首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Loss-of-function mutations in PINK1 or parkin genes are associated with juvenile-onset autosomal recessive forms of Parkinson disease. Numerous studies have established that PINK1 and parkin participate in a common mitochondrial-quality control pathway, promoting the selective degradation of dysfunctional mitochondria by mitophagy. Upregulation of parkin mRNA and protein levels has been proposed as protective mechanism against mitochondrial and endoplasmic reticulum (ER) stress. To better understand how parkin could exert protective function we considered the possibility that it could modulate the ER–mitochondria inter-organelles cross talk. To verify this hypothesis we investigated the effects of parkin overexpression on ER–mitochondria crosstalk with respect to the regulation of two key cellular parameters: Ca2 + homeostasis and ATP production. Our results indicate that parkin overexpression in model cells physically and functionally enhanced ER–mitochondria coupling, favored Ca2 + transfer from the ER to the mitochondria following cells stimulation with an 1,4,5 inositol trisphosphate (InsP3) generating agonist and increased the agonist-induced ATP production. The overexpression of a parkin mutant lacking the first 79 residues (ΔUbl) failed to enhance the mitochondrial Ca2 + transients, thus highlighting the importance of the N-terminal ubiquitin like domain for the observed phenotype. siRNA-mediated parkin silencing caused mitochondrial fragmentation, impaired mitochondrial Ca2 + handling and reduced the ER–mitochondria tethering. These data support a novel role for parkin in the regulation of mitochondrial homeostasis, Ca2 + signaling and energy metabolism under physiological conditions.  相似文献   

2.
3.
Apoptotic signaling plays an important role in skeletal muscle degradation, atrophy, and dysfunction. Mitochondria are central executers of apoptosis by directly participating in caspase-dependent and caspase-independent cell death signaling. Given the important apoptotic role of mitochondria, altering mitochondrial content could influence apoptosis. Therefore, we examined the direct effect of modest, but physiological increases in mitochondrial biogenesis and content on skeletal muscle apoptosis using a cell culture approach. Treatment of L6 myoblasts with SNAP or AICAR (5 h/day for 5 days) significantly increased PGC-1, AIF, cytochrome c, and MnSOD protein content as well as MitoTracker staining. Following induction of mitochondrial biogenesis, L6 myoblasts displayed decreased sensitivity to apoptotic cell death as well as reduced caspase-3 and caspase-9 activation following exposure to staurosporine (STS) and C2-ceramide. L6 myoblasts with higher mitochondrial content also exhibited reduced apoptosis and AIF release following exposure to hydrogen peroxide (H2O2). Analysis of several key apoptosis regulatory proteins (ARC, Bax, Bcl-2, XIAP), antioxidant proteins (catalase, MnSOD, CuZnSOD), and reactive oxygen species (ROS) measures (DCF and MitoSOX fluorescence) revealed that these mechanisms were not responsible for the observed cellular protection. However, myoblasts with higher mitochondrial content were less sensitive to Ca2 +-induced mitochondrial permeability transition pore formation (mPTP) and mitochondrial membrane depolarization. Collectively, these data demonstrate that increased mitochondrial content at physiological levels provides protection against apoptotic cell death by decreasing caspase-dependent and caspase-independent signaling through influencing mitochondrial Ca2 +-mediated apoptotic events. Therefore, increasing mitochondrial biogenesis/content may represent a potential therapeutic approach in skeletal muscle disorders displaying increased apoptosis.  相似文献   

