首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Formestane (F, androst-4-en-4-ol-3,17-dione) is an irreversible aromatase inhibitor with the ability to suppress the estrogen production from anabolic steroids. Consequently, F is mentioned on the World Anti-Doping Agency (WADA) prohibited list and because studies have shown that F is produced endogenously in small amounts, a threshold for urinary excreted F of 150 ng/mL was introduced. Lower concentrations could be due to endogenous production and need further investigation to prove the exact origin through determination of the carbon isotope ratio.However, because the current screening methods are a lot more sensitive, F is detected in practically every urine sample. A strict implementation of this WADA rule would imply that almost every urine sample needs additional investigation to verify an exogenous or endogenous origin. The main aim of this study was to propose and introduce a lower concentration limit of 25 ng/mL beneath which the detected F is considered as being endogenous and no further investigation is needed. The data presented in this paper suggests that this threshold provides a good balance between a sufficiently large detection window and not having to perform isotope ratio mass spectrometry (IRMS) analyses on negative urine samples.  相似文献   

2.
Mass spectrometry (MS) is an established technology in drug metabolite analysis and is now expanding into endogenous metabolite research. Its utility derives from its wide dynamic range, reproducible quantitative analysis, and the ability to analyze biofluids with extreme molecular complexity. The aims of developing mass spectrometry for metabolomics range from understanding basic biochemistry to biomarker discovery and the structural characterization of physiologically important metabolites. In this review, we will discuss the techniques involved in this exciting area and the current and future applications of this field.  相似文献   

3.
To study the roles of estrogens and estrogen metabolites (EMs) in breast carcinogenesis, we reported a quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) method utilizing selective reaction mode (SRM) to analyze estrogens and EMs in the extracellular and intracellular compartments of endogenous MCF-7 breast cancer cells through simple ethyl acetate (EA) extraction and dansyl chloride derivatization. Under a 35-min LC gradient elution on a reversed phase C18 column, the method was shown to simultaneously quantify 12 estrogens and EMs: estrone (E1) and its 2-, 4-, 16α-hydroxy derivatives (2-OHE1, 4-OHE1, 16α-OHE1), and 2-, 4-methoxy derivatives (2-MeOE1, 4-MeOE1); 17β-estradiol (E2) and its 2-, 4-hydroxy derivative (2-OHE2, 4-OHE2) and 2- and 4-methoxy derivatives (2-MeOE2 and 4-MeOE2); and estriol (E3), using ethinylestradiol (EE2) as the internal standard (IS). Using a calibration curve-standard addition hybrid method, we were able to determine the amount of estrogens and EMs in not only the treated cells but also the non-treated cells. The limits of quantification (LOQs) were determined to range from 0.05-80 pg on column with an inter-batch accuracy around 72-123% and precision around 1-10%. Results indicated that trace amounts (<0.9 fg/cell) of E1 and E2 were present in both the extra- and intra-cellular compartments under non-treated condition but DMSO could induce E1 and E2 as well as trace amounts (<2.25 fg/cell) of EMs in the cell. E2 treatment substantially increased not only E1 and E2 in the intra-cellular (60 fg/cell) and extra-cellular (3000 fg/cell) compartment but also substantially induced EMs primarily in the extracellular compartment (0.6-25 fg/cell). These data implied that EMs could be quickly generated and distributed to the extracellular compartment by E2 within 24h of treatment and DMSO solvent could potentially induce slight estrogen effects.  相似文献   

