首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The objective of this work was to study the effect of structure of bile acids on their membranolytic potential and extent of overlapping of the information about the membranolytic potential of bile acids and their physico-chemical parameters, namely: retention index RM0 (as a measure of bile acid hydrophobicity, reversed-phase thin-layer chromatography (RPTLC)), lecithin solubilisation (measure of the interaction of bile acids with phospholipids) and critical micellar concentration (CMC).It was found that bile acid concentrations at 100% lysis of erythrocyte membranes is described best by their CMC values, whereas at 50% lysis the parameter used is lecithin solubilisation. This indicates that different mixed micelles are formed in the membrane lysis at lower and higher concentrations of bile acids. Replacement of the hydroxyl (OH) group in the bile acid molecule with an oxo group yields derivatives with lowered hydrophobicity, power of lecithin solubilisation, tendency for self-aggregation as well as the membranolytic activity.  相似文献   

3.
Two paralogous groups of liver fatty acid-binding proteins (FABPs) have been described: the mammalian type liver FABPs and the basic type (Lb-FABPs) characterized in several vertebrates but not in mammals. The two groups have similar sequences and share a highly conserved three-dimensional structure, but their specificity and stoichiometry of binding are different. The crystal structure of chicken Lb-FABP complexed with cholic acid and that of the apoprotein refined to 2.0 A resolution are presented in this paper. The two forms of the protein crystallize in different space groups, and significant changes are observed between the two conformations. The holoprotein binds two molecules of cholate in the interior cavity, and the contacts observed between the two ligands can help to explain the reason for this stoichiometry of binding. Most of the amino acids involved in ligand binding are conserved in other members of the Lb-FABP family. Since the amino acid sequence of the Lb-FABPs is more similar to that of the bile acid-binding proteins than to that of the L-FABPs, the possibility that the Lb-FABPs might be more appropriately called liver bile acid-binding proteins (L-BABPs) is suggested.  相似文献   

4.
Extraction with butan-1-ol of freeze-dried microsomal fractions from livers of 3-methyl-cholarthrene-pre-treated hamsters removed about 90% of the total lipid content, but the lipid remaining proved sufficient for the cytochrome P-450 enzyme system to retain about 15-40% of its original catalytic activity for dimethylnitrosamine demethylation. Addition of butan-1-ol-extracted total phospholipid or phosphatidylcholine could not restore any activity, whereas the addition of the synthetic phospholipid dilauroyl phosphatidylcholine was able to restore almost complete activity. Synthetic dipalmitoyl or distearoyl phosphatidylcholine was ineffective in restoring the activity in this reconstituted system.  相似文献   

5.
6.
The amino-terminal regulatory domain of cardiac troponin C (cNTnC) plays an important role as the calcium sensor for the troponin complex. Calcium binding to cNTnC results in conformational changes that trigger a cascade of events that lead to cardiac muscle contraction. The cardiac N-terminal domain of TnC consists of two EF-hand calcium binding motifs, one of which is dysfunctional in binding calcium. Nevertheless, the defunct EF-hand still maintains a role in cNTnC function. For its structural analysis by X-ray crystallography, human cNTnC with the wild-type primary sequence was crystallized under a novel crystallization condition. The crystal structure was solved by the single-wavelength anomalous dispersion method and refined to 2.2 Å resolution. The structure displays several novel features. Firstly, both EF-hand motifs coordinate cadmium ions derived from the crystallization milieu. Secondly, the ion coordination in the defunct EF-hand motif accompanies unusual changes in the protein conformation. Thirdly, deoxycholic acid, also derived from the crystallization milieu, is bound in the central hydrophobic cavity. This is reminiscent of the interactions observed for cardiac calcium sensitizer drugs that bind to the same core region and maintain the “open” conformational state of calcium-bound cNTnC. The cadmium ion coordination in the defunct EF-hand indicates that this vestigial calcium binding site retains the structural and functional elements that allow it to coordinate a cadmium ion. However, it is a result of, or concomitant with, large and unusual structural changes in cNTnC.  相似文献   

7.
Hu X  Zhang Z  Zhang X  Li Z  Zhu XX 《Steroids》2005,70(8):531-537
Bile acids in the family of steroid compounds can be chemically modified for biochemical and other applications. Derivatives of cholic acid with multiple methacrylate groups can be prepared by the use of methacrylic acid, methacryloyl chloride and methacryloyl anhydride as the acylating agents. The hydroxyl groups of cholic acid methyl ester and cholic acid ethylene glycol ester have been selectively acylated by changing the acylating agents and the number of substitutions have been varied by changing the amount of the acylating agents used. In the acylation reactions with methacryloyl chloride, the reactivity of secondary hydroxyl groups on the steroid skeleton of cholic acid derivatives follows the order of C3>C12>C7.  相似文献   