4.
Calcium depletion of the endoplasmic reticulum (ER) induces oligomerisation, puncta formation and translocation of the ER Ca2+ sensor proteins, STIM1 and -2 into plasma membrane (PM)-adjacent regions of the ER, where they activate the Orai1, -2 or -3 proteins present in the opposing PM. These proteins form ion channels through which store-operated Ca2+ influx (SOC) occurs. Calcium ions exert negative feed-back on SOC. Here we examined whether subplasmalemmal mitochondria, which reduce this feed-back by Ca2+ uptake, are located within or out of the high-Ca2+ microdomains (HCMDs) formed between the ER and plasmalemmal Orai1 channels. For this purpose, COS-7 cells were cotransfected with Orai1, STIM1 labelled with YFP or mRFP and the mitochondrially targeted Ca2+ sensitive fluorescent protein inverse-Pericam. Depletion of ER Ca2+ with ATP + thapsigargin (in Ca2+-free medium) induced the appearance of STIM1 puncta in the ≤100 nm wide subplasmalemmal space, as examined with TIRF. Mitochondria were located either in the gaps between STIM1-tagged puncta or in remote, STIM1-free regions. After addition of Ca2+ mitochondrial Ca2+ concentration increased irrespective of the mitochondrion–STIM1 distance. These observations indicate that mitochondria are exposed to Ca2+ diffused laterally from the HCMDs formed between the PM and the subplasmalemmal ER.  相似文献   

5.
Cao Y  Zhang SZ  Zhao SQ  Bruce IC 《Life sciences》2011,88(23-24):1026-1030
AimsTo investigate the role of the mitochondrial Ca2+-activated K+ channel in cardioprotection induced by limb remote ischemic preconditioning.Main methodsMale Sprague–Dawley rats (250–300 g) were randomized into control, ischemia/reperfusion (I/R), remote ischemic preconditioning (RPC), NS1619 (a specific mitochondrial Ca2+-activated K+ channel opener), and RPC + paxilline (a specific mitochondrial Ca2+-activated K+ channel inhibitor) groups. RPC was induced by 4 cycles of 5 min of ligation followed by 5 min of reperfusion of the left femoral artery. Myocardial I/R was achieved by ligation of the left anterior descending coronary artery for 30 min, followed by 120 min of reperfusion. Infarct size was determined by 2,3,5-triphenyltetrazolium chloride staining, the hemodynamics were monitored, and lactate dehydrogenase (LDH) levels in the coronary effluent, manganese superoxide dismutase (Mn-SOD) content in mitochondria and mitochondrial membrane potential were measured spectrophotometrically. The ultrastructure of cardiomyocyte mitochondria was assessed by electron microscopy.Key findingsNS1619 (10 μM) improved heart function, decreased infarct size, reduced LDH release, maintained mitochondrial structural integrity and mitochondrial membrane potential, and increased the mitochondrial content of Mn-SOD to the same degree as RPC treatment. However, paxilline (1 μM) eliminated the cardioprotective effect conferred by RPC.SignificanceThe mitochondrial Ca2+-activated K+ channel participates in the myocardial protection by limb remote ischemic preconditioning.  相似文献   

6.
The palmitate/Ca2 +-induced (Pal/Ca2 +) pore, which is formed due to the unique feature of long-chain saturated fatty acids to bind Ca2 + with high affinity, has been shown to play an important role in the physiology of mitochondria. The present study demonstrates that the efflux of Ca2 + from rat liver mitochondria induced by ruthenium red, an inhibitor of the energy-dependent Ca2 + influx, seems to be partly due to the opening of Pal/Ca2 + pores. Exogenous Pal stimulates the efflux. Measurements of pH showed that the Ca2 +-induced alkalization of the mitochondrial matrix increased in the presence of Pal. The influx of Ca2 + (Sr2 +) also induced an outflow of K+ followed by the reuptake of the ion by mitochondria. The outflow was not affected by a K+/H+ exchange blocker, and the reuptake was prevented by an ATP-dependent K+ channel inhibitor. It was also shown that the addition of Sr2 + to mitochondria under hypotonic conditions was accompanied by reversible cyclic changes in the membrane potential, the concentrations of Sr2 + and K+ and the respiratory rate. The cyclic changes were effectively suppressed by the inhibitors of Ca2 +-dependent phospholipase A2, and a new Sr2 + cycle could only be initiated after the previous cycle was finished, indicating a refractory period in the mitochondrial sensitivity to Sr2 +. All of the Ca2 +- and Sr2 +-induced effects were observed in the presence of cyclosporin A. This paper discusses a possible role of Pal/Ca2 + pores in the maintenance of cell ion homeostasis.  相似文献   