4.
Longitudinal profiling of urinary steroids was investigated by using a gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) method. The carbon isotope ratio of three urinary testosterone (T) metabolites: androsterone, etiocholanolone, 5beta-androstane-3alpha,17beta-diol (5beta-androstanediol) together with 16(5alpha)-androsten-3alpha-ol (androstenol) and 5beta-pregnane-3alpha,20alpha-diol (5beta-pregnanediol) were measured in urine samples collected from three top-level athletes over 2 years. Throughout the study, the subjects were living in Switzerland and were residing every year for a month or two in an African country. (13)C-enrichment larger than 2.5 per thousand was observed for one subject after a 2-month stay in Africa. Our findings reveal that (13)C-enrichment caused by a diet change might be reduced if the stay in Africa was shorter or if the urine sample was not collected within the days after return to Switzerland. The steroids of interest in each sample did not show significant isotopic fractionation that could lead to false positive results in anti-doping testing. In contrast to the results obtained with the carbon isotopic ratio, profiling of urinary testosterone/epitestosterone (T/E) ratios was found to be unaffected by a diet change.  相似文献   

5.
Wang J  Wu M  Liu X  Xu Y 《Steroids》2011,76(14):1560-1565
Androstenedione (4-androstene-3,17-dione) is banned by the World Anti-Doping Agency (WADA) as an endogenous steroid. The official method to confirm androstenedione abuse is isotope ratio mass spectrometry (IRMS). According to the guidance published by WADA, atypical steroid profiles are required to trigger IRMS analysis. However, in some situations, steroid profile parameters are not effective enough to suspect the misuse of endogenous steroids. The aim of this study was to investigate the atypical steroid profile induced by androstenedione administration and the detection of androstenedione doping using IRMS. Ingestion of androstenedione resulted in changes in urinary steroid profile, including increased concentrations of androsterone (An), etiocholanolone (Etio), 5α-androstane-3α,17β-diol (5α-diol), and 5β-androstane-3α,17β-diol (5β-diol) in all of the subjects. Nevertheless, the testosterone/epitestosterone (T/E) ratio was elevated only in some of the subjects. The rapid increases in the concentrations of An and Etio, as well as in T/E ratio for some subjects could provide indicators for initiating IRMS analysis only for a short time period, 2-22 h post-administration. However, IRMS could provide positive determinations for up to 55 h post-administration. This study demonstrated that, 5β-diol concentration or Etio/An ratio could be utilized as useful indicators for initiating IRMS analysis during 2-36 h post-administration. Lastly, Etio, with slower clearance, could be more effectively used than An for the confirmation of androstenedione doping using IRMS.  相似文献   

6.
7.
The reaction of demethylation mediated by cytochrome P450 (CYP) leads to the equimolar production of demethylated metabolite and formaldehyde. From a 13C-substrate labeled on a carbon of the methyl moiety, [13C]formaldehyde (H13CHO) is liberated. A highly sensitive and specific assay involving the oxidation of H13CHO to 13CO(2) by a double-enzymatic-step reaction is reported. The 13CO(2) was quantified by the method of reverse isotopic dilution based on gas chromatography-isotope ratio mass spectrometry analysis. The method first involves the limiting step of the CYP-dependent reaction, which is stopped with a mixture of zinc sulfate 5 mM and trichloroacetic acid 100 mM. Then, the transformation of H13CHO to 13CO(2) is performed with the formaldehyde (0.2 unit) and the formate (0.2 unit) dehydrogenase NAD-dependent enzymes. The recovery of 13CO(2) from the incubation mixture was equal to 91.4 +/- 3.0%. The accuracy and the precision of the present method were within 12 and 10%, respectively. The limit of quantification was set to 25 pmol. The performance of the assay was validated on human liver microsomes with five probes: [13C]erythromycin, [1-13C]caffeine, [3-13C]caffeine, [7-13C]caffeine, and [13C(2)]aminopyrine. This method is useful for the rapid determination of N-demethylase activity of human liver microsomes from methyl-13C-substrates.  相似文献   

