首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang J  Wu M  Liu X  Xu Y 《Steroids》2011,76(14):1560-1565
Androstenedione (4-androstene-3,17-dione) is banned by the World Anti-Doping Agency (WADA) as an endogenous steroid. The official method to confirm androstenedione abuse is isotope ratio mass spectrometry (IRMS). According to the guidance published by WADA, atypical steroid profiles are required to trigger IRMS analysis. However, in some situations, steroid profile parameters are not effective enough to suspect the misuse of endogenous steroids. The aim of this study was to investigate the atypical steroid profile induced by androstenedione administration and the detection of androstenedione doping using IRMS. Ingestion of androstenedione resulted in changes in urinary steroid profile, including increased concentrations of androsterone (An), etiocholanolone (Etio), 5α-androstane-3α,17β-diol (5α-diol), and 5β-androstane-3α,17β-diol (5β-diol) in all of the subjects. Nevertheless, the testosterone/epitestosterone (T/E) ratio was elevated only in some of the subjects. The rapid increases in the concentrations of An and Etio, as well as in T/E ratio for some subjects could provide indicators for initiating IRMS analysis only for a short time period, 2-22 h post-administration. However, IRMS could provide positive determinations for up to 55 h post-administration. This study demonstrated that, 5β-diol concentration or Etio/An ratio could be utilized as useful indicators for initiating IRMS analysis during 2-36 h post-administration. Lastly, Etio, with slower clearance, could be more effectively used than An for the confirmation of androstenedione doping using IRMS.  相似文献   

2.
Sertoli cells from 10 day old rats convert androstenedione to testosterone and 5α-androstane-3α,17β-diol, testosterone to 17β-hydroxy-5α-androstan-3-one and 5α-androstane-3α,17β-diol, and 17β-hydroxy-5α-androstan-3-one to 5α-andro-stane-3α,17β-diol after 72 hours in vitro. Conversions of androstenedione to testosterone and 5α-androstane-3α,17β-diol, and testosterone to 5α-androstane-3α,17β-diol were 2 to 3 times greater in FSH treated cultures. Steroid conversion was not stimulated significantly by LH or TSH. The results are interpreted as evidence that in young rats Sertoli steroid metabolism is stimulated by FSH, that Sertoli cells are an androgen target and that FSH may induce or facilitate Sertoli androgen responsiveness.  相似文献   

3.
This study has identified the polar metabolites of 5α-androstane-3β, 17β-diol(3β-diol) produced by the canine prostate. The major metabolite is 5α-androstane-3β, 7α, 17β-triol (7α-triol) accounting for approximately 80% of the total polar metabolites of 3β-diol. The remaining 20% is accounted for exclusively by another triol, 5α-androstane-3β, 6α, 17β-triol(6α-triol). This study has also characterized two enzymatic hydroxylases responsible for respective triol formation: 5α-androstane-3β, 17β-diol 6α-hydroxylase (6α-hydroxylase) and 5α-androstane-3β, 17β-diol 7α-hydroxylase (7α-hydroxylase). Both of these irreversible hydroxylases are located in the particulate fraction of the prostate and can utilize either NADH or NADPH as cofactor. Several in vitro steroid inhibitors of these hydroxylases were identified including cholesterol, estradiol and diethylstilbestrol. Neither of the hydroxylases were found to be decreased by castration (3 months) when expressed as activity/DNA. Using a variety of C19 androstane substrates, 6α- and 7α-triol were found to be major components of the total 3β-hydroxy-5α-androstane metabolites produced by the canine prostate.  相似文献   

4.
17β-Nandrolone (17β-NT) is one of the most frequently misused anabolic steroids in meat producing animals. As a result of its extensive metabolism combined with the possibility of interferences with other endogenous compounds, detection of its illegal use often turns out to be a difficult issue. In recent years, proving the illegal administration of 17β-NT became even more challenging since the presence of endogenous presence of 17β-NT or some of its metabolite in different species was demonstrated. In bovines, 17α-NT can occur naturally in the urine of pregnant cows and recent findings reported that both forms can be detected in injured animals. Because efficient control must both take into account metabolic patterns and associated kinetics of elimination, the purpose of the present study was to investigate further some estranediols (5α-estrane-3β,17β-diol (abb), 5β-estrane-3α,17β-diol (bab), 5α-estrane-3β,17α-diol (aba), 5α-estrane-3α,17β-diol (aab) and 5β-estrane-3α,17α-diol (baa)) as particular metabolites of 17β-NT on a large number of injured (n=65) or pregnant (n=40) bovines. Whereas the metabolites abb, bab, aba and baa have previously been detected in urine up to several days after 17β-NT administration, the present study showed that some of the isomers abb (5α-estrane-3β,17β-diol) and bab (5β-estrane-3α,17β-diol) could not be detected in injured or pregnant animals, even at very low levels. This result may open a new way for the screening of anabolic steroid administration considering these 2 estranediols as biomarkers to indicate nandrolone abuse in cattle.  相似文献   