7.
The effect of Ca2+ applied in high concentrations (50 and 300 µM) was addressed on the generation of reactive oxygen species in isolated mitochondria from guinea-pig brain. The experiments were performed in the presence of ADP, a very effective inhibitor of mitochondrial permeability transition. Moderate increase in H2O2 release from mitochondria was induced by Ca2+ applied in 50 µM, but not in 300 µM concentration as measured with Amplex red fluorescent assay starting with a delay of 100-150 sec after exposure to Ca2+. Parallel measurements of membrane potential (ΔΨm) by safranine fluorescence showed a transient depolarization by Ca2+ followed by the recovery of ΔΨm to a value, which was more negative than that observed before addition of Ca2+ indicating a relative hyperpolarization. NAD(P)H fluorescence was also increased by Ca2+ given in 50 µM concentration. In mitochondria having high ΔΨm in the presence of oligomycin or ATP, the basal rate of release of H2O2 was significantly higher than that observed in a medium containing ADP and Ca2+ no longer increased but rather decreased the rate of H2O2 release. With 300 µM Ca2+ only a loss but no tendency of a recovery of ΔΨm was detected and H2O2 release was unchanged. It is suggested that in the presence of nucleotides the effect of Ca2+ on mitochondrial ROS release is related to changes in ΔΨm; in depolarized mitochondria, in the presence of ADP, moderate increase in H2O2 release is induced by calcium, but only in ≤ 100 µM concentration, when after a transient Ca2+-induced depolarization mitochondria became more polarized. In highly polarized mitochondria, in the presence of ATP or oligomycin, where no hyperpolarization follows the Ca2+-induced depolarization, Ca2+ fails to stimulate mitochondrial ROS generation. These effects of calcium (≤ 300 µM) are unrelated to mitochondrial permeability transition.  相似文献   

8.
Ceramides are important intermediates in the biosynthesis and degradation of sphingolipids that regulate numerous cellular processes, including cell cycle progression, cell growth, differentiation and death. In cardiomyocytes, ceramides induce apoptosis by decreasing mitochondrial membrane potential and promoting cytochrome-c release. Ca2 + overload is a common feature of all types of cell death. The aim of this study was to determine the effect of ceramides on cytoplasmic Ca2 + levels, mitochondrial function and cardiomyocyte death. Our data show that C2-ceramide induces apoptosis and necrosis in cultured cardiomyocytes by a mechanism involving increased Ca2 + influx, mitochondrial network fragmentation and loss of the mitochondrial Ca2 + buffer capacity. These biochemical events increase cytosolic Ca2 + levels and trigger cardiomyocyte death via the activation of calpains.  相似文献   

9.
Mitochondrial Ca2+ activates many processes, from mitochondrial metabolism to opening of the permeability transition pore (PTP) and apoptosis. However, there is considerable controversy regarding the free mitochondrial [Ca2+] ([Ca2+]M) levels that can be attained during cell activation or even in mitochondrial preparations. Studies using fluorescent dyes (rhod-2 or similar), have reported that phosphate precipitation precludes [Ca2+]M from increasing above 2–3 μM. Instead, using low-Ca2+-affinity aequorin probes, we have measured [Ca2+]M values more than two orders of magnitude higher. We confirm here these values by making a direct in situ calibration of mitochondrial aequorin, and we show that a prolonged increase in [Ca2+]M to levels of 0.5–1 mM was actually observed at any phosphate concentration (0–10 mM) during continuous perfusion of 3.5–100 μM Ca2+-buffers. In spite of this high and maintained (>10 min) [Ca2+]M, mitochondria retained functionality and the [Ca2+]M drop induced by a protonophore was fully reversible. In addition, this high [Ca2+]M did not induce PTP opening unless additional activators (phenyl arsine oxide, PAO) were present. PAO induced a rapid, concentration-dependent and irreversible drop in [Ca2+]M. In conclusion [Ca2+]M levels of 0.5–1 mM can be reached and maintained for prolonged periods (>10 min) in phosphate-containing medium, and massive opening of PTP requires additional pore activators.  相似文献   