8.
The main ionization methods in a mass spectrometer for isotope ratio determinations of the elements are discussed in this review. These methods are thermal ionization, spark source, electron impact, inductively coupled plasma and field desorption. As concerns thermal ionization, electron impact and field desorption, a survey of the possibilities of isotope analyses in the periodic table of the elements is given. Besides kinetic studies, trace element determination by isotope dilution technique is the main application for isotope ratio measurements of the elements. The definitive method, isotope dilution mass spectrometry, is discussed as a potential tool for achieving accurate and precise trace analyses. Using field desorption mass spectrometry, one example of calcium kinetics in man and one example of thallium trace determination in an animal tissue are given. Other metal trace analyses with the isotope dilution technique are presented for biological and medical samples using positive thermal ionization mass spectrometry. Negative thermal ions are formed for the mass spectrometric analysis of non-metals and non-metal compounds in food samples, e.g. for iodine and nitrate in milk powder. Preliminary results with the isotope dilution technique are presented for a new quadrupole thermal ionization mass spectrometer which is a low-cost instrument and can be easily handled.  相似文献   

9.
Single-cell analysis is gaining popularity in the field of mass spectrometry as a method for analyzing protein and peptide content in cells. The spatial resolution of MALDI mass spectrometry (MS) imaging is by a large extent limited by the laser focal diameter and the displacement of analytes during matrix deposition. Owing to recent advancements in both laser optics and matrix deposition methods, spatial resolution on the order of a single eukaryotic cell is now achievable by MALDI MS imaging. Provided adequate instrument sensitivity, a lateral resolution of approximately 10 μm is currently attainable with commercial instruments. As a result of these advances, MALDI MS imaging is poised to become a transformative clinical technology. In this article, the crucial steps needed to obtain single-cell resolution are discussed, as well as potential applications to disease research.  相似文献   

10.
5 alpha-Dihydrotestosterone has been widely measured in human prostatic tissue using RIA since it is involved in the pathogenesis of human prostatic hyperplasia and seems to be the best index for the follow-up of patients affected by prostatic cancer under endocrine treatment. A GC-MS method for the simultaneous determination of testosterone (T), 5 alpha-dihydrotestosterone (DHT) and 5 alpha-androstan-3 alpha, 17 beta-diol (3 alpha-diol) in prostatic tissue based on the isotopic dilution technique was developed. Tri-deuterated internal standards of each compound were previously synthetized in our laboratory. After extraction and purification on Sep-Pak C18 and Sephadex LH-20, T and its metabolites were measured as heptafluorobutyric ester (HFB) derivatives. Quantitative analysis was performed on a VG 7070 EQ mass spectromer equipped with a fused silica capillary column using the Selected Ion Monitoring technique. Steroid values (mean +/- SD; ng/g tissue) found in nine human hypertrophic prostates were: T: 0.71 +/- 0.43; DHT: 4.46 +/- 1.41; 3 alpha-diol: 0.34 +/- 0.23. Preliminary results obtained from the detection of the three androgens in human prostatic hyperplasia treated for 3 months with GnRH before surgery seem to indicate that DHT concentration decreases more than 10 times. Values obtained (n = 1; ng/g tissue) were: T: 0.194; DHT: 0.255; 3 alpha-diol: 0.015.  相似文献   

11.
12.
Sphingolipids comprise a complex group of lipids concentrated in membrane rafts and whose metabolites function as signaling molecules. Sphingolipids are conserved in Drosophila, in which their tight regulation is required for proper development and tissue integrity. In this study, we identified a new family of Drosophila sphingolipids containing two double bonds in the long chain base (LCB). The lipids were found at low levels in wild-type flies and accumulated markedly in Drosophila Sply mutants, which do not express sphingosine-1-phosphate lyase and are defective in sphingolipid catabolism. To determine the identity of the unknown lipids, purified whole fly lipid extracts were separated on a C18-HPLC column and analyzed using electrospray mass spectrometry. The lipids contain a LCB of either 14 or 16 carbons with conjugated double bonds at C4,6. The Delta(4,6)-sphingadienes were found as free LCBs, as phosphorylated LCBs, and as the sphingoid base in ceramides. The temporal and spatial accumulation of Delta(4,6)-sphingadienes in Sply mutants suggests that these lipids may contribute to the muscle degeneration observed in these flies.  相似文献   

