首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mitochondrial dysfunction and oxidative stress are involved in Alzheimer disease (AD) pathogenesis. In human AD brains, the activity of the α-ketoglutarate dehydrogenase enzyme complex (α-KGDHC) is reduced. KGDHC is mostly involved in NADH production. It can also participate in oxidative stress and reactive oxygen species (ROS) production. The mitochondrial dihydrolipoyl succinyltransferase enzyme (DLST) is a key subunit specific to the α-KGDHC. In cultured cells, reduction of DLST increased H2O2-induced ROS generation and cell death. Thus, we asked whether partial genetic deletion of DLST could accelerate the onset of AD pathogenesis, using a transgenic mouse model of amyloid deposition crossed with DLST+/− mice. Tg19959 mice, which carry the human amyloid precursor protein with two mutations, develop amyloid deposits and progressive behavioral abnormalities. We compared Tg19959 mice to Tg19959-DLST+/− littermates at 2–3 months of age and studied the effects of DLST deficiency on amyloid deposition, spatial learning and memory, and oxidative stress. We found that α-KGDHC activity was reduced in DLST+/− mice. We also found that DLST deficiency increased amyloid plaque burden, Aβ oligomers, and nitrotyrosine levels and accelerated the occurrence of spatial learning and memory deficits in female Tg19959 mice. Our data suggest that α-KGDHC may be involved in AD pathogenesis through increased mitochondrial oxidative stress.  相似文献   

3.
Oxidative stress, induced by reactive oxygen species (ROS), is implicated in the pathogenesis of plaque formation and instability. During this ongoing oxidative process, cells in the vasculature are exposed to the atherogenicity of the plaque; previous studies have suggested that the arterial plaque, apart from being a consequence of the development of atherosclerosis, is also a cause of its progression.ObjectiveIn this study, we challenged this idea by investigating the effect of carotid plaque lipid extract on the human monocyte antioxidant system.Methods and ResultsExposure of monocytes to carotid plaque lipid extract (LE) for up to 72 h resulted in a significant increase in the ROS level (170%), with a simultaneous rise of 177% in glutathione oxidation. Experiments revealed a significant decrease, in the intracellular antioxidant enzyme activity of CAT, GPx and TRxR, (by 17, 33 and 43%, respectively). Although the activity of these enzymes subsequently returned to those of the controls, the levels of ROS did not decrease but rather continued increasing with extended LE exposure. Intriguingly, intracellular SOD activity rose significantly and remained high (176%), implying that endogenously produced H2O2, and not O2·¯ < is the factor that promotes the oxidative stress resulting from the presence of LE.ConclusionLipids from the atherosclerotic plaque may contribute to the progression of atherogenic conditions in adjacent regions by weakening the cellular antioxidant system and promoting oxidative stress, mainly through H2O2 production.  相似文献   

4.
Mutations in the presenilins (PS) account for the majority of familial Alzheimer disease (FAD) cases. To test the hypothesis that oxidative stress can underlie the deleterious effects of presenilin mutations, we analyzed lipid peroxidation products (4-hydroxynonenal (HNE) and malondialdehyde) and antioxidant defenses in brain tissue and levels of reactive oxygen species (ROS) in splenic lymphocytes from transgenic mice bearing human PS1 with the M146L mutation (PS1M146L) compared to those from mice transgenic for wild-type human PS1 (PS1wt) and nontransgenic littermate control mice. In brain tissue, HNE levels were increased only in aged (19-22 months) PS1M146L transgenic animals compared to PS1wt mice and not in young (3-4 months) or middle-aged mice (13-15 months). Similarly, in splenic lymphocytes expressing the transgenic PS1 proteins, mitochondrial and cytosolic ROS levels were elevated to 142.1 and 120.5% relative to controls only in cells from aged PS1M146L animals. Additionally, brain tissue HNE levels were positively correlated with mitochondrial ROS levels in splenic lymphocytes, indicating that oxidative stress can be detected in different tissues of PS1 transgenic mice. Antioxidant defenses (activities of antioxidant enzymes Cu/Zn-SOD, GPx, or GR) or susceptibility to in vitro oxidative stimulation was unaltered. In summary, these results demonstrate that the PS1M146L mutation increases mitochondrial ROS formation and oxidative damage in aged mice. Hence, oxidative stress caused by the combined effects of aging and PS1 mutations may be causative for triggering neurodegenerative events in FAD patients.  相似文献   

