共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The effects of neuromuscular blocking drugs on mean arterial pressure (MAP) and heart rate (HR) were studied in rats which were anaesthetised, tracheotomized and ventilated artificially. The arterial pressure was recorded from the carotid artery. Seven neuromuscular blocking drugs were injected intravenously at doses of 1, 5, and 25 mumol/kg. d-Tubocurarine, alcuronium and vecuronium lowered MAP in a dose dependent manner (maximum 40%). Succinylcholine, 1 mumol/kg, reduced MAP and HR, whereas the two larger doses increased them. Gallamine, 25 mumol/kg, or metocurine and pancuronium, 1 or 5 mumol/kg, each, induced short-lasting rises in MAP. Pancuronium, 25 mumol/kg, decreased MAP by 25%, while the largest dose of metocurine appeared to be toxic. The cardiovascular responses to neuromuscular blocking drugs were antagonized or abolished by pretreatment with the ganglionic blocking agent pentolinium. Pentolinium itself markedly reduced MAP and HR. After ganglionic blockade and restoration of MAP by noradrenaline infusion, all the neuromuscular blocking drugs induced short-lasting increases in MAP (10-30%), except d-tubocurarine which still reduced MAP by 30%, a fall which, in contrast to the effect in the absence of the pretreatments, was transient. This response to d-tubocurarine could not be abolished by a combined pretreatment with H1 and H2 antagonists showing that the hypotensive effect of this drug was not due to the liberation of histamine. These results suggest that the cardiovascular responses to neuromuscular blocking drugs in rats might be partly due to ganglionic effects. Other mechanisms are also involved since after the restoration of blood pressure by noradrenaline during the ganglionic blockade some cardiovascular responses to these drugs still occurred. 相似文献
3.
4.
Sato T Kawada T Inagaki M Shishido T Sugimachi M Sunagawa K 《American journal of physiology. Regulatory, integrative and comparative physiology》2003,285(1):R262-R270
By a white noise approach, we characterized the dynamics of the sympathetic baroreflex system in 11 halothane-anesthetized rats. We measured sympathetic nerve activity (SNA) and systemic arterial pressure (SAP), while carotid sinus baroreceptor pressure (BRP) was altered randomly. We estimated the transfer functions from BRP to SNA (mechanoneural arc), from SNA to SAP (neuromechanical arc), and from BRP to SAP (total arc). The gain of the mechanoneural arc gradually increased about threefold as the frequency of BRP change increased from 0.01 to 0.8 Hz. In contrast, the gain of the neuromechanical arc rapidly decreased to 0.4% of the steady-state gain as the frequency increased from 0.01 to 1 Hz. Although the total arc also had low-pass characteristics, the rate of attenuation in its gain was significantly slower than that of the neuromechanical arc, reflecting the compensatory effect of the mechanoneural arc for the sluggish response of the neuromechanical arc. We conclude that the quantitative estimation of the baroreflex dynamics is vital for an integrative understanding of baroreflex function in rats. 相似文献
5.
Wang Y Liu XF Cornish KG Zucker IH Patel KP 《American journal of physiology. Heart and circulatory physiology》2005,288(1):H205-H213
Using neuronal NO synthase (nNOS)-specific antisense oligonucleotides, we examined the role of nitric oxide (NO) in the paraventricular nucleus (PVN) on control of blood pressure and heart rate (HR) in conscious sham rats and rats with chronic heart failure (CHF). After 6-8 wk, rats with chronic coronary ligation showed hemodynamic and echocardiographic signs of CHF. In sham rats, we found that microinjection of sodium nitroprusside (SNP, 20 nmol, 100 nl) into the PVN induced a significant decrease in mean arterial pressure (MAP). SNP also induced a significant decrease in HR over the next 10 min. In contrast, the NOS inhibitor N(G)-monomethyl-L-arginine (L-NMMA, 200 pmol, 100 nl) significantly increased MAP and HR over the next 18-20 min. After injection of nNOS antisense, MAP was significantly increased in sham rats over the next 7 h. The peak response was 27.6 +/- 4.1% above baseline pressure. However, in the CHF rats, only MAP was significantly increased. The peak magnitude was 12.9 +/- 5.4% of baseline, which was significantly attenuated compared with sham rats (P < 0.01). In sham rats, the pressor response was completely abolished by alpha-receptor blockade. HR was significantly increased from hour 1 to hour 7 in sham and CHF rats. There was no difference in magnitude of HR responses. The tachycardia could not be abolished by the beta(1)-blocker metoprolol. However, the muscarinic receptor antagonist atropine did not further augment the tachycardia. We conclude that NO induces a significant depressor and bradycardiac response in normal rats. The pressor response is mediated by an elevated sympathetic tone, whereas the tachycardia is mediated by withdrawal of parasympathetic tone in sham rats. These data are consistent with a downregulation of nNOS within the PVN in CHF. 相似文献
6.