8.
Huang Y  Chen S  Cui J  Gan C  Liu Z  Wei Y  Song H 《Steroids》2011,76(7):690-694
Using cholic acid and deoxycholic acid as starting materials, a series of 3-aza-A-homo-4-one bile acid and 7-deoxycholic acid derivatives were synthesized by the esterification, oxidation, reduction, oximation and Beckman rearrangement etc. The cytotoxicity of the synthesized compounds against MGC 7901 (human ventriculi carcinoma cell line), hela (human cervical carcinoma cell line), SMMC 7404 (human liver carcinoma cell line) were investigated. The results showed that bile acid and 7-deoxycholic-acid derivatives with 3-aza-A-homo-4-one configuration bearing a 6-hydroximino or 12-hydroximino group displayed a distinct cytotoxicity to Hela tumor cell line. In particular, the IC50 values of the compounds 6 and 13 were 14.3 and 24.3  μmol/L against Hela human tumor cell line respectively. The information obtained from the studies may be useful for the design of novel chemotherapeutic drugs.  相似文献   

9.
Cholic acid:CoA ligase (EC 6.2.1.7, choloyl-CoA synthetase) and deoxycholic acid:CoA ligase catalyze the synthesis of choloyl-CoA and deoxycholoyl-CoA from their respective bile acids in rat liver. A modification of the phase partition assay was introduced which yields significantly (3-fold) higher specific activities for cholic acid:CoA ligase than previously reported. An independent method of separating choloyl-CoA from the substrates by high-pressure liquid chromatography was also developed and validates the modification. Both enzymic activities were found to be localized predominantly in the endoplasmic reticulum of rat liver. The level of either ligase in other purified, active subcellular fractions is consistent with the level of contamination by endoplasmic reticulum, estimated by using marker enzymes. Hence, the ligase assay can be used as a sensitive enzymic marker for endoplasmic reticulum in rat liver. The kinetic parameters of both enzymic activities were determined by using purified rough endoplasmic reticulum from rat liver. While the apparent maximal velocities for the two substrates are similar, the Michaelis constant for deoxycholate is significantly lower than that for cholate. Taurocholate and deoxycholate are shown to be competitive inhibitors of cholic acid:CoA ligase. The inhibition constant of deoxycholate is similar to its Michaelis constant for the deoxycholoyl-CoA-synthesizing reaction, suggesting that the same enzyme is responsible for both ligase activities.  相似文献   

10.
11.
The family of the liver bile acid-binding proteins (L-BABPs), formerly called liver basic fatty acid-binding proteins (Lb-FABPs) shares fold and sequence similarity with the paralogous liver fatty acid-binding proteins (L-FABPs) but has a different stoichiometry and specificity of ligand binding. This article describes the first X-ray structure of a member of the L-BABP family, axolotl (Ambystoma mexicanum) L-BABP, bound to two different ligands: cholic and oleic acid. The protein binds one molecule of oleic acid in a position that is significantly different from that of either of the two molecules that bind to rat liver FABP. The stoichiometry of binding of cholate is of two ligands per protein molecule, as observed in chicken L-BABP. The cholate molecule that binds buried most deeply into the internal cavity overlaps well with the analogous bound to chicken L-BABP, whereas the second molecule, which interacts with the first only through hydrophobic contacts, is more external and exposed to the solvent.  相似文献   