5.
《Free radical research》2013,47(9):667-671
Abstract

Green tea polyphenols, the most interesting constituent of green tea leaves, have been shown to have both pro-oxidant and antioxidant properties. Both pro-oxidant and antioxidant properties are expected to contribute to modulation of oxidative stress response under ideal optimal dosage regimens. Exposure to a low concentration of a pro-oxidant prior to exposure to oxidative stress induces the expression of genes that code for proteins that induce adaptation in a subsequent oxidative stress. On the other hand, exposure to an antioxidant concurrently with exposure to the oxidative stress affords protection through free radical scavenging or through other indirect antioxidant mechanisms. In any case, the optimal conditions that afford protection from oxidative stress should be defined for any substance with redox properties. Green tea polyphenols, being naturally occurring substances, seem to be an ideal option for the modulation of oxidative stress response. This paper reviews available data on the pro-oxidant and antioxidant properties of green tea polyphenols focusing on their potential on the modulation of oxidative stress response.  相似文献   

6.
Abstract

Aerobic cells are subjected to damaging reactive oxygen species (ROS) as a consequence of oxidative metabolism and/or exposure to environmental toxins. Antioxidants limit this damage, yet peroxidative events occur when oxidant stress increases. This arises due to increased radical formation or decreased antioxidative defenses. The two-step enzymatic antioxidant pathway limits damage to important biomolecules by neutralising superoxides to water. However, an imbalance in this pathway (increased first-step antioxidants relative to second-step antioxidants) has been proposed as etiological in numerous pathologies. This review presents evidence that a shift in favor of hydrogen peroxide and/or lipid peroxides has pathophysiological consequences. The involvement of antioxidant genes in the regulation of redox status, and ultimately cellular homeostasis, is explored in murine transgenic and knockout models. The investigations of Sod1 transgenic cell-lines and mice, as well as Gpx1 knockout mice (both models favor H2O2 accumulation), are presented. Although in most instances accumulation of H2O2 affects cellular function and leads to exacerbated pathology, this is not always the case. This review highlights those instances where, for example, increased Sod1 levels are beneficial, and indicates a role for superoxide radicals in pathogenesis. Studies of Gpx1 knockout mice (an important second-step antioxidant) lead us to conclude that Gpx1 functions as the primary protection against acute oxidative stress, particularly in neuropathological situations such as stroke and cold-induced head trauma, where high levels of ROS occur during reperfusion or in response to injury. In summary, these studies clearly highlight the importance of limiting ROS-induced cellular damage by maintaining a balanced enzymatic antioxidant pathway.  相似文献   

7.
Abstract

This study aimed to evaluate the organelle-specific antioxidant/pro-oxidant actions of clinically important dietary antioxidants against oxidative stress. An in vitro cellular model was employed to investigate the antioxidant/pro-oxidant effects of various concentrations (1, 10 and 100 μM) of ascorbic acid, α-tocopherol and β-carotene during H2O2-induced oxidative stress. Damage to nuclear and mitochondrial genomes was analyzed by quantitative polymerase chain reaction and oxidation of membrane lipids was measured via colorimetric assays. The key findings were: (i) dietary antioxidants conferred a dose-dependent protective effect (with a pro-oxidant shift at higher concentrations); (ii) the protection conferred to different sub-cellular organelles is highly specific to the dietary antioxidant; (iii) the mtDNA is highly sensitive to oxidative attack compared to nDNA (P < 0.05); and (iv) mtDNA protection conferred by dietary antioxidants was required to improve protection against oxidative-induced cell death. This study shows that antioxidant-induced protection of mtDNA is an important target for future oxidative stress therapies.  相似文献   