Bhuiyan ME Waki H Gouraud SS Takagishi M Kohsaka A Maeda M 《American journal of physiology. Heart and circulatory physiology》2011,301(2):H523-H529
Axons of histamine (HA)-containing neurons are known to project from the posterior hypothalamus to many areas of the brain, including the nucleus tractus solitarii (NTS), a central brain structure that plays an important role in regulating arterial pressure. However, the functional significance of NTS HA is still not fully established. In this study, we microinjected HA or 2-pyridylethylamine, a HA-receptor H(1)-specific agonist, into the NTS of urethane-anesthetized Wister rats to identify the potential functions of NTS HA on cardiovascular regulation. When HA or H(1)-receptor-specific agonist was bilaterally microinjected into the NTS, mean arterial pressure (MAP) and heart rate (HR) were significantly increased, whereas pretreatment with the H(1)-receptor-specific antagonist cetirizine into the NTS significantly inhibited the cardiovascular responses. The maximal responses of MAP and HR changes induced by HA or H(1)-receptor-specific agonist were dose dependent. We also confirmed gene expression of HA receptors in the NTS and that the expression level of H(1) mRNA was higher than that of the other subtypes. In addition, we found that H(1) receptors are mainly expressed in neurons of the NTS. These findings suggested that HA within the NTS may play a role in regulating cardiovascular homeostasis via activation of H(1) receptors expressed in the NTS neurons. 相似文献
7.
Van De Borne P Mezzetti S Montano N Narkiewicz K Degaute JP Somers VK 《American journal of physiology. Heart and circulatory physiology》2000,279(2):H536-H541
Interactions between mechanisms governing ventilation and blood pressure (BP) are not well understood. We studied in 11 resting normal subjects the effects of sustained isocapnic hyperventilation on arterial baroreceptor sensitivity, determined as the alpha index between oscillations in systolic BP (SBP) generated by respiration and oscillations present in R-R intervals (RR) and in peripheral sympathetic nerve traffic [muscle sympathetic nerve activity (MSNA)]. Tidal volume increased from 478 +/- 24 to 1,499 +/- 84 ml and raised SBP from 118 +/- 2 to 125 +/- 3 mmHg, whereas RR decreased from 947 +/- 18 to 855 +/- 11 ms (all P < 0.0001); MSNA did not change. Hyperventilation reduced arterial baroreflex sensitivity to oscillations in SBP at both cardiac (from 13 +/- 1 to 9 +/- 1 ms/mmHg, P < 0.001) and MSNA levels (by -37 +/- 5%, P < 0.0001). Thus increased BP during hyperventilation does not elicit any reduction in either heart rate or MSNA. Baroreflex modulation of RR and MSNA in response to hyperventilation-induced BP oscillations is attenuated. Blunted baroreflex gain during hyperventilation may be a mechanism that facilitates simultaneous increases in BP, heart rate, and sympathetic activity during dynamic exercise and chemoreceptor activation. 相似文献
8.
Hidefumi Waki Tsuyoshi Shimizu Kiyoaki Katahira Tadanori Nagayama Masao Yamasaki Shin-Ichiro Katsuda 《Journal of applied physiology》2002,93(6):1893-1899
Abdominal aortic pressure (AAP), heart rate (HR), and aortic nerve activity (ANA) during parabolic flight were measured by using a telemetry system to clarify the acute effect of microgravity (microG) on hemodynamics in rats. While the animals were conscious, AAP increased up to 119 +/- 3 mmHg on exposure to microG compared with the value at 1 G (95 +/- 3 mmHg; P < 0.001), whereas AAP decreased immediately on exposure to microG under urethane anesthesia (microG: 72 +/- 9 mmHg vs. 1 G: 78 +/- 8 mmHg; P < 0.05). HR also increased during microG in conscious animals (microG: 349 +/- 12 beats/min vs. 1 G: 324+9 beats/min; P < 0.01), although no change was observed under anesthesia. ANA, which was measured under anesthesia, decreased in response to acute microG exposure (microG: 33 +/- 7 counts/s vs. 1 G: 49 +/- 5 counts/s; P < 0.01). These results suggest that microG essentially induces a decrease of arterial pressure; however, emotional stress and body movements affect the responses of arterial pressure and HR during exposure to acute microG. 相似文献
9.