12.
12 alpha-Hydroxy-3-oxo-4-cholenoic acid coupled to an adenosine nucleotide has been shown to be a metabolite of cholic acid in the intestinal anaerobic bacteria, Eubacterium species VPI 12708 (1987. J. Biol. Chem. 262: 4701-4707) and it has been suggested that this may be an intermediate in the conversion of cholic acid into deoxycholic acid. The possibility that the intestinal conversion of cholic acid into deoxycholic acid involves a 3-oxo-delta 4-steroid as an intermediate has been studied in the present work by use of [3 beta-3H]- and [5-3H]-labeled cholic acid. Whole cells as well as cell extracts of Eubacterium sp. VPI 12708 catalyzed conversion of [3 beta-3H] + [24-14C]cholic acid into deoxycholic acid with loss of about 50% of 3H label. When unlabeled chenodeoxycholic acid (20 microM) was added along with [3 beta-3] + [24-14C]cholic acid, then approximately 85% of the [3 beta-3H]-labeled was lost from deoxycholic acid. After administration of the same mixture to two healthy volunteers, deoxycholic acid could be isolated that had lost 81 and 84%, respectively, of the 3H label. Conversion of a mixture of [5-3H]- and [24-14C]labeled cholic acid by the above intestinal bacteria or cell extracts led to loss of 79-94 of the [5-3H] label.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
A 39-member library of bile acid derivatives was prepared starting from 3alpha,7alpha,12alpha-trihydroxy-5beta-cholan-24-oic acid methyl ester using a combinatorial biocatalytic approach. A regioselective oxidation step, catalyzed by hydroxysteroid dehydrogenases, followed by an acylation step with a series of different acyl donors catalyzed by Candida antarctica lipase B, led to the modification of the bile acid scaffold. Each member of the library was obtained in high purity and good yield.  相似文献   

14.
Tetrapeptides derived from glycine and beta-alanine were hooked at the C-3beta position of the modified cholic acid to realize novel linear tetrapeptide-linked cholic acid derivatives. All the synthesized compounds were tested against a wide variety of microorganisms (gram-negative bacteria, gram-positive bacteria and fungi) and their cytotoxicity was evaluated against human embryonic kidney (HEK293) and human mammary adenocarcinoma (MCF-7) cell lines. While relatively inactive by themselves, these compounds interact synergistically with antibiotics such as fluconazole and erythromycin to inhibit growth of fungi and bacteria, respectively, at 1-24 microg/mL. The synergistic effect shown by our novel compounds is due to their inherent amphiphilicity. The fractional inhibitory concentrations reported are comparable to those reported for Polymyxin B derivatives.  相似文献   

15.
Bile acid amides and oxazolines were synthesized by a sequence of steps involving the reaction of the free bile acid with formic acid to yield the formyloxy derivative, preparation of the formyloxy acid chloride, condensation of the acid chloride with 2-amino-2-methyl-1-propanol to give the amide and, finally, cyclization of the amide with thionyl chloride to give the oxazoline. The oxazolines were characterized by physical constants, thin layer and gas-liquid chromatography and identified by elemental analysis and gas-liquid chromatography-mass spectrometry. Some of the bile acid oxazoline derivatives alter the activity of bacterial 7-dehydroxylases in vitro, and inhibit the growth of certain anaerobic bacteria in pure culture.  相似文献   

16.
17.
18.
Pyridoxal kinase (PDXK) catalyzes the phosphorylation of pyridoxal, pyridoxamine, and pyridoxine in the presence of ATP and Zn2+. This constitutes an essential step in the synthesis of pyridoxal 5'-phosphate (PLP), the active form of vitamin B6, a cofactor for over 140 enzymes. (R)-Roscovitine (CYC202, Seliciclib) is a relatively selective inhibitor of cyclin-dependent kinases (CDKs), currently evaluated for the treatment of cancers, neurodegenerative disorders, renal diseases, and several viral infections. Affinity chromatography investigations have shown that (R)-roscovitine also interacts with PDXK. To understand this interaction, we determined the crystal structure of PDXK in complex with (R)-roscovitine, N6-methyl-(R)-roscovitine, and O6-(R)-roscovitine, the two latter derivatives being designed to bind to PDXK but not to CDKs. Structural analysis revealed that these three roscovitines bind similarly in the pyridoxal-binding site of PDXK rather than in the anticipated ATP-binding site. The pyridoxal pocket has thus an unexpected ability to accommodate molecules different from and larger than pyridoxal. This work provides detailed structural information on the interactions between PDXK and roscovitine and analogs. It could also aid in the design of roscovitine derivatives displaying strict selectivity for either PDXK or CDKs.  相似文献   

19.
We demonstrate a novel methodology to disrupt the symmetry in the NMR spectra of homodimers. A paramagnetic probe is introduced sub-stoichiometrically to create an asymmetric system with the paramagnetic probe residing on only one monomer within the dimer. This creates sufficient magnetic anisotropy for resolution of symmetry-related overlapped resonances and, consequently, detection of pseudocontact shifts and residual dipolar couplings specific to each monomeric component. These pseudocontact shifts can be readily incorporated into existing structure refinement calculations and enable determination of monomer orientation within the dimeric protein. This methodology can be widely used for solution structure determination of symmetric dimers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号