首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The proposed functions of the interstitial cells of Cajal (ICC) are to 1) pace the slow waves and regulate their propagation, 2) mediate enteric neuronal signals to smooth muscle cells, and 3) act as mechanosensors. In addition, impairments of ICC have been implicated in diverse motility disorders. This review critically examines the available evidence for these roles and offers alternate explanations. This review suggests the following: 1) The ICC may not pace the slow waves or help in their propagation. Instead, they may help in maintaining the gradient of resting membrane potential (RMP) through the thickness of the circular muscle layer, which stabilizes the slow waves and enhances their propagation. The impairment of ICC destabilizes the slow waves, resulting in attenuation of their amplitude and impaired propagation. 2) The one-way communication between the enteric neuronal varicosities and the smooth muscle cells occurs by volume transmission, rather than by wired transmission via the ICC. 3) There are fundamental limitations for the ICC to act as mechanosensors. 4) The ICC impair in numerous motility disorders. However, a cause-and-effect relationship between ICC impairment and motility dysfunction is not established. The ICC impair readily and transform to other cell types in response to alterations in their microenvironment, which have limited effects on motility function. Concurrent investigations of the alterations in slow-wave characteristics, excitation-contraction and excitation-inhibition couplings in smooth muscle cells, neurotransmitter synthesis and release in enteric neurons, and the impairment of the ICC are required to understand the etiologies of clinical motility disorders.  相似文献   

2.
Folliculo-stellate cells (FS-cells) in the anterior pituitary gland are star-shaped cells and form tiny follicles. FS-cells are positive for S-100 protein and produce many cytokines or growth factors, such as interleukin-6 (IL-6), leukemia inhibitory factor (LIF), basic fibroblastic growth factor (bFGF) and vascular endothelial cell growth factor (VEGF). Therefore, it is generally accepted that FS-cells regulate endocrine cells through these growth factors. FS-cells also exhibit a phagocytotic activity and are known to work as scavenger cells. In addition to these functions, FS-cells are considered to have some unknown functions. In order to reveal the biological significance of FS-cells in the anterior pituitary gland, we performed a morphological study and obtained some new findings. First, we were interested in the colloid formation in the senescent porcine pituitary gland. We analyzed the colloids and found that clusterin is a major protein in them. We also found that the accumulation of clusterin in the colloids is related to the phagocytotic activity of FS-cells. In our next study, we found that FS-cells have the potential to differentiate into striated muscle cells. From FS-cells show multi-potent cell character and other cytological evidence, we propose that FS-cells are candidate of organ-specific stem cells in the anterior pituitary gland.  相似文献   

3.
Are somatic stem cells pluripotent or lineage-restricted?   总被引:3,自引:0,他引:3  
  相似文献   

4.
The advancements in our understanding of the inflammatory and immune mechanisms in rheumatoid arthritis (RA) have fuelled the development of targeted therapies that block cytokine networks and pathogenic immune cells, leading to a considerable improvement in the management of RA patients. Nonetheless, no therapy is curative and clinical remission does not necessarily correspond to non-progression of joint damage. Hence, the biomedical community has redirected scientific efforts and resources towards the investigation of other biological aspects of the disease, including the mechanisms driving tissue remodelling and repair. In this regard, stem cell research has attracted extraordinary attention, with the ultimate goal to develop interventions for the biological repair of damaged tissues in joint disorders, including RA. The recent evidence that mesenchymal stem cells (MSCs) with the ability to differentiate into cartilage are present in joint tissues raises an opportunity for therapeutic interventions via targeting intrinsic repair mechanisms. Under physiological conditions, MSCs in the joint are believed to contribute to the maintenance and repair of joint tissues. In RA, however, the repair function of MSCs appears to be repressed by the inflammatory milieu. In addition to being passive targets, MSCs could interact with the immune system and play an active role in the perpetuation of arthritis and progression of joint damage. Like MSCs, fibroblast-like synoviocytes (FLSs) are part of the stroma of the synovial membrane. During RA, FLSs undergo proliferation and contribute to the formation of the deleterious pannus, which mediates damage to articular cartilage and bone. Both FLSs and MSCs are contained within the mononuclear cell fraction in vitro, from which they can be culture expanded as plastic-adherent fibroblast-like cells. An important question to address relates to the relationship between MSCs and FLSs. MSCs and FLSs could be the same cell type with functional specialisation or represent different functional stages of the same stromal lineage. This review will discuss the roles of MSCs in RA and will address current knowledge of the relative identity between MSCs and FLSs. It will also examine the immunomodulatory properties of the MSCs and the potential to harness such properties for the treatment of RA.  相似文献   