10.
11.
延髓腹外侧头端区注射肾上腺髓质素对大鼠血压、心率和肾交感神经活动的影响 总被引:2,自引:3,他引:2
本研究在 3 4只麻醉Sprague Dawley大鼠观察了延髓腹外侧头端区内微量注射肾上腺髓质素 ( 10μmol/L ,2 0 0nl)对平均动脉压 (MAP)、心率 (HR)和肾交感神经放电 (RSNA)的影响。实验结果如下 :( 1)延髓腹外侧头端区内微量注射肾上腺髓质素可引起MAP、HR、和RSNA明显增加 ,分别由 99 0 9± 3 3 2mmHg ,3 70 78± 7 84bpm和 10 0± 0 %增至 113 5 7± 3 64mmHg (P <0 0 0 1) ,3 83 2 8± 7 3 8bpm (P <0 0 0 1)和 12 3 72±2 74% (P <0 0 0 1) ;( 2 )降钙素基因相关肽受体阻断剂CGRP8 3 7( 10 0 μmol/L ,2 0 0nl)不能阻断肾上腺髓质素的上述效应 ;( 3 )静脉注射NO前体L 精氨酸 ( 10 0mg/kg ,0 2ml)可消除肾上腺髓质素的上述效应。以上结果提示 ,肾上腺髓质素作用于延髓腹外侧头端区可产生显著的心血管作用 ,此作用不是由降钙素基因相关肽受体介导 ,但可被NO所阻断 相似文献
12.
Relationship between renal sympathetic nerve activity and arterial pressure during REM sleep in rats
Miki K Kato M Kajii S 《American journal of physiology. Regulatory, integrative and comparative physiology》2003,284(2):R467-R473
The relationship between renal sympathetic nerve activity (RSNA) and systemic arterial pressure obtained during rapid eye movement (REM) sleep was compared with that obtained in other sleep and awake states. Electrodes for the measurements of RSNA, electrocardiogram, electromyogram, and electroencephalogram and a catheter for the measurement of systemic arterial pressure were implanted while the animals were under aseptic conditions at least 5 days before the experiment. During the transition from non-REM (NREM) to REM sleep, RSNA and heart rate (HR) decreased immediately by 46 +/- 2% (P < 0.05) and 22 +/- 3 beats/min (P < 0.05), respectively, over 3 s after the onset of REM sleep. Meanwhile, systemic arterial pressure increased gradually after the onset of REM sleep, which was apparently independent of the changes in RSNA. During REM sleep, the relationships between RSNA/HR and systemic arterial pressure were dissociated compared with that obtained during the other behavioral states. These data indicate that the interdependency between systemic arterial pressure and RSNA during REM sleep is likely to be modified compared with other behavioral states. 相似文献
13.
Koba S Xing J Sinoway LI Li J 《American journal of physiology. Heart and circulatory physiology》2007,293(4):H2335-H2343
The present study was undertaken to test the hypothesis that activation of the muscle reflex elicits less sympathetic activation in skeletal muscle than in internal organs. In decerebrate rats, we examined renal and lumbar (mainly innervating hindlimb blood vessels) sympathetic nerve activities (RSNA and LSNA, respectively) during 1 min of 1) repetitive (1- to 4-s stimulation-to-relaxation) contraction of the triceps surae muscle, 2) repetitive tendon stretch, and 3) repetitive contraction with hindlimb circulatory occlusion. During these interventions, RSNA and LSNA responded synchronously as tension developed. The increase was greater in RSNA than in LSNA [+51 +/- 14 vs. +24 +/- 5% (P < 0.05) with contraction, +46 +/- 8 vs. +17 +/- 4% (P < 0.05) with stretch, +76 +/- 20 vs. 39 +/- 7% (P < 0.05) with contraction during occlusion] during all three interventions: repetitive contraction (n = 10, +508 +/- 48 g tension from baseline), tendon stretch (n = 12, +454 +/- 34 g), and contraction during occlusion (n = 9, +473 +/- 33 g). Additionally, hindlimb circulatory occlusion significantly enhanced RSNA and LSNA responses to contraction. These data demonstrate that RSNA responses to muscle contraction and stretch are greater than LSNA responses. We suggest that activation of the muscle afferents induces the differential sympathetic outflow that is directed toward the kidney as opposed to the limbs. This differential outflow contributes to the distribution of cardiac output observed during exercise. We further suggest that as exercise proceeds, muscle metabolites produced in contracting muscle sensitize muscle afferents and enhance sympathetic drive to limbs and renal beds. 相似文献
14.