10.
《Cell calcium》2007,41(5-6):527-537
The mitochondrial Ca2+ uniporter has low affinity for Ca2+, therefore it has been assumed that submicromolar Ca2+ signals cannot induce mitochondrial Ca2+ uptake. The close apposition of the plasma membrane or the endoplamic reticulum (ER) to the mitochondria and the limited Ca2+ diffusion in the cytoplasm result in the formation of perimitochondrial high-Ca2+ microdomains (HCMDs) capable of activating mitochondrial Ca2+ uptake. The possibility of mitochondrial Ca2+ uptake at low submicromolar [Ca2+]c has not yet been generally accepted.Earlier we found in permeabilized glomerulosa, luteal and pancreatic β cells that [Ca2+]m increased when [Ca2+]c was raised from 60 nM to less than 200 nM. Here we report data obtained from H295R (adrenocortical) cells transfected with ER-targeted GFP. Cytoplasmic Ca2+ response to angiotensin II was different in mitochondrion-rich and mitochondrion-free domains. The mitochondrial Ca2+ response to angiotensin II correlated with GFP fluorescence indicating the vicinity of ER. When the cells were exposed to K+ (inducing Ca2+ influx), no correlation was found between the mitochondrial Ca2+ signal and the vicinity of the plasma membrane or the ER. The results presented here provide evidence that mitochondrial Ca2+ uptake may occur both with and without the formation of HCMDs within the same cell.  相似文献   

11.
We demonstrate that F281, a synthetic agonist of the sigma-2 receptor (s2R), induces a non transient increase in intracellular [Ca2+] ([Ca2+]i) and cell death in SK-N-SH cells. Sigma receptors are classified into two subtypes, with different molecular weight and tissue distribution. While the sigma-1 receptor has been cloned, the s2r is less characterized and its physiological ligand and role need further investigation. In tumour cell lines, synthetic agonists of the s2R trigger apoptosis and modulate [Ca2+]i. In particular, CB-64D induces a Ca2+ response while PB28 supresses Ca2+ signalling. We have recently synthesized F281, by replacing the 5-methoxytetraline moiety of PB28 with a carbazole nucleus. Although this bioisosteric substitution should not affect the ligand affinity at the receptor, F281 (after 24 h incubation) was more cytotoxic than PB28 (EC50 values 65.4 nM and 8.13 μM, respectively) in SK-N-SH cells. We used the fluorescent probes fura-2, rhod-2 and JC-1. F281 mobilizes Ca2+ from mitochondria and from the endoplasmic reticulum, by opening its inositol 1,4,5-trisphosphate receptor; Ca2+-entry through the channels activated by store depletion was also observed. After the increase in [Ca2+]i and within 10 min, we observed a sudden drop in metabolic activity and intracellular [ATP] leading to cell death.  相似文献   

12.
《Cellular signalling》2014,26(4):665-672
We previously reported activation of the unfolded protein response (UPR) in P23H rhodopsin (RHO) retinas with autosomal dominant retinitis pigmentosa (ADRP). Knowing that the UPR can trigger Ca2 + release from the endoplasmic reticulum and regulate cellular signaling we examined the level of Ca2 +-regulated proteins. We also looked for changes in the expression of Bcl2 family proteins, autophagy proteins and the mTOR/AKT pathways, as well as for the induction of mitochondria-associated apoptosis in the P23H RHO retina. Our data demonstrated that the elevation of calpain and caspase-12 activity was concomitantly observed with a decrease in the BCL2-XL/BAX ratio and an increase in mTor levels in the P23H-3 RHO retina suggesting a vulnerability of P23H RHO photoreceptors to apoptosis. The translocation of BAX to the mitochondria, as well as the release of cytochrome C and AIF into the cytosol supports this conclusion and indicates the involvement of mitochondria-induced apoptosis in the progression of ADRP. The level of autophagy proteins in general was found to be decreased in the P21–P30 P23H RHO retina. Injections of rapamycin, however, protected the P23H RHO rod photoreceptors from experiencing physiological decline. Despite this fact, the downregulation of mTOR did not alter the level of autophagy proteins. Our results imply that in addition to activation of the UPR during ADRP progression, photoreceptors also experience alterations in major proapoptotic pathways.  相似文献   

