首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modelling of protein-protein interactions in signal transduction is receiving increased attention in computational biology. This paper describes recent research in the application of Maude, a symbolic language founded on rewriting logic, to the modelling of functional domains within signalling proteins. Protein functional domains (PFDs) are a critical focus of modern signal transduction research. In general, Maude models can simulate biological signalling networks and produce specific testable hypotheses at various levels of abstraction. Developing symbolic models of signalling proteins containing functional domains is important because of the potential to generate analyses of complex signalling networks based on structure-function relationships.  相似文献   

2.
Petri net modelling of biological networks   总被引:5,自引:0,他引:5  
Mathematical modelling is increasingly used to get insights into the functioning of complex biological networks. In this context, Petri nets (PNs) have recently emerged as a promising tool among the various methods employed for the modelling and analysis of molecular networks. PNs come with a series of extensions, which allow different abstraction levels, from purely qualitative to more complex quantitative models. Noteworthily, each of these models preserves the underlying graph, which depicts the interactions between the biological components. This article intends to present the basics of the approach and to foster the potential role PNs could play in the development of the computational systems biology.  相似文献   

3.
4.
Tramontano A 《FEBS letters》2006,580(12):2928-2934
The synergy between experimental and computational biology has greatly benefited both fields, providing invaluable information in many different areas of the life sciences. This minireview will focus on one specific aspect of computational biology, molecular modelling, and describe a few examples highlighting the effectiveness of protein structural analysis and modelling in providing relevant information about systems of biomedical interest.  相似文献   

5.
Systems biology aims at creating mathematical models, i.e., computational reconstructions of biological systems and processes that will result in a new level of understanding—the elucidation of the basic and presumably conserved “design” and “engineering” principles of biomolecular systems. Thus, systems biology will move biology from a phenomenological to a predictive science. Mathematical modeling of biological networks and processes has already greatly improved our understanding of many cellular processes. However, given the massive amount of qualitative and quantitative data currently produced and number of burning questions in health care and biotechnology needed to be solved is still in its early phases. The field requires novel approaches for abstraction, for modeling bioprocesses that follow different biochemical and biophysical rules, and for combining different modules into larger models that still allow realistic simulation with the computational power available today. We have identified and discussed currently most prominent problems in systems biology: (1) how to bridge different scales of modeling abstraction, (2) how to bridge the gap between topological and mechanistic modeling, and (3) how to bridge the wet and dry laboratory gap. The future success of systems biology largely depends on bridging the recognized gaps.  相似文献   

6.
7.
Gene regulatory network (GRN) modelling has gained increasing attention in the past decade. Many computational modelling techniques have been proposed to facilitate the inference and analysis of GRN. However, there is often confusion about the aim of GRN modelling, and how a gene network model can be fully utilised as a tool for systems biology. The aim of the present article is to provide an overview of this rapidly expanding subject. In particular, we review some fundamental concepts of systems biology and discuss the role of network modelling in understanding complex biological systems. Several commonly used network modelling paradigms are surveyed with emphasis on their practical use in systems biology research.  相似文献   

8.
The fungus, Magnaporthe grisea (Rice blast fungus) is a major agricultural problem affecting rice and related food crops. The way that the fungus invades the host plant and propagates itself is a very important scientific problem and recent advances in research into the genetic basis of these processes can be used to build a simple partial model using hybrid computational modelling techniques. The possible potential benefits of doing this include the use of computer simulation and automated analysis through techniques such as model checking to understand the complex behaviour of such systems. The example is a metaphor for the process of trying to integrate and understand much of the vast amounts of genomic and other data that is being produced in current molecular biology research.  相似文献   

9.
Computational models have been of interest in biology for many years and have represented a particular approach to trying to understand biological processes and phenomena from a systems point of view. Much of the early work was rather abstract and high level and probably seemed to many to be of more philosophical than practical value. There have, however, been some advances in the development of more realistic models and the current state of computer science research provides us with new opportunities through both the emergence of models that can model seriously complex systems and also the support that modern software can give to the modelling process. This paper describes a few of the early simple models and then goes on to look at some new ideas in the area with a particular application drawn from the world of mycology. Some general principles relating to how new and emerging computational techniques can help to represent and understand extremely complex models conclude the paper.  相似文献   

10.
11.
A key component of computational biology is to compare the results of computer modelling with experimental measurements. Despite substantial progress in the models and algorithms used in many areas of computational biology, such comparisons sometimes reveal that the computations are not in quantitative agreement with experimental data. The principle of maximum entropy is a general procedure for constructing probability distributions in the light of new data, making it a natural tool in cases when an initial model provides results that are at odds with experiments. The number of maximum entropy applications in our field has grown steadily in recent years, in areas as diverse as sequence analysis, structural modelling, and neurobiology. In this Perspectives article, we give a broad introduction to the method, in an attempt to encourage its further adoption. The general procedure is explained in the context of a simple example, after which we proceed with a real-world application in the field of molecular simulations, where the maximum entropy procedure has recently provided new insight. Given the limited accuracy of force fields, macromolecular simulations sometimes produce results that are at not in complete and quantitative accordance with experiments. A common solution to this problem is to explicitly ensure agreement between the two by perturbing the potential energy function towards the experimental data. So far, a general consensus for how such perturbations should be implemented has been lacking. Three very recent papers have explored this problem using the maximum entropy approach, providing both new theoretical and practical insights to the problem. We highlight each of these contributions in turn and conclude with a discussion on remaining challenges.  相似文献   