Effect of hypoxia on arterial baroreflex control of heart rate and muscle sympathetic nerve activity in humans. 总被引:11,自引:0,他引:11
We tested the hypothesis that acute hypoxia would alter the sensitivity of arterial baroreflex control of both heart rate and sympathetic vasoconstrictor outflow. In 16 healthy, nonsmoking, normotensive subjects (8 women, 8 men, age 20-33 yr), we assessed baroreflex control of heart rate and muscle sympathetic nerve activity by using the modified Oxford technique during both normoxia and hypoxia (12% O(2)). Compared with normoxia, hypoxia reduced arterial O(2) saturation levels from 96.8 +/- 0.3 to 80.7 +/- 1.4% (P < 0.001), increased heart rate from 59.8 +/- 2.4 to 79.4 +/- 2.9 beats/min (P < 0.001), increased mean arterial pressure from 96.7 +/- 2.5 to 105.0 +/- 3.3 mmHg (P = 0.002), and increased sympathetic activity 126 +/- 58% (P < 0.05). The sensitivity for baroreflex control of both heart rate and sympathetic activity was not altered by hypoxia (heart rate: -1.02 +/- 0.09 vs. -1.02 +/- 0.11 beats. min(-1). mmHg(-1); nerve activity: -5.6 +/- 0.9 vs. -6.2 +/- 0.9 integrated activity. beat(-1). mmHg(-1); both P > 0.05). Acute exposure to hypoxia reset baroreflex control of both heart rate and sympathetic activity to higher pressures without changes in baroreflex sensitivity. 相似文献
15.
Effects of adiponectin on the renal sympathetic nerve activity and blood pressure in rats 总被引:2,自引:0,他引:2
Tanida M Shen J Horii Y Matsuda M Kihara S Funahashi T Shimomura I Sawai H Fukuda Y Matsuzawa Y Nagai K 《Experimental biology and medicine (Maywood, N.J.)》2007,232(3):390-397
Adiponectin is an adipocytokine that modulates energy homeostasis and glucose metabolism. Here, we examined the effects of acute intravenous (iv) and lateral cerebral ventricular (LCV) injections of adiponectin on the renal sympathetic nerve activity (RSNA) and blood pressure (b/p) in urethane-anesthetized rats. Both iv and LCV injections of adiponectin induced dose-dependent suppressions of RSNA and b/p. Moreover, we found that bilateral lesions of the hypothalamic suprachiasmatic nucleus (SCN) abolished the effects of iv injection of adiponectin on RSNA and b/p. These findings suggest that adiponectin decreases the RSNA and b/p in a dose-dependent manner and that the SCN is implicated in mechanism of adiponectin actions on RSNA and b/p. These findings also suggest that the hypotensive-action activity of adiponectin is realized, at least partially, via changes in activities of autonomic nerves activity. 相似文献
16.
17.
Increased oxidative stress and reduced nitric oxide (NO) bioactivity are key features of diabetes mellitus that eventually result in cardiovascular abnormalities. We assessed whether N-acetylcysteine (NAC), an antioxidant and glutathione precursor, could prevent the hyperglycaemia induced increase in oxidative stress, restore NO availability and prevent depression of arterial blood pressure and heart rate in vivo in experimental diabetes. Control (C) and streptozotocin-induced diabetic (D) rats were treated or not treated with NAC in drinking water for 8 weeks, initiated 1 week after induction of diabetes. At termination, plasma levels of free 15-F2t-isoprostane, a specific marker of oxygen free radical induced lipid peroxidation, was increased while the plasma total antioxidant concentration was decreased in untreated diabetic rats as compared to control rats (P<0.05). This was accompanied by a significant reduction of plasma levels of nitrate and nitrite, stable metabolites of NO, (P<0.05, D vs. C) and a reduced endothelial NO synthase protein expression in the heart and in aortic and mesenteric artery tissues. Systolic, diastolic and mean arterial blood pressures (SBP, DBP and MAP) and heart rate (HR) were reduced in diabetic rats (P<0.05 vs. C) and NAC normalised the changes that occurred in the diabetic rats. The protective effects may be attributable to restoration of NO bioavailability in the circulation. 相似文献
18.
