We expand on this body of work by examining the population genomics of six strains of Lebetimonas, a vent-endemic, thermophilic, hydrogen-oxidizing Epsilonproteobacterium, from a single seamount in the Mariana Arc. Using Lebetimonas as a model for anaerobic, moderately thermophilic organisms in the warm, anoxic subseafloor environment, we show that genomic content is highly conserved and that recombination is limited between closely related strains. The Lebetimonas genomes are shaped by mobile genetic elements and gene loss as well as the acquisition of novel functional genes by horizontal gene transfer, which provide the potential for adaptation and microbial speciation in the deep sea. In addition, these Lebetimonas genomes contain two operons of nitrogenase genes with different evolutionary origins. Lebetimonas expressed nifH during growth with nitrogen gas as the sole nitrogen source, thus providing the first evidence of nitrogen fixation in any Epsilonproteobacteria from deep-sea hydrothermal vents. In this study, we provide a comparative overview of the genomic potential within the Nautiliaceae as well as among more distantly related hydrothermal vent Epsilonproteobacteria to broaden our understanding of microbial adaptation and diversity in the deep sea.  相似文献   

14.
Hadal ecosystems are found at a depth of 6,000 m below sea level and below, occupying less than 1% of the total area of the ocean. The microbial communities and metabolic potential in these ecosystems are largely uncharacterized. Here, we present four single amplified genomes (SAGs) obtained from 8,219 m below the sea surface within the hadal ecosystem of the Puerto Rico Trench (PRT). These SAGs are derived from members of deep-sea clades, including the Thaumarchaeota and SAR11 clade, and two are related to previously isolated piezophilic (high-pressure-adapted) microorganisms. In order to identify genes that might play a role in adaptation to deep-sea environments, comparative analyses were performed with genomes from closely related shallow-water microbes. The archaeal SAG possesses genes associated with mixotrophy, including lipoylation and the glycine cleavage pathway. The SAR11 SAG encodes glycolytic enzymes previously reported to be missing from this abundant and cosmopolitan group. The other SAGs, which are related to piezophilic isolates, possess genes that may supplement energy demands through the oxidation of hydrogen or the reduction of nitrous oxide. We found evidence for potential trench-specific gene distributions, as several SAG genes were observed only in a PRT metagenome and not in shallower deep-sea metagenomes. These results illustrate new ecotype features that might perform important roles in the adaptation of microorganisms to life in hadal environments.  相似文献   

15.
Diverse microbial communities thrive on and in deep-sea hydrothermal vent mineral deposits. However, our understanding of the inter-field variability in these communities is poor, as limited sampling and sequencing efforts have hampered most previous studies. To explore the inter-field variability in these communities, we used barcoded pyrosequencing of the variable region 4 (V4) of the 16S rRNA gene to characterize the archaeal and bacterial communities of over 30 hydrothermal deposit samples from six vent fields located along the Eastern Lau Spreading Center. Overall, the bacterial and archaeal communities of the Eastern Lau Spreading Center are similar to other active vent deposits, with a high diversity of Epsilonproteobacteria and thermophilic Archaea. However, the archaeal and bacterial communities from the southernmost vent field, Mariner, were significantly different from the other vent fields. At Mariner, the epsilonproteobacterial genus Nautilia and the archaeal family Thermococcaceae were prevalent in most samples, while Lebetimonas and Thermofilaceae were more abundant at the other vent fields. These differences appear to be influenced in part by the unique geochemistry of the Mariner fluids resulting from active degassing of a subsurface magma chamber. These results show that microbial communities associated with hydrothermal vent deposits in back-arc basins are taxonomically similar to those from mid-ocean ridge systems, but differences in geologic processes between vent fields in a back-arc basin can influence microbial community structure.  相似文献   