12.
It is widely acknowledged that the construction of large-scale dynamic models in systems biology requires complex modelling problems to be broken up into more manageable pieces. To this end, both modelling and software frameworks are required to enable modular modelling. While there has been consistent progress in the development of software tools to enhance model reusability, there has been a relative lack of consideration for how underlying biophysical principles can be applied to this space. Bond graphs combine the aspects of both modularity and physics-based modelling. In this paper, we argue that bond graphs are compatible with recent developments in modularity and abstraction in systems biology, and are thus a desirable framework for constructing large-scale models. We use two examples to illustrate the utility of bond graphs in this context: a model of a mitogen-activated protein kinase (MAPK) cascade to illustrate the reusability of modules and a model of glycolysis to illustrate the ability to modify the model granularity.  相似文献   

13.
The aim of this paper is to give an overview of computer modelling and simulation in cellular biology, in particular as applied to complex biochemical processes within the cell. This is illustrated by the use of the techniques of object-oriented modelling, where the computer is used to construct abstractions of objects in the domain being modelled, and these objects then interact within the computer to simulate the system and allow emergent properties to be observed. The paper also discusses the role of computer simulation in understanding complexity in biological systems, and the kinds of information which can be obtained about biology via simulation.  相似文献   

14.
SYCAMORE is a browser-based application that facilitates construction, simulation and analysis of kinetic models in systems biology. Thus, it allows e.g. database supported modelling, basic model checking and the estimation of unknown kinetic parameters based on protein structures. In addition, it offers some guidance in order to allow non-expert users to perform basic computational modelling tasks. AVAILABILITY: SYCAMORE is freely available for academic use at http://sycamore.eml.org. Commercial users may acquire a license. CONTACT: ursula.kummer@bioquant.uni-heidelberg.de.  相似文献   

15.
As the amount of biological data in the public domain grows, so does the range of modeling and analysis techniques employed in systems biology. In recent years, a number of theoretical computer science developments have enabled modeling methodology to keep pace. The growing interest in systems biology in executable models and their analysis has necessitated the borrowing of terms and methods from computer science, such as formal analysis, model checking, static analysis, and runtime verification. Here, we discuss the most important and exciting computational methods and tools currently available to systems biologists. We believe that a deeper understanding of the concepts and theory highlighted in this review will produce better software practice, improved investigation of complex biological processes, and even new ideas and better feedback into computer science.  相似文献   

16.
In this paper we take the view that computational models of biological systems should satisfy two conditions – they should be able to predict function at a systems biology level, and robust techniques of validation against biological models must be available. A modelling paradigm for developing a predictive computational model of cellular interaction is described, and methods of providing robust validation against biological models are explored, followed by a consideration of software issues.  相似文献   

17.
Understanding complex biological systems requires extensive support from software tools. Such tools are needed at each step of a systems biology computational workflow, which typically consists of data handling, network inference, deep curation, dynamical simulation and model analysis. In addition, there are now efforts to develop integrated software platforms, so that tools that are used at different stages of the workflow and by different researchers can easily be used together. This Review describes the types of software tools that are required at different stages of systems biology research and the current options that are available for systems biology researchers. We also discuss the challenges and prospects for modelling the effects of genetic changes on physiology and the concept of an integrated platform.  相似文献   

18.
What is the best way to analyse abstraction in scientific modelling? I propose to focus on abstracting as an epistemic activity, which is achieved in different ways and for different purposes depending on the actual circumstances of modelling and the features of the models in question. This is in contrast to a more conventional use of the term ‘abstract’ as an attribute of models, which I characterise as black-boxing the ways in which abstraction is performed and to which epistemological advantage. I exemplify my claims through a detailed reconstruction of the practices involved in creating two types of models of the flowering plant Arabidopsis thaliana, currently the best-known model organism in plant biology. This leads me to distinguish between two types of abstraction processes: the ‘material abstracting’ required in the production of Arabidopsis specimens and the ‘intellectual abstracting’ characterising the elaboration of visual models of Arabidopsis genomics. Reflecting on the differences between these types of abstracting helps to pin down the epistemic skills and research commitments used by researchers to produce each model, thus clarifying how models are handled by researchers and with which epistemological implications.  相似文献   

19.
Mathematical modelling and computational analysis play an essentialrole in improving our capability to elucidate the functionsand characteristics of complex biological systems such as metabolic,regulatory and cell signalling pathways. The modelling and concomitantsimulation render it possible to predict the cellular behaviourof systems under various genetically and/or environmentallyperturbed conditions. This motivates systems biologists/bioengineers/bioinformaticiansto develop new tools and applications, allowing non-expertsto easily conduct such modelling and analysis. However, amonga multitude of systems biology tools developed to date, onlya handful of projects have adopted a web-based approach to kineticmodelling. In this report, we evaluate the capabilities andcharacteristics of current web-based tools in systems biologyand identify desirable features, limitations and bottlenecksfor further improvements in terms of usability and functionality.A short discussion on software architecture issues involvedin web-based applications and the approaches taken by existingtools is included for those interested in developing their ownsimulation applications.   相似文献   

20.
Modelling and simulation techniques are valuable tools for the understanding of complex biological systems. The design of a computer model necessarily has many diverse inputs, such as information on the model topology, reaction kinetics and experimental data, derived either from the literature, databases or direct experimental investigation. In this review, we describe different data resources, standards and modelling and simulation tools that are relevant to integrative systems biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号