5.
6.
Morphine gives rise to a cascade of events in the nervous system affecting, among others, neurotransmitter metabolism. Tolerance develops for various effects shortly after administration of the drug. Also, physical dependence develops and can be demonstrated by precipitation of withdrawal reactions. Biochemical events in nervous tissue have been extensively studied during morphine treatment. This overview will focus upon brain protein metabolism since macromolecular events might be of importance for development of long-term effects, such as tolerance and physical dependence. Both dose-and time-dependent changes in brain protein synthesis and the syntheses of specific proteins have been demonstrated after morphine treatment, although methodological considerations are important. Different experimental models (animal and tissue culture models) are presented. It might be interesting to note that astroglial protein synthesis and the secretion of proteins to the extracellular medium are both changed after morphine treatment, these having been evaluated in astroglial enriched primary cultures and in brain tissue slices. The possibility is suggested that proteins released from astroglial cells participate in the communication with other cells, including via synaptic regions, and that such communication might be of significance in modifying the synaptic membranes during morphine intoxication.  相似文献   

7.
Isolation of epithelial cells for cell culture is based on destruction of epithelial integrity. The consequences are manifold: cell polarity and specific cell functions are lost; cells acquire non‐epithelial characteristics and start to proliferate. This situation may also occur in situ when parts of the epithelium are lost, either by apoptosis or necrosis by organ or tissue injury. During recovery from this injury, surviving epithelial cells proliferate and may restore epithelial integrity and finally re‐differentiate into functional epithelial cells. In vitro, this re‐differentiation is mostly not complete due to sub‐optimal culture conditions. Therefore cultured epithelial cells resemble wounded or injured epithelia rather than healthy and well differentiated epithelia. The value of an in vitro cell model is the extent to which it helps to understand the function of the cells in situ. A variety of parameters influence the state of differentiation of cultured cells in vitro. Although each of these parameters had been studied, the picture how they co‐ordinately influence the state of differentiation of epithelial cells in vitro is incomplete. Therefore we discuss the influence of the isolation method and cell culture on epithelial cells, and outline strategies to achieve highly differentiated epithelial cells for the use as an in vitro model.  相似文献   

8.
In the microcirculation, longitudinal conduction of vasomotor responses provides an essential means of coordinating flow distribution among vessels in a complex network. Spread of current along the vessel axis can display a regenerative component, which leads to propagation of vasomotor signals over many millimeters; the ionic basis for the regenerative response is unknown. We examined the responses to 10 s of focal electrical stimulation (30 Hz, 2 ms, 30 V) of mouse cremaster arterioles to test the hypothesis that voltage-dependent Na(+) (Na(v)) and Ca(2+) channels might be activated in long-distance signaling in microvessels. Electrical stimulation evoked a vasoconstriction at the site of stimulation and a spreading, nondecremental conducted dilation. Endothelial damage (air bubble) blocked conduction of the vasodilation, indicating an involvement of the endothelium. The Na(v) channel blocker bupivacaine also blocked conduction, and TTX attenuated it. The Na(v) channel activator veratridine induced an endothelium-dependent dilation. The Na(v) channel isoforms Na(v)1.2, Na(v)1.6, and Na(v)1.9 were detected in the endothelial cells of cremaster arterioles by immunocytochemistry. These findings are consistent with the involvement of Na(v) channels in the conducted response. BAPTA buffering of endothelial cell Ca(2+) delayed and reduced the conducted dilation, which was almost eliminated by Ni(2+), amiloride, or deletion of alpha(1H) T-type Ca(2+) (Ca(v)3.2) channels. Blockade of endothelial nitric oxide synthase or Ca(2+)-activated K(+) channels also inhibited the conducted vasodilation. Our findings indicate that an electrically induced signal can propagate along the vessel axis via the endothelium and can induce sequential activation of Na(v) and Ca(v)3.2 channels. The resultant Ca(2+) influx activates endothelial nitric oxide synthase and Ca(2+)-activated K(+) channels, triggering vasodilation.  相似文献   