5.
17α-Methyl-5α-dihydrotestosterone and the reduced metabolites, 17α-methyl-5α-androstane-3α, 17β-diol and -3β, 17β-diol together with two hydroxylated metabolites, 17α-methyl-5α-androstane-3β, 15α, 17β-triol and 17α-methyl-5α-androstane-3α, 6α, 17β-triol were isolated and identified in the urine of rabbits orally dosed with 17α-methyl-5α-dihydrotestosterone. Formation of the C-6 hydroxylated derivative demonstrates that the 4,6-enolization of a 4-en-3-one is not a necessary requirement for hydroxylation at C-6 of the androstane nucleus in the rabbit. No evidence was obtained for the presence of 17α-methyl/17β-hydroxyl epimerization.  相似文献   

6.
The syntheses of 15β-carboxyethylmercapto-5α-dihydrotestosterone, 15β-carboxy-ethylmercapto-5α-androstane-3β, 17β-diol and 15β-carboxyethylmercapto-5α-androstane-3α, 17β-diol and the preparation of their bovine serum albumin (BSA) conjugates are described. These conjugates were employed for the generation of specific antisera suitable for radioimmunoassay (RIA) of 5α-dihydrotestosterone (5α-DHT), 5α-androstane-3β, 17β-diol (3β3-diol) and 5α-androstane-3α, 17β-diol (3α-diol).  相似文献   

7.
17α-Hydroxy-17β-methyl-5β-androstan-3-one, 17μ-methyl-5α-androstane-3α, 17α-diol, 17β-methyl-5α-androstane-3β, 17α-diol, 17α-methyl-5β-androstane-3β, 17β-diol, 17β-methyl-5β-androstane-3α, 17α-diol and 17β-methy1–5β-androstane-3β, 17α-diol were synthesized for the first time. 1H NMR spectra of all four 17ξ-hydroxy/17ξ-methyl C-3 ketones and all eight C-3 alcohols were recorded in chloroform-d and pyridine-d5. Pyridine-induced chemical shifts are discussed. Thin-layer Chromatographic data are given.  相似文献   

8.
The present study was performed to investigate the influence of the intake of selective oestrogen receptor modulators on the urinary endogenous steroids profile. For this purpose the circadian variability of luteinizing hormone, follicle-stimulating hormone, testosterone, 5α-androstan-3α,17β-diol, 5β-androstan-3α,17β-diol, epitestosterone, 4-androstenedione, androsterone and etiocholanolone were measured on eight subjects (four males and four females) by gas chromatography–mass spectrometry and chemiluminescent immunometric assay techniques before and after oral administration of multiple doses of either tamoxifen (80 mg for 2 days) or toremifene (120 mg for 2 days) or clomiphene (100 mg for 2 days). The individual baseline variability of the steroids studied was set up by collecting the urine samples every 3 h, for 3 days prior to the treatment; whereas the evaluation of the effects of the oral administration of multiple doses of selective oestrogen receptor modulators on the steroid urinary profile was assessed by collecting urine samples every three hours for at least five days from the first administration.The results of our measurements showed that, only in male subjects, the relative urinary concentrations of testosterone, epitestosterone and 4-androstenedione were significantly altered generally after the second day of drug administration. While no significant effects were recorded in both sexes on the luteinizing hormone, follicle-stimulating hormone, androsterone, etiocholanolone, 5α-androstan-3α,17β-diol and 5β-androstan-3α,17β-diol urinary levels and on testosterone/epitestosterone, 5α-androstan-3α,17β-diol/5β-androstan-3α,17β-diol and androsterone/etiocholanolone ratios.  相似文献   

9.
John F. Templeton 《Steroids》1983,41(4):493-500
17α-Methy1-5β-androstane-3α, 17β-diol together with the hydroxylated metabolites 17α-methyl-5β-androstane-1β, 3α, 17β-triol, 17α-methyl-5β-androstane-3α, 12β, 17β-triol, 17α-methyl-5β-androstane-3α, 16α, 17β-triol and 17α-methyl-5β-androstane-3α, 16β, 17β-triol were isolated and identified in the urine of rabbits orally dosed with 17α-methyl-5β-dihydrotestosterone. Biotransformations differ from the 5α-series where hydroxylation occurred at C-6 and C-15. In both series, the C-3 equatorial epimer was the major urinary excretion product among the non-hydroxylated metabolites. The 5β-compound was more resistant to metabolic hydroxylation than the 5α-compound. No evidence for epimerization at the C-17 position was observed.  相似文献   