13.
The electron impact mass spectrometric properties of trimethylsilyl ether and fluoroacyl ester derivatives of trenbolone, combined or not combined with a methoxime group, are presented. Some derivatization problems were observed and were due to the formation of enol derivatives at the 3C-position in several tautomeric forms, which in their turn were not stable and lost two or four hydrogens under the conditions studied. The enolization could be minimized by carefully selecting the reaction conditions or could be prevented by the introduction of a methoxime group at the 3C-position. The limits of detection and identification of the methoxime heptafluorobutyryl ester and the methoxime trimethylsilyl ether derivative of trenbolone were determined using a mass selective detector in the electron impact mode and a triple-stage quadrupole in the methane positive chemical ionization mode. Selected reaction monitoring in tandem mass spectrometry did not improve the limit of detection, but because of the gain in selectivity did improve the limit of identification. The glucuronides of trenbolone and epitrenbolone could be identified in three urine specimens out of 200 samples in routine doping control.  相似文献   

14.
Evaluation of different extraction methods for quantification of endogenous sorbitol and fructose in human red blood cells (RBCs) and matrix effects in ESI and APCI showed that protein-precipitation followed by mixed-mode solid-phase extraction was more effective extraction method and APCI more effective ionization method. Then the LC/APCI-MS/MS method was fully validated and successfully applied to analysis of clinical RBC samples. The concentrations of endogenous sorbitol and fructose were determined using calibration curves employing sorbitiol-13C6 and fructose-13C6 as surrogate analytes. The method has provided excellent intra- and inter-assay precision and accuracy with a linear range of 50.0-10,000 ng/mL (correlation coefficient >0.999) for sorbitol-13C6 and 250-50000 ng/mL (correlation coefficient >0.999) for fructose-13C6 in human RBCs.  相似文献   

15.
This study describes a capillary GC-MS method for the simultaneous determination of endogenous 6beta-hydroxycortisol (6beta-OHF) and its stable isotope-labelled analogue, 6beta-hydroxy-[1,1,19,19,19-2H(5)]cortisol (6beta-OHF-2H(5)), in human urine. 6beta-Hydroxy-[1,2,4,19-13C(4),1,1,19,19,19-2H(5)]cortisol (cortisol-13C(4),(2)H(5)) was used as an analytical internal standard. The methoxime trimethylsilyl ether (MO-TMS) derivatization was employed for the GC-MS analysis of 6beta-OHF. Quantitation was carried out by selected-ion monitoring (SIM) of the characteristic fragment ion ([M-31](+.)) of the MO-TMS derivative of 6beta-OHF. The sensitivity limit of the present GC-MS-SIM method was found to be 25 pg per injection for 6beta-OHF (S/N ratio=5.6). The within-day reproducibility in the amounts of unlabelled and labelled 6beta-OHFs determined were in good agreement with the actual amounts added, the relative errors being less than 5.30%. The inter-assay RSDs were less than 4.95% for unlabelled and labelled 6beta-OHFs.  相似文献   

16.
Gas chromatography mass spectrometry with selected ion monitoring has been used to develop a method for the quantification of ketotifen and its demethylated, 10-hydroxy and 10-hydroxy demethylated metabolites in human plasma. The minimum detectable concentrations for ketotifen and its demethylated metabolites were 50 pg ml-1 and 300 pg ml-1 for the 10-hydroxy metabolite. The methodology has been applied in studies of the kinetics of the drug in man, and plasma levels of the unchanged drugs and its metabolites in free and conjugated form are reported.  相似文献   