16.
The carbon and energy metabolisms of a variety of cultured chemolithoautotrophic Epsilonproteobacteria from deep-sea hydrothermal environments were characterized by both enzymatic and genetic analyses. All the Epsilonproteobacteria tested had all three key reductive tricarboxylic acid (rTCA) cycle enzymatic activities--ATP-dependent citrate lyase, pyruvate:ferredoxin oxidoreductase, and 2-oxoglutarate:ferredoxin oxidoreductase--while they had no ribulose 1,5-bisphosphate carboxylase (RubisCO) activity, the key enzyme in the Calvin-Benson cycle. These results paralleled the successful amplification of the key rTCA cycle genes aclB, porAB, and oorAB and the lack of success at amplifying the form I and II RubisCO genes, cbbL and cbbM. The combination of enzymatic and genetic analyses demonstrates that the Epsilonproteobacteria tested use the rTCA cycle for carbon assimilation. The energy metabolisms of deep-sea Epsilonproteobacteria were also well specified by the enzymatic and genetic characterization: hydrogen-oxidizing strains had evident soluble acceptor:methyl viologen hydrogenase activity and hydrogen uptake hydrogenase genes (hyn operon), while sulfur-oxidizing strains lacked both the enzyme activity and the genes. Although the energy metabolism of reduced sulfur compounds was not genetically analyzed and was not fully clarified, sulfur-oxidizing Epsilonproteobacteria showed enzyme activity of a potential sulfite:acceptor oxidoreductase for a direct oxidation pathway to sulfate but no activity of AMP-dependent adenosine 5'-phosphate sulfate reductase for a indirect oxidation pathway. No activity of thiosulfate-oxidizing enzymes was detected. The enzymatic and genetic characteristics described here were consistent with cellular carbon and energy metabolisms and suggest that molecular tools may have great potential for in situ elucidation of the ecophysiological roles of deep-sea Epsilonproteobacteria.  相似文献   

17.
Epsilonproteobacteria are widely distributed in marine, freshwater, and terrestrial environments, although most well-studied groups are from hydrothermal vents and the human intestinal tract. The environmental variables that control epsilonproteobacterial communities in sulfidic terrestrial environments, however, are poorly understood. Here, the environmental variables that influence epsilonproteobacterial community composition in geographically separated sulfidic caves and springs were determined by coarse and fine-scale approaches: denaturing gradient gel electrophoresis profiling of 23S rRNA PCR amplicons and clone library sequencing of the 16S-ITS-23S rRNA operon. Sequences retrieved from this study were not closely related to cultured representatives, indicating that existing culture collections do not adequately capture the diversity of terrestrial Epsilonproteobacteria. Comparisons of 16S-ITS-23S rRNA operon sequences from four sites revealed that some distant communities (> 8000 km) share closely related populations of Epsilonproteobacteria, while other sites have nearly clonal and phylogenetically distinct populations. Statistical evaluations of sequence data reveal that multiple environmental variables (e.g. temperature, pH, salinity, dissolved oxygen, and bicarbonate concentrations) influence Epsilonproteobacteria community composition. Locations with clonal populations tended to be from higher temperatures and intermediate dissolved oxygen concentrations. rRNA operon sequences outside of the 16S rRNA gene may be critical to recognizing environmental drivers of epsilonproteobacterial community composition.  相似文献   

18.
19.
Candidate bacterial phylum BRC1 has been identified in a broad range of mostly organic-rich oxic and anoxic environments through molecular analysis of microbial communities. None of the members of BRC1 have been cultivated and only a few draft genome sequences have been obtained from metagenomes or as a result of single-cell sequencing. We have reconstructed complete genome of BRC1 bacterium, BY40, from metagenome of the microbial community of a deep subsurface thermal aquifer in the Tomsk Region of the Western Siberia, Russia, and used it for metabolic reconstruction and comparison with existing genomic data. Analysis of 3.3 Mb genome of BY40 bacterium revealed numerous glycoside hydrolases that could enable utilization of carbohydrates, including enzymes of chitin-degradation pathway. The bacterium lacks flagellar machinery but the twitching motility is encoded. The reconstructed central metabolism revealed pathways enabling the fermentation of organic substrates, as well as their complete oxidation through aerobic and anaerobic respiration. Phylogenetic analysis using BY40 genome supported the phylum level classification of BRC1 lineage. Based on phylogenetic and genomic analyses, the novel bacterium is proposed to be classified as Candidatus Sumerlaea chitinivorans, within a candidate phylum Sumerlaeota.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号