10.
An acidic metabolite, 2α-carboxy-5α-androstane-3α, 16α, 17αtriol and two neutral metabolites, 2α-hydroxymethyl-5α-androstane-3α, 17α-diol, and 2α-hydroxymethyl-5α-androstane-3α, 16α, 17α-triol have been identified in the urine of rabbits orally dosed with 17β-hydroxy-2-hydroxymethylene-5α-androstan-3-one. 2α-Hydroxymethyl-5α-androstane-3α, 16α, 17α-triol was previously obtained from the urine of rabbits dosed with 17β-hydroxy-2α-methyl-5α-androstan-3-one. The acidic metabolite was the major urinary excretion product.  相似文献   

11.
New analogues of androgens that had never been available as approved drugs are marketed as “dietary supplement” recently. They are mainly advertised to promote muscle mass and are considered by the governmental authorities in various countries, as well as by the World Anti-doping Agency for sport, as being pharmacologically and/or chemically related to anabolic steroids.In the present study, we report the detection of a steroid in a product seized by the State Bureau of Criminal Investigation Schleswig-Holstein, Germany. The product “1-Androsterone” of the brand name “Advanced Muscle Science” was labeled to contain 100 mg of “1-Androstene-3b-ol,17-one” per capsule. The product was analyzed underivatized and as bis-TMS derivative by GC-MS. The steroid was identified by comparison with chemically synthesized 3β-hydroxy-5α-androst-1-en-17-one, prepared by reduction of 5α-androst-1-ene-3,17-dione with LS-Selectride (Lithium tris-isoamylborohydride), and by nuclear magnetic resonance. Semi-quantitation revealed an amount of 3β-hydroxy-5α-androst-1-en-17-one in the capsules as labeled.Following oral administration to a male volunteer, the main urinary metabolites were monitored. 1-Testosterone (17β-hydroxy-5α-androst-1-en-3-one), 1-androstenedione (5α-androst-1-ene-3,17-dione), 3α-hydroxy-5α-androst-1-en-17-one, 5α-androst-1-ene-3α,17β-diol, and 5α-androst-1-ene-3β,17β-diol were detected besides the parent compound and two more metabolites (up to now not finally identified but most likely C-18 and C-19 hydroxylated 5α-androst-1-ene-3,17-diones). Additionally, common steroids of the urinary steroid profile were altered after the administration of “1-Androsterone”. Especially the ratios of androsterone/etiocholanolone and 5α-/5β-androstane-3α,17β-diol and the concentration of 5α-dihydrotestosterone were influenced. 3α-Hydroxy-5α-androst-1-en-17-one appears to be suitable for the long-term detection of the steroid (ab-)use, as this characteristic metabolite was detectable in screening up to nine days after a single administration of one capsule.  相似文献   

12.
O W Smith  P Ofner  R L Vena 《Steroids》1974,24(3):311-315
In a previous communication (1) the identification of Δ4 -3-oxo-steroids and estrogens as metabolites of testosterone-4-14C incubated with normal post-ovulatory human ovaries was reported. Thin-layer chromatography of the extracts of those ovaries which contained no corpus luteum yielded zones of radioactivity which were not associated with any of these products. Detailed investigation of these zones from the extract of one of these glands resulted in identification of the following radiometabolites of the 5α-androstane series: 5α-androstane-3,17-dione, androsterone, 3β-hydroxy-5α-androstan-17-one, 17β-hydroxy-5α-androstan-3-one, 5α-androstane-3ga, 17β-diol and 5α-androstane-3β, 17β-diol. The capacity of a normal human ovary to produce these 5α-reduced androgens, especially the potent 17β-hydroxy-steroids, suggests a regulatory role of these compounds in ovarian function.  相似文献   

13.
Adult beagle dogs, castrated one month previously, were treated with 5α-androstane-3α, 17α-diol (total dose 300 mg) over a period of one month. Examination of the prostate after treatment showed no significant change in size, weight or histological appearance from the castrate dog prostate. Subsequent administration of 5α-androstane-3α, 17β-diol (300 mg) over the same period of time resulted in restoration of the prostate size, weight and histological appearance to that of the normal intact dog prostate. It is concluded that exogenously administered 5α-androstane-3α, 17α-diol does not promote prostatic growth in the castrate beagle dog.  相似文献   