13.
Candida albicans is a common yeast that resides in the human body, but can occasionally cause systemic fungal infection, namely candidiasis. As this infection rate is gradually increasing, it is becoming a major problem to public health. Accordingly, we for the first time investigated the antifungal activity and mode of action of silibinin, a natural product extracted from Silybum marianum (milk thistle), against C. albicans. On treatment with 100 μM silibinin, generation of reactive oxygen species (ROS) from mitochondria, which can cause yeast apoptosis via oxidative stress, was increased by 24.17% compared to that in untreated cells. Subsequently, we found disturbances in ion homeostasis such as release of intracellular K+ and accumulation of cytoplasmic and mitochondrial Ca2+. Among these phenomena, mitochondrial Ca2+ overload particularly plays a crucial role in the process of apoptosis, promoting the activation of pro-apoptotic factors. Therefore, we investigated the significance of mitochondrial Ca2+ in apoptosis by employing 20 mM ruthenium red (RR). Additional apoptosis hallmarks such as mitochondrial membrane depolarization, cytochrome c release, caspase activation, phosphatidylserine (PS) exposure, and DNA damage were observed in response to silibinin treatment, whereas RR pre-treatment seemed to block these responses. In summary, our results suggest that silibinin induces yeast apoptosis mediated by mitochondrial Ca2+ signaling in C. albicans.  相似文献   

14.
Na+- Ca2 + exchanger (NCX) has been proposed to play a role in refilling the sarco/endoplasmic reticulum (SER) Ca2 + pool along with the SER Ca2 + pump (SERCA). Here, SERCA inhibitor thapsigargin was used to determine the effects of SER Ca2 + depletion on NCX–SERCA interactions in smooth muscle cells cultured from pig coronary artery. The cells were Na+-loaded and then placed in either a Na+-containing or in a Na+-substituted solution. Subsequently, the difference in Ca2 + entry between the two groups was examined and defined as the NCX mediated Ca2 + entry. The NCX mediated Ca2 + entry in the smooth muscle cells was monitored using two methods: Ca2 +sensitive fluorescence dye Fluo-4 and radioactive Ca2 +. Ca2 +-entry was greater in the Na+-substituted cells than in the Na+-containing cells when measured by either method. This difference was established to be NCX-mediated as it was sensitive to the NCX inhibitors. Thapsigargin diminished the NCX mediated Ca2 + entry as determined by either method. Immunofluorescence confocal microscopy was used to determine the co-localization of NCX1 and subsarcolemmal SERCA2 in the cells incubated in the Na+-substituted solution with or without thapsigargin. SER Ca2 + depletion with thapsigargin increased the co-localization between NCX1 and the subsarcolemmal SERCA2. Thus, inhibition of SERCA2 leads to blockade of constant Ca2 + entry through NCX1 and also increases proximity between NCX1 and SERCA2. This blockade of Ca2 + entry may protect the cells against Ca2 +-overload during ischemia–reperfusion when SERCA2 is known to be damaged.  相似文献   

15.
In the present work, we examine and compare the effects of saturated (palmitic) and unsaturated (oleic) fatty acids in relation to their ability to cause the Ca2 +-dependent membrane permeabilization. The results obtained can be summarized as follows. (1) Oleic acid (OA) permeabilizes liposomal membranes at much higher concentrations of Ca2 + than palmitic acid (PA): 1 mM versus 100 μM respectively. (2) The OA/Ca2 +-induced permeabilization of liposomes is not accompanied by changes in the phase state of lipid bilayer, in contrast to what is observed with PA and Ca2 +. (3) The addition of Ca2 + to the PA-containing vesicles does not change their size; in the case of OA, it leads to the appearance of larger and smaller vesicles, with larger vesicles dominating. This can be interpreted as a result of fusion and fission of liposomes. (4) Like PA, OA is able to induce a Ca2 +-dependent high-amplitude swelling of mitochondria, yet it requires higher concentrations of Ca2 + (30 and 100 μM for PA and OA respectively). (5) In contrast to PA, OA is unable to cause the Ca2 +-dependent high-amplitude swelling of mitoplasts, suggesting that the cause of OA/Ca2 +-induced permeability transition in mitochondria may be the fusion of the inner and outer mitochondrial membranes. (6) The presence of OA enhances PA/Ca2 +-induced permeabilization of liposomes and mitochondria. The paper discusses possible mechanisms of PA/Ca2 +- and OA/Ca2 +-induced membrane permeabilization, the probability of these mechanisms to be realized in the cell, and their possible physiological role.  相似文献   