Emonnot L Bakhos C Chapuis B Oréa V Barrès C Julien C 《American journal of physiology. Regulatory, integrative and comparative physiology》2006,291(3):R736-R741
Previous studies have shown that the sympathetically mediated oscillations of arterial pressure (AP), the so-called Mayer waves, are shifted from 0.4 to 0.6 Hz after acute alpha-adrenoceptor blockade in conscious rats. This raises the possibility that, under physiological conditions, Mayer waves are mediated by the conjoint action of norepinephrine and other sympathetic cotransmitters. To evaluate the possible role of the cotransmitter ATP in determining the frequency of Mayer waves, AP and renal sympathetic nerve activity (RSNA) were simultaneously recorded in 10 conscious rats with cardiac autonomic blockade before and after acute blockade of P2 receptors with pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid. P2 receptor blockade did not alter the mean level and overall variability of AP and RSNA but shifted peak coherence between AP and RSNA from 0.43 +/- 0.02 to 0.22 +/- 0.01 Hz. A model of the sympathetic limb of the arterial baroreceptor reflex was designed to simulate Mayer waves at 0.2 and 0.6 Hz, with norepinephrine and ATP, respectively, acting as the sole sympathetic cotransmitter. When both cotransmitters acted in concert, a single oscillation was observed at 0.4 Hz when the gain ratio of the adrenergic to the purinergic components was set at 15. The model thus accounted for an important role for ATP in determining Mayer wave frequency, but not in sustaining the mean level of AP or controlling its overall variability. 相似文献
19.
Kiyoaki Katahira Hidefumi Waki Masao Yamazaki Tsuyoshi Shimizu 《Biological Sciences in Space》2003,17(3):223-224
Abdominal arterial pressure during parabolic flight was measured using a telemetry system to clarify the acute effect of microgravity on hemodynamics in conscious rats. The microgravity condition was elicited by three different levels of entry gravity, i.e. 2 G, 1.5 G and 1 G. On exposure to 2 G, mean aortic pressure (MBP) increased up to 118.7 mm Hg +/- 7.3 compared with the value at 1 G (107.0 +/- 6.3 mm Hg, n=6). The value at microgravity preceded by 2 G was 118.0 mmHg +/- 5.2 mm HG and it was still higher than at 1 G. When 1.5 G was elicited before microgravity exposure, MBP also increased (1.5 G: 114.9 +/- 5.3 vs 1 G: 105.8+/-5.0 mm Hg) and the value at microgravity was 117.3 + /- 5.3 mmHg. During pre-microgravity maneuver with 1 G, no changes were observed compared with the control level at 1 G (pre-microgravity: 105.0 +/- 5.0 vs 1G: 104.8 +/- 5.1 mm Hg ), whereas the MBP increased up to 117.0 +/- 6.5 mm Hg on exposure to microgravity. From these results, we found that in conscious rat MBP increase during acute microgravity exposure with either 1 G or hyper-G entry. 相似文献
20.
The effects of short-term isolation on systolic blood pressure and heart rate in rats 总被引:3,自引:0,他引:3
The effect of short-term isolation on the systolic blood pressure and heart rate of rats has been studied. Five days continuous isolation in glass metabolic cages caused systolic arterial hypertension in all animals. Isolation in standard cages for this time period caused hypertension, but only in 55% of the animals. Both forms of isolation caused an initial tachycardia. Handling and contact with other animals for 1 hr daily prevented the development of hypertension in some animals but did not alter the blood pressure once the hypertension had developed. Group-housing of animals after a 3 week period of isolation restored blood pressure to control levels within 24 hr. It is possible that stress imposed by isolation activated the sympatho-adrenal system and thereby caused these changes. 相似文献