14.
In doping control, an athlete can only be convicted with the misuse with endogenous steroids like testosterone (T), if abnormal values of steroid metabolites and steroid ratios are observed and if the subsequent analysis with isotope ratios mass spectrometry (IRMS) confirms the presence of exogenously administered androgens. In this work, we compare the results of a novel steroid profiling approach with the performance an in-house developed IRMS method. The developed IRMS has the advantage over other methods to be relatively short in time and with target compounds androsterone, etiocholanolone, 5β-androstane 3α,17β-diol and 5α-androstane 3α,17β-diol. Pregnanediol was used as an endogenous reference compound (ERC). Reference limits for the IRMS values were established and applied as decision limits for the evaluation of excretion urine from administration with oral T, T-gel, dihydrotestosterone (DHT) - gel and dehydroepiandrosterone (DHEA). Results indicated the importance of both androstanediols as important IRMS markers where relative values compared to an ERC (Δδ(13)C) yielded better detection accuracy than absolute δ(13)C-values. The detection times of all administered endogenous steroids were evaluated using the proposed thresholds. The results of traditional steroid profiling and a new approach based upon minor steroid metabolites monitoring introduced in a longitudinal framework were evaluated with IRMS. With traditional steroid profiling methods, 95% of the atypical samples could be confirmed whereas an additional 74% of IRMS confirmed was provided by a new biomarkers strategy. These results prove that the other steroid profiling strategies can improve the efficiency in detection of misuse with endogenous steroids.  相似文献   

15.
The epididymis of adult rats metabolizes 3H-testosterone by experiments invitro. After incubation of slices from epididymal tissue for 2 hrs at 37°C, 8% of the total radioactivity was found in the water-soluble fraction, whereas 92% in the ether soluble fraction (free steroids). The free steroids were examined further and the following metabolites identified: testosterone (17β-hydroxy-4-androsten-3-one) 10,4%, androstendione (4-androstene-3,17-dione) 6,2%, 5α-A-dione (5α-androstane-3,17-dione) 7,3%, DHT (17β-hydroxy-5α-androstane-3-one) 39,3%, 3α-diol (5α-androstane-3α,17β-diol) 22,7%, 3β-diol (5α-androstane-3β,17β-diol) 4,6% and androsterone(3α-hydroxy-5α-androstan-17-one) 8,9%. The relative amount of each metabolite is given in per cent of the total radioactivity in the ether soluble fraction. When segments (caput, corpus, cauda) of epididymis were incubated in the same way, differences in steroid metabolism were demonstrated. Characteristic for caput epididymidis was high formation of DHT (58,4%) and 3α-diol (23,5%). Corpus epididymidis showed lower formation of DHT (50,6%) and 3α-diol (12,7%), but an approximately 3 times higher formation of 5α-A-dione (12,0%) than caput (3,4%) and cauda (3,5%). Cauda epididymis showed the lowest formation of DHT (38,3%), whereas 3α-diol (29,1%) and androsterone (11,4%) formation were relatively high. The ratio between 17β-hydroxy metabolites (DHT and androstanediols) and 17-keto metabolites were much higher in the caput (8,8) than in the corpus (3,2) and cauda (3,6), indicating a higher 5α-reductase activity in this segment.  相似文献   

16.
James C. Coffey 《Steroids》1973,22(2):247-257
Tritiated 4-androstene-3,17-dione and testosterone were incubated with submaxillary gland homogenates of 6 month old male mice. In 15 and 180 minute incubations fortified with NADPH, submaxillary tissue converted 4-androstene-3,17-dione predominantly to androsterone and, to a lesser extent, testosterone, 17β-hydroxy-5α-androstan-3-one and 5α-androstane-3α, 17β-diol. Testosterone was converted primarily to 5α-androstane-3α, 17β-diol when exogenous NADPH was available; trace amounts of 4-androstene-3,17-dione, 17β-hydroxy-5α-androstan-3-one and androsterone were also formed. When a NADPH-generating system was omitted from the incubation medium both 4-androstene-3,17-dione and testosterone were poorly metabolized by submaxillary tissue; the amounts of reduced metabolites accumulating were markedly reduced.  相似文献   