16.
AimsAlthough iron overload induces oxidative stress and brain mitochondrial dysfunction, and is associated with neurodegenerative diseases, brain mitochondrial iron uptake has not been investigated. We determined the role of mitochondrial calcium uniporter (MCU) in brain mitochondria as a major route for iron entry. We hypothesized that iron overload causes brain mitochondrial dysfunction, and that the MCU blocker prevents iron entry into mitochondria, thus attenuating mitochondrial dysfunction.Main methodsIsolated brain mitochondria from male Wistar rats were used. Iron (Fe2 + and Fe3 +) at 0–286 μM were applied onto mitochondria at various incubation times (5–30 min), and the mitochondrial function was determined. Effects of MCU blocker (Ru-360) and iron chelator were studied.Key findingsBoth Fe2 + and Fe3 + entered brain mitochondria and caused mitochondrial swelling in a dose- and time-dependent manner, and caused mitochondrial depolarization and increased ROS production. However, Fe2 + caused more severe mitochondrial dysfunction than Fe3 +. Although all drugs attenuated mitochondrial dysfunction caused by iron overload, only an MCU blocker could completely prevent ROS production and mitochondrial depolarization.SignificanceOur findings indicated that iron overload caused brain mitochondrial dysfunction, and that an MCU blocker effectively prevented this impairment, suggesting that MCU could be the major portal for brain mitochondrial iron uptake.  相似文献   

17.
The antifungal activity of Nerol (NEL) against Candida albicans, a pathogenic fungus, has a minimum inhibitory concentration (MIC) of 4.4 mM that causes noteworthy candidacidal activity through an apoptosis-like mechanism. Calcium (Ca2+) levels and reactive oxygen species (ROS) production, which are the major causes of apoptosis, were determined in C. albicans cells treated with NEL and were found to increase, which related to mitochondrial dysfunction and disruption. A series of characteristic changes of apoptosis caused by NEL, including mitochondrial membrane depolarization, cytochrome c (cyt c) release, and metacaspase activation were examined using a flow cytometer and Western blot. The results showed that an increase in intracellular Ca2+ and ROS led to dramatically decreased mitochondrial membrane potential (MMP); cyt c was also released from the mitochondria to the cytosol. Other early apoptotic features were also observed with the metacaspase activation. Finally, the morphological changes of the cells were observed, including phosphatidylserine (PS) externalization, nuclear condensation, and DNA fragmentation through Annexin V-FITC and PI double staining, TUNEL assay, and DAPI staining. The results supported the hypothesis that NEL was involved in the apoptosis of C. albicans cells not only at the early stages, but also at the late stages. In summary, NEL can trigger mitochondrial dysfunction and disruption via elevation of Ca2+ and ROS leading to apoptosis in C. albicans. This research on the mechanism of cell death triggered by NEL against C. albicans has important significance for providing a novel treatment of C. albicans infections.  相似文献   