9.
Mesenchymal stromal cells (MSCs) are considered to be promising agents for the treatment of immunological disease. Although originally identified as precursor cells for mesenchymal lineages, in vitro studies have demonstrated that MSCs possess diverse immune regulatory capacities. Pre-clinical models have shown beneficial effects of MSCs in multiple immunological diseases and a number of phase 1/2 clinical trials carried out so far have reported signs of immune modulation after MSC infusion. These data indicate that MSCs play a central role in the immune response. This raises the academic question whether MSCs are immune cells or whether they are tissue precursor cells with immunoregulatory capacity. Correct understanding of the immunological properties and origin of MSCs will aid in the appropriate and safe use of the cells for clinical therapy. In this review the whole spectrum of immunological properties of MSCs is discussed with the aim of determining the position of MSCs in the immune system.  相似文献   

10.
11.
Wang H  Wu M  Liu Y 《Cellular immunology》2012,272(2):112-116
Numerous reports have shown that mesenchymal stem cells (MSCs) are implicated in immuno-regulation. Several factors expressed from MSCs, especially indoleamine 2,3-dioxygenase (IDO) and prostaglandin E2 (PGE2), are of importance in immuno-regulation on immune cells. In current minireview, we provided evidences to support a novel notion that MSCs may be a major source of "safe signals" in the immune system to balance "dangerous signals" based on a well accepted theory of "danger model". Furthermore, MSCs are of lifecycle characterized by age-and diseased-related changes, such as decreased growth rate, increased senescence, and altered morphology. Thus, defected and abnormal MSCs are implicated in auto-immune diseases, such as systemic lupus erythematosus (SLE). Clinically, it is important to determine clinical benefits and sides effects of cell therapies using autologous self-MSCs or healthy allogeneic MSCs in treatment of autoimmune diseases.  相似文献   

12.
Plaque-forming dsDNA (>330 kb) viruses that infect certain unicellular, eukaryotic chlorella-like green algae contain approximately 375 protein-encoding genes. These proteins include a 94 amino acid K+ channel protein, called Kcv, as well as two putative ligand-gated ion channels. The viruses also encode other proteins that could be involved in the assembly and/or function of ion channels, including protein kinases and a phosphatase, polyamine biosynthetic enzymes and histamine decarboxylase.  相似文献   

13.
Monitoring programs of ion concentrations and fluxes in semi-natural ecosystems are confronted with the task to gain as much information as possible with simultaneously minimizing costs and efforts. The aim of this study was (i) to assess how much of the heterogeneity of solution concentrations is lost because of temporal integration of measurements and (ii) to estimate the error in ion fluxes due to temporal integration. High resolution measurements (daily interval) of ion concentrations (sulfate, nitrate, chloride, pH and EC) in throughfall, soil solutions and runoff at the catchment Lehstenbach (Fichtelgebirge, Northeast Bavaria, Germany) were compared over a two year period with the reference monitoring program (biweekly measurement interval). Evaluation of the maximum temporal heterogeneity of ion concentrations in throughfall, soil solution and runoff (expressed as minimum, maximum, median and 25–75% percentile) did not result in an overall higher heterogeneity of the high resolution measurements compared to the reference program. The calculation of runoff fluxes from the reference data (biweekly concentration) resulted in significant errors of up to 25% for time periods < 1 year (high resolution data was considered the "true" value and set as 100%). However, errors became minor (< 10%) if longer time periods were considered. The suitability of different interpolation methods to up-scale biweekly concentration data for the calculation of runoff fluxes was evaluated in this study. We concluded for the monitoring programs at the Lehstenbach catchment that a biweekly measurement interval seemed to be suitable to capture the heterogeneity of ion concentrations and fluxes (and thus temporal trends). In comparison, high resolution measurements with a daily measurement interval were higher in cost, work and time resources and had a relatively low information gain. While the introduced methods are applicable in all monitoring programs, conclusions on temporal resolution of measurements are most likely not valid for systems where ion concentrations have a low autocorrelation length (e.g., agricultural or urban systems with nitrate or pesticide treatment; tropical systems with extreme temperature or hydrological events).  相似文献   

14.
Are SCE frequencies indicative of adaptive response of plant cells?   总被引:1,自引:0,他引:1  
Low-dose pretreatments with maleic hydrazide, mitomycin C, and N-methyl-N-nitrosourea or sublethal heat shock were tested with regard to their effect on sister-chromatid exchange (SCE) induction by high doses of the same mutagens administered 2 h later to root-tip meristems of Vicia faba. Consecutive treatments resulted in either additive or, in a minority of experiments, in below-additive SCE frequencies. A model is proposed to explain the conflicting data reported on adaptation to SCE and aberration induction.  相似文献   