17.
D W Warren  N Ahmad 《Steroids》1978,31(2):259-267
In order to ascertain the ability of rat seminal vesicles, testes and ventral prostate glands to interconvert 5α-reduced androgens, these three organs were incubated with either tritiated 17β-hydroxy-5αandrostan-3-one (5α-dihydrotestosterone,DHT), 5α-androstane-3α, 17βdiol (3α-diol) or 5α-androstane-3β, 17β-diol (3β-diol). The incubation environment utilized (Krebs-Ringer bicarbonate glucose buffer) was selected because the histologic appearance of the tissue at the conclusion of the incubation was indistinguishable from tissue fixed immediately after sacrifice of the animal, thereby approximating the physiologic conditions as closely as possible. In incubations of rat seminal vesicles, 3H.-3β-diol was not metabolized while 26.7 ± 3.8% of 3H-3α-diol appeared as DHT and 17.2 ± 1.5% of 3H-DHT was metabolized to 3α-diol. A small amount (7.5 ± 0.8%) of 3H-DHT was, however, converted to 3β-diol. In incubations of rat testes, the major metabolite, regardless of substrate, was 3α-diol. The conversion of 75.7 ± 2.1% of 3H-3β-diol to 3α-diol has demonstrated, for the first time, that this steroid can be metabolized by the rat testis. Rat ventral prostate glands metabolized 18.5 ± 2.5% of3H-3β-diol to DHT and 61± 2.9% of 3H-3α-diol to DHT. When 3H-DHT served as the substrate, 83.2 ± 1.5% remained unmetabolized. The prostate glands are, therefore, capable of metabolizing 3β-diol to DHT.  相似文献   

18.
W W Peng  J R Wisner  D W Warren 《Steroids》1979,34(1):101-110
In the testes, 17β-hydroxy-5α-androstan-3-one (dihydrotestosterone, DHT) is converted to 5α-androstane-3α,17β-diol (3α-diol) by the enzyme 3α-hydroxysteroid oxidoreductase (3α-HSO). This steroid has been shown to possess biological activity in the male rat. The secretion of 3α-diol is much greater in the prepubertal animal than in the adult. This study is designed to quantitate the activity of 3α-HSO in the cytosol fraction of testes from male rats throughout sexual development. Following homogenizatlon of whole testes, the 105,000 × g supernatant or cytosol fraction was incubated with 3H DHT and varying concentrations of unlabelled DHT in the presence of 0.25μm NADPH. The incubation was carried out at 34°C for 10 min at a pH of 7.4. The Km of 3α-HSO in testicular cytosol was calculated to be 1.25μM. The specific activity of testicular cytosol 3α-HSO, expressed as pmoles of 3α-diol converted from DHT per min per mg testicular cytosol protein, was high in young rats from 10 to 22 days of age, and was followed by a decline between day 22 and 37, with activity remaining low throughout adulthood. Total testicular cytosol activity of 3α-HSO, expressed as nmoles of 3α-diol converted from DHT per min per pair of testes, gradually increased from day 10 to day 60 and remained high in the adult rat. In the post-pubertal period, a possible lack of available substrate, DHT, or possible endogenous testicular regulatory mechanisms acting on 3α-HSO activity might account for the actual decrease in 3α-diol concentration in the blood and testes of mature rats.  相似文献   

19.
Two D-homosteroids were isolated from the hydrolyzate of 5β-pregnane -3α,20α-diol disulfate (II) when it was refluxed in 3N hydrochloric acid. The structures of these steroids have been elucidated as 17α-methyl-D-homo-5β-androstane-3α, 17aβ-diol (VI) and 17α-methyl-17aγb-chloro-D-homo-5β-androstan-3α-ol (VIII) by instrumental analyses. The former was identical with a synthetic specimen derived from 5β-pregnane-3α,20β-diol di-sulfate (IV) by uranediol rearrangement. The main hydrolyzates obtained were 17α-ethyl-17β-methyl-18-nor-5β-androst-13-en-3α-ol (V) and 5β-pregnane-3α, 20α-diol (III).  相似文献   

20.
The first chemical synthesis of 3α,7α-dihydroxy-5β-androstan-17-one and 3α-hydroxy-5β-androstane-7,17-dione is reported. In this method, the 17β-side chain of commercial chenodesoxycholic acid was degraded in 6 steps after selective protection of the hydroxyl groups : 3α-OH by a tert-butyldimetfaylsilyl group and 7α-OH by an acetoxy group. The capacity of 3α,7α-dihydroxy-5β-androstan-17-one and 3α-hydroxy-5β-androstane-7, 17-dione to release a pyrogen by human leukocytes was investigated by two independent methods : supernatants from leukocytes incubated with a steroid are injected to rabbits whose fever is measured, or tested by the Limulus Test (a pyrogen detection technique). The 7-keto substituted etiocholanolone still possessed pyrogenic activity, while the 7α-hydroxyl substituted one did not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号