18.
Modulation of mitochondrial free Ca2 + ([Ca2 +]m) is implicated as one of the possible upstream factors that initiates anesthetic-mediated cardioprotection against ischemia–reperfusion (IR) injury. To unravel possible mechanisms by which volatile anesthetics modulate [Ca2 +]m and mitochondrial bioenergetics, with implications for cardioprotection, experiments were conducted to spectrofluorometrically measure concentration-dependent effects of isoflurane (0.5, 1, 1.5, 2 mM) on the magnitudes and time-courses of [Ca2 +]m and mitochondrial redox state (NADH), membrane potential (ΔΨm), respiration, and matrix volume. Isolated mitochondria from rat hearts were energized with 10 mM Na+- or K+-pyruvate/malate (NaPM or KPM) or Na+-succinate (NaSuc) followed by additions of isoflurane, 0.5 mM CaCl2 (≈ 200 nM free Ca2 + with 1 mM EGTA buffer), and 250 μM ADP. Isoflurane stepwise: (a) increased [Ca2 +]m in state 2 with NaPM, but not with KPM substrate, despite an isoflurane-induced slight fall in ΔΨm and a mild matrix expansion, and (b) decreased NADH oxidation, respiration, ΔΨm, and matrix volume in state 3, while prolonging the duration of state 3 NADH oxidation, respiration, ΔΨm, and matrix contraction with PM substrates. These findings suggest that isoflurane's effects are mediated in part at the mitochondrial level: (1) to enhance the net rate of state 2 Ca2 + uptake by inhibiting the Na+/Ca2 + exchanger (NCE), independent of changes in ΔΨm and matrix volume, and (2) to decrease the rates of state 3 electron transfer and ADP phosphorylation by inhibiting complex I. These direct effects of isoflurane to increase [Ca2 +]m, while depressing NCE activity and oxidative phosphorylation, could underlie the mechanisms by which isoflurane provides cardioprotection against IR injury at the mitochondrial level.  相似文献   

19.
BackgroundThe mitochondrial F1FO-ATP synthase has not only the known life function in building most cellular ATP, but also, as recently hinted, an amazing involvement in cell death. Accordingly, the two-faced enzyme complex, which catalyzes both ATP synthesis and ATP hydrolysis, has been involved in the mitochondrial permeability transition, the master player in apoptosis and necrosis. Nitrite, a cellular nitric oxide reservoir, has a recognized role in cardiovascular protection, through still unclear mechanisms.MethodsIn swine heart mitochondria the effect of nitrite on the F1FO-ATPase activity activated by Ca2 +, henceforth defined as Ca-ATPase(s), or by the natural cofactor Mg2 +, was investigated by evaluating ATP hydrolysis under different assay conditions.ResultsCa2 + is far less efficient than the natural cofactor Mg2+ in the ATPase activation. However, when activated by Ca2+ the ATPase activity is especially responsive to nitrite, which acts as uncompetitive inhibitor and up to 2 mM inhibits the Ca2+-activated-ATPase(s), probably by promoting dytirosine formation on the enzyme proteins, leaving the Mg-ATPase(s) unaffected. Most likely these ATPases refer to the same F1FO complex, even if coexistent ATPases may overlap.ConclusionsThe preferential inhibition by nitrite of the Ca-ATPase(s), due to post-translational tyrosine modifications, may prevent the calcium-dependent functionality of the mitochondrial F1FO complex and related events.General significanceIn mitochondria the preferential inhibition of the Ca-ATPase activity/ies by nitrite concentrations which do not affect the coexistent Mg-ATPase(s) may quench the negative events linked to the calcium-dependent functioning mode of the F1FO complex under pathological conditions.  相似文献   

20.
《Phytomedicine》2014,21(7):931-935
Matrine, a alkaloid of the root of Sophora flavescens, has multiple protective effects on the cardiovascular system including cardiac arrhythmias. However, the molecular and ionic mechanisms of matrine have not been well investigated. Our study aimed at to shed a light on the issue to investigate the antiarrhythmic effects of matrine by using ouabain to construct an arrhythmic model of cardiomyocytes. In this experiment, matrine significantly and dose-dependently increased the doses of ouabain required to induce cardiac arrhythmias and decreased the duration of arrhythmias in guinea pigs. In cardiomyocytes of guinea pigs, ouabain 10 μM prolonged action potential duration by 80% (p < 0.05) and increased L-type Ca2+ currents and Ca2+ transients induced by KCl (p < 0.05). Matrine 100 μM shortened the prolongation of APD and prevented the increase of L-type Ca2+ currents and Ca2+ transients induced by ouabain. Taken together, these findings provide the first evidence that matrine possessed arrhythmogenic effect of ouabain by inhibiting of L-type Ca2+ currents and Ca2+ overload in guinea pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号