15.
CD4+ CD25+ T regulatory cells (Tregs) are classified as a subset of T cells whose role is the suppression and regulation of immune responses to self and non-self. Since their discovery in the early 1970s, the role of CD4+ CD25+ Tregs in both autoimmune and infectious disease has continued to expand. This review examines the recent advances on the role CD4+ CD25+ Tregs may be playing in various diseases regarding progression or protection. In addition, advances made in the purification and manipulation of CD4+ CD25+ Tregs using new cell markers, techniques and antibodies are discussed. Ultimately, an overall understanding of the exact mechanism which CD4+ CD25+ Tregs implement during disease progression will enhance our ability to manipulate CD4+ CD25+ Tregs in a clinically beneficial manner.  相似文献   

16.
17.
Although clustered DNA damages are induced in cells by ionizing radiation and can be induced artifactually during DNA isolation, it was not known if they are formed in unirradiated cells by normal oxidative metabolism. Using high-sensitivity methods of quantitative gel electrophoresis, electronic imaging, and number average length analysis, we found that two radiosensitive human cell lines (TK6 and WI-L2-NS) accumulated Fpg-oxidized purine clusters and Nth-oxidized pyrimidine clusters but not Nfo-abasic clusters. However, four repair-proficient human lines (MOLT 4, HL-60, WTK1, and 28SC) did not contain significant levels (<5/Gbp) of any cluster type. Cluster levels were independent of p53 status. Measurement of glycosylase levels in 28SC, TK6, and WI-L2-NS cells suggested that depressed hOGG1 and hNth activities in TK6 and WI-L2-NS could be related to oxybase cluster accumulation. Thus, individuals with DNA repair enzyme deficiencies could accumulate potentially cytotoxic and mutagenic clustered DNA damages. The absence of Nfo-detected endogenous clusters in any cells examined suggests that abasic clusters could be a signature of cellular ionizing radiation exposure.  相似文献   

18.
Experiments were undertaken to test if thymocytes of "mature" or "medullary" phenotype were restricted to the medullary area of the thymus. A calculation based on direct cell counts on serial sections indicated that 11.5% of adult male CBA thymic lymphoid cells were within the medullary zone. Since only 3-4% of thymocytes were cortisone resistant, the majority of thymocytes within the medulla were, like cortical thymocytes, cortisone sensitive. A series of cell surface antigenic markers, used alone or in pairs, suggested that 13-15% of thymocytes were of medullary phenotype, somewhat more than the number of thymocytes actually present in the medulla. However, much of this discrepancy could be explained by differential death of cortical cells during isolation and staining, and by the existence in the cortex of a subpopulation of early blast cells which shared some, but not all markers with medullary thymocytes. A direct test for mature or medullary phenotype cells in the cortex involved selective transcapsular labeling of outer-cortical cells with fluorescent dyes, followed by multiparameter immunofluorescent analysis of the 10% labeled population. Outer-cortical thymocytes included some cells (mainly early blasts) sharing some markers with medullary thymocytes, but very few (less than 1%) of these cells expressed all the characteristic "mature" markers. Limit-dilution precursor frequency studies showed the level of functional cells in the outer cortex was extremely low. The overall conclusion was that the vast majority of cells of complete "mature" phenotype are confined to the thymic medulla. These findings favor the view that thymus migrants originate from the thymic medulla, but do not exclude a cortical origin. The results also illustrate the need for multiparameter analysis to distinguish medullary thymocytes from early blast cells.  相似文献   

19.
20.
The parasitic mite Varroa jacobsoni Oud. reproduces in sealed honey bee brood cells. Within worker cells a considerable fraction of the mites do not produce offspring. It is investigated whether variation in the ratio of cells without reproduction is caused by properties of the worker brood, or by the state of the mites entering cells. Pieces of brood comb were taken from colonies of 12 different bee lines and were placed simultaneously into highly infested colonies. Non-reproduction was independent of the origin of the brood pieces, indicating a minor role of a variation due to different brood origin. Between colonies used for infestation, however, it differed considerably. A comparison of the proportion of cells without reproduction when infested by one Varroa mite or when infested by two or three Varroa mites showed, that non-reproduction was mainly related to the state of the mites entering cells, and only to a minor degree to an influence of the brood cells. A high ratio of worker cells without reproduction was consistently reported in bee lines which survive the disease without treatment, and a high level of non-reproduction is thus regarded to be a key factor in breeding bees for high Varroa tolerance. The current results indicate, that differences in this trait are only to a minor degree related to differences between bee lines in the ability of the bee brood to induce oviposition. These differences seem rather to depend on other, unknown colony factors influencing the reproductive state of Varroa when they enter cells for reproduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号