17.
Providing “real blank sample” is a problem in determination of endogenous steroids in complex matrices. A new quantification strategy is proposed in the present study, which is based on using isotope-labeled steroids instead of natural steroids for constructing calibration line. This approach is called surrogate analyte and it is shown that its accuracy is better than some of the previously described methods at low concentrations and comparable to standard addition method at medium and high concentration levels. The method was fully validated to satisfy the ICH criteria and it was applied for determination of endogenous steroids in several urine samples.  相似文献   

18.
Aromatase (estrogen synthase) is the cytochrome P450 enzyme complex that converts C19 androgens to C18 estrogens. Aromatase activity has been demonstrated in breast tissue in vitro, and expression of aromatase is highest in or near breast tumor sites. Thus, local regulation of aromatase by both endogenous factors as well as exogenous medicinal agents will influence the levels of estrogen available for breast cancer growth. The prostaglandin E2 (PGE2) increases intracellular cAMP levels and stimulates estrogen biosynthesis, and our recent studies have shown a strong linear association between CYP19 expression and the sum of COX-1 and COX-2 expression in breast cancer specimens. PGE2 can bind to four receptor subtypes, EP1–EP4, which are coupled to different intracellular signaling pathways. In primary human breast stromal cell cultures, aromatase activity was significantly induced by PGE2, dexamethasone, and agonists for the EP1 and EP2 receptor subtypes. An EP1 antagonist, SC-19220, inhibited the induction of enzyme activity by PGE2 or 17-phenyltrinor-PGE2, an EP1 agonist. Sulprostone, an EP3 agonist, did not alter aromatase activity levels. Investigations are also underway on the regulation of aromatase by exogenous medicinal agents. Selective steroidal and nonsteroidal agents are effective in inhibiting breast tissue aromatase. The benzopyranone ring system is a molecular scaffold of considerable interest, and this scaffold is found in certain flavonoid natural products that have weak aromatase inhibitory activity. Our novel synthetic route for benzopyranones utilizes readily available salicylic acids and terminal alkynes as starting materials. The synthesis of flavones with diversity on the benzopyranone moiety and at the C-2 position occurs with good to excellent yields using these reaction conditions, resulting in an initial benzopyranone library of thirty compounds exhibiting enhanced and differential aromatase inhibition. Current medicinal chemistry efforts focus on diversifying the benzopyranone scaffold and utilizing combinatorial chemistry approaches to construct small benzopyranone libraries as potential aromatase inhibitors.  相似文献   

19.
20.
Among the numerous small molecules in the body, the very few aromatic ones include the estrogens and dopamine. In relation to cancer initiation, the estrogens should be considered as chemicals, not as hormones. Metabolism of estrogens is characterized by two major pathways. One is hydroxylation to form the 2- and 4-catechol estrogens, and the second is hydroxylation at the 16α position. In the catechol pathway, the metabolism involves further oxidation to semiquinones and quinones, including formation of the catechol estrogen-3,4-quinones, the major carcinogenic metabolites of estrogens. These electrophilic compounds react with DNA to form the depurinating adducts 4-OHE(1)(E(2))-1-N3Ade and 4-OHE(1)(E(2))-1-N7Gua. The apurinic sites obtained by this reaction generate the mutations that may lead to the initiation of cancer. Oxidation of catechol estrogens to their quinones is normally in homeostasis, which minimizes formation of the quinones and their reaction with DNA. When the homeostasis is disrupted, excessive amounts of catechol estrogen quinones are formed and the resulting increase in depurinating DNA adducts can lead to initiation of cancer. Substantial evidence demonstrates the mutagenicity of the estrogen metabolites and their ability to induce transformation of mouse and human breast epithelial cells, and tumors in laboratory animals. Furthermore, women at high risk for breast cancer or diagnosed with the disease, men with prostate cancer, and men with non-Hodgkin lymphoma all have relatively high levels of estrogen-DNA adducts, compared to matched control subjects. Specific antioxidants, such as N-acetylcysteine and resveratrol, can block the oxidation of catechol estrogens to their quinones and their reaction with DNA. As a result, the initiation of cancer can be prevented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号