8.
To evaluate potential antioxidant characteristics of organic selenium (Se), double knock-in transgenic mice expressing human mutations in the amyloid precursor protein (APP) and human presenilin-1 (PS1) were provided a Se-deficient diet, a Se-enriched diet (Sel-Plex), or a control diet from 4 to 9 months of age followed by a control diet until 12 months of age. Levels of DNA, RNA, and protein oxidation as well as lipid peroxidation markers were determined in all mice and amyloid β-peptide (Aβ) plaques were quantified. APP/PS1 mice provided Sel-Plex showed significantly (P < 0.05) lower levels of Aβ plaque deposition and significantly decreased levels of DNA and RNA oxidation. Sel-Plex-treated mice showed no significant differences in levels of lipid peroxidation or protein oxidation compared to APP/PS1 mice on a control diet. To determine if diminished oxidative damage was associated with increased antioxidant enzyme activities, brain glutathione peroxidase (GSH-Px), glutathione reductase, and glutathione transferase activities were measured. Sel-Plex-treated mice showed a modest but significant increase in GSH-Px activity compared to mice on a normal diet (P < 0.5). Overall, these data suggest that organic Se can reduce Aβ burden and minimize DNA and RNA oxidation and support a role for it as a potential therapeutic agent in neurologic disorders with increased oxidative stress.  相似文献   

9.
This study underlines the importance of cinnamon, a commonly used natural spice and flavoring material, and its metabolite sodium benzoate (NaB) in attenuating oxidative stress and protecting memory and learning in an animal model of Alzheimer’s disease (AD). NaB, but not sodium formate, was found to inhibit LPS-induced production of reactive oxygen species (ROS) in mouse microglial cells. Similarly, NaB also inhibited fibrillar amyloid beta (Aβ)- and 1-methyl-4-phenylpyridinium(+)-induced microglial production of ROS. Although NaB reduced the level of cholesterol in vivo in mice, reversal of the inhibitory effect of NaB on ROS production by mevalonate, and geranylgeranyl pyrophosphate, but not cholesterol, suggests that depletion of intermediates, but not end products, of the mevalonate pathway is involved in the antioxidant effect of NaB. Furthermore, we demonstrate that an inhibitor of p21rac geranylgeranyl protein transferase suppressed the production of ROS and that NaB suppressed the activation of p21rac in microglia. As expected, marked activation of p21rac was observed in the hippocampus of subjects with AD and 5XFAD transgenic (Tg) mouse model of AD. However, oral feeding of cinnamon (Cinnamonum verum) powder and NaB suppressed the activation of p21rac and attenuated oxidative stress in the hippocampus of Tg mice as evident by decreased dihydroethidium (DHE) and nitrotyrosine staining, reduced homocysteine level and increased level of reduced glutathione. This was accompanied by suppression of neuronal apoptosis, inhibition of glial activation, and reduction of Aβ burden in the hippocampus and protection of memory and learning in transgenic mice. Therefore, cinnamon powder may be a promising natural supplement in halting or delaying the progression of AD.  相似文献   

10.
Mouse models that accumulate high levels of mitochondrial DNA (mtDNA) mutations owing to impairments in mitochondrial polymerase γ (PolG) proofreading function have been shown to develop phenotypes consistent with accelerated aging. As increase in mtDNA mutations and aging are risk factors for neurodegenerative diseases, we sought to determine whether increase in mtDNA mutations renders neurons more vulnerable to injury. We therefore examined the in vivo functional activity of retinal neurons and their ability to cope with stress in transgenic mice harboring a neural‐targeted mutant PolG gene with an impaired proofreading capability (Kasahara, et al. (2006) Mol Psychiatry 11 (6):577–93, 523). We confirmed that the retina of these transgenic mice have increased mtDNA deletions and point mutations and decreased expression of mitochondrial oxidative phosphorylation enzymes. Associated with these changes, the PolG transgenic mice demonstrated accelerated age‐related loss in retinal function as measured by dark‐adapted electroretinogram, particularly in the inner and middle retina. Furthermore, the retinal ganglion cell–dominant inner retinal function in PolG transgenic mice showed greater vulnerability to injury induced by raised intraocular pressure, an insult known to produce mechanical, metabolic, and oxidative stress in the retina. These findings indicate that an accumulation of mtDNA mutations is associated with impairment in neural function and reduced capacity of neurons to resist external stress in vivo, suggesting a potential mechanism whereby aging central nervous system can become more vulnerable to neurodegeneration.  相似文献   

11.
We have undertaken an integrated chemical and morphological comparison of the amyloid-beta (Abeta) molecules and the amyloid plaques present in the brains of APP23 transgenic (tg) mice and human Alzheimer's disease (AD) patients. Despite an apparent overall structural resemblance to AD pathology, our detailed chemical analyses revealed that although the amyloid plaques characteristic of AD contain cores that are highly resistant to chemical and physical disruption, the tg mice produced amyloid cores that were completely soluble in buffers containing SDS. Abeta chemical alterations account for the extreme stability of AD plaque core amyloid. The corresponding lack of post-translational modifications such as N-terminal degradation, isomerization, racemization, pyroglutamyl formation, oxidation, and covalently linked dimers in tg mouse Abeta provides an explanation for the differences in solubility between human AD and the APP23 tg mouse plaques. We hypothesize either that insufficient time is available for Abeta structural modifications or that the complex species-specific environment of the human disease is not precisely replicated in the tg mice. The appraisal of therapeutic agents or protocols in these animal models must be judged in the context of the lack of complete equivalence between the transgenic mouse plaques and the human AD lesions.  相似文献   

12.
Currently, the oxidative stress (or free radical) theory of aging is the most popular explanation of how aging occurs at the molecular level. While data from studies in invertebrates (e.g., C. elegans and Drosophila) and rodents show a correlation between increased lifespan and resistance to oxidative stress (and in some cases reduced oxidative damage to macromolecules), direct evidence showing that alterations in oxidative damage/stress play a role in aging are limited to a few studies with transgenic Drosophila that overexpress antioxidant enzymes. Over the past eight years, our laboratory has conducted an exhaustive study on the effect of under- or overexpressing a large number and wide variety of genes coding for antioxidant enzymes. In this review, we present the survival data from these studies together. Because only one (the deletion of the Sod1 gene) of the 18 genetic manipulations we studied had an effect on lifespan, our data calls into serious question the hypothesis that alterations in oxidative damage/stress play a role in the longevity of mice.  相似文献   

13.
Abstract

Metal ions, especially copper, zinc and iron, play an important role in the neurodegeneration process because they can affect protein misfolding, leading to the formation of the amyloid deposits and oxidative stress leading to reactive oxygen species (ROS). Here we report the synthesis and evaluation as antioxidant and metal chelating agents of 3,4-dihydroxybenzoic acid derivatives. Synthesized compounds were tested by the 2,2-diphenyl-2-picrylhydrazyl (DPPH) method showing a radical scavenging ability (EC50?=?0.093–0.118?μM) higher than Trolox used as reference. Furthermore, these compounds were able to bind both iron and copper, especially the iron (III), by the formation of hexa-coordinated complexes. Synthesized compounds were tested to evaluate their ability to inhibit acetyl- and butyryl-cholinesterase; the obtained results have demonstrated that they are selective inhibitors of AChE (Ki?=?1.5–18.9?μM) and result weakly active versus butyrylcholinesterase (BChE).  相似文献   

14.
Huntington's disease (HD) is caused by a dominant polyglutamine expansion within the N-terminus of huntingtin protein and results in oxidative stress, energetic insufficiency and striatal degeneration. Copper and iron are increased in the striata of HD patients, but the role of these metals in HD pathogenesis is unknown. We found, using inductively-coupled-plasma mass spectroscopy, that elevations of copper and iron found in human HD brain are reiterated in the brains of affected HD transgenic mice. Increased brain copper correlated with decreased levels of the copper export protein, amyloid precursor protein. We hypothesized that increased amounts of copper bound to low affinity sites could contribute to pro-oxidant activities and neurodegeneration. We focused on two proteins: huntingtin, because of its centrality to HD, and lactate dehydrogenase (LDH), because of its documented sensitivity to copper, necessity for normoxic brain energy metabolism and evidence for altered lactate metabolism in HD brain. The first 171 amino acids of wild-type huntingtin, and its glutamine expanded mutant form, interacted with copper, but not iron. N171 reduced Cu(2+)in vitro in a 1:1 copper:protein stoichiometry indicating that this fragment is very redox active. Further, copper promoted and metal chelation inhibited aggregation of cell-free huntingtin. We found decreased LDH activity, but not protein, and increased lactate levels in HD transgenic mouse brain. The LDH inhibitor oxamate resulted in neurodegeneration when delivered intra-striatially to healthy mice, indicating that LDH inhibition is relevant to neurodegeneration in HD. Our findings support a role of pro-oxidant copper-protein interactions in HD progression and offer a novel target for pharmacotherapeutics.  相似文献   

15.
《Free radical research》2013,47(5):600-610
Abstract

γ-Glutamyltransferase (GGT) plays a significant role in antioxidant defence and participates in the metabolism of glutathione (GSH). The enzyme is up-regulated after acute oxidative stress and during pro-oxidant periods, but the underlying regulatory mechanisms are not well known. The present investigation studied whether the endogenous reactive oxygen species (ROS) level was a determinant for GGT expression. A substantial amount of ROS is produced through the NADPH oxidase (NOX) system and knockdown of p22phox, a sub-unit of NOX1-4, resulted not only in reduced ROS levels but also in reduced GGT expression in human endometrial carcinoma cells. Phorbol-12-myristate-13-acetate (PMA) is an activator of NOX and it was found that PMA treatment of human colon carcinoma cells both increased cellular ROS levels and subsequently up-regulated GGT expression. On the other hand, the NOX inhibitor apocynin reduced ROS levels as well as GGT expression. The GGT mRNA sub-type A was increased after PMA-induced NOX activation. These results demonstrate that ROS generated from NOX enzymes are a significant determinant for GGT expression and activity.  相似文献   

16.
Osteopontin (OPN) is an important mediator of inflammation and is involved in the generation of atherosclerotic lesions. Oxidized LDL (OxLDL) increased the intracellular and secreted levels of OPN in rat smooth muscle cells in a dose- and time-dependent manner. Experiments with kinase inhibitors demonstrated that this effect was mediated by ERK and JNK, but not p38. OxLDL induced oxidative stress, measured by the intracellular levels of reactive oxygen species (ROS) and lipid peroxidation products. The increase in OPN levels was reproduced by the lipid extract of the particle and prevented by the antioxidant vitamin E. Furthermore, ROS generated by UVA irradiation or treatment with pro-oxidant compounds such as buthionine sulfoximine or H2O2 also enhanced intracellular and secreted OPN. Finally, OxLDL also augmented OPN levels in other cell types such as fibroblasts, keratinocytes, and endothelial cells. This work demonstrates the role of OxLDL in the expression of the OPN gene and further highlights the role of oxidative stress in the regulation of this cytokine. This might be related to the proinflammatory effects of OxLDL in the initiation and progression of atherosclerotic plaque.  相似文献   

17.
Reactive oxygen species (ROS) are generated during mitochondrial oxidative metabolism as well as in cellular response to xenobiotics, cytokines, and bacterial invasion. Oxidative stress refers to the imbalance due to excess ROS or oxidants over the capability of the cell to mount an effective antioxidant response. Oxidative stress results in macromolecular damage and is implicated in various disease states such as atherosclerosis, diabetes, cancer, neurodegeneration, and aging. Paradoxically, accumulating evidence indicates that ROS also serve as critical signaling molecules in cell proliferation and survival. While there is a large body of research demonstrating the general effect of oxidative stress on signaling pathways, less is known about the initial and direct regulation of signaling molecules by ROS, or what we term the "oxidative interface." Cellular ROS sensing and metabolism are tightly regulated by a variety of proteins involved in the redox (reduction/oxidation) mechanism. This review focuses on the molecular mechanisms through which ROS directly interact with critical signaling molecules to initiate signaling in a broad variety of cellular processes, such as proliferation and survival (MAP kinases, PI3 kinase, PTEN, and protein tyrosine phosphatases), ROS homeostasis and antioxidant gene regulation (thioredoxin, peroxiredoxin, Ref-1, and Nrf-2), mitochondrial oxidative stress, apoptosis, and aging (p66Shc), iron homeostasis through iron-sulfur cluster proteins (IRE-IRP), and ATM-regulated DNA damage response.  相似文献   

18.
Does my mouse have Alzheimer's disease?   总被引:4,自引:0,他引:4  
Small animal models that manifest many of the characteristic neuropathological and behavioral features of Alzheimer's disease (AD) have been developed and have proven of great value for studying the pathogenesis of this disorder at the molecular, cellular and behavioral levels. The great progress made in our understanding of the genetic factors that either cause or contribute to the risk of developing AD has prompted many laboratories to create transgenic (tg) mice that overexpress specific genes which cause familial forms of the disease. Several of these tg mice display neuropathological and behavioral features of AD including amyloid β-peptide (Aβ) and amyloid deposits, neuritic plaques, gliosis, synaptic alterations and signs of neurodegeneration as well as memory impairment. Despite these similarities, important differences in neuropathology and behavior between these tg mouse models and AD have also been observed, and to date no perfect animal model has emerged. Moreover, ascertaining which elements of the neuropathological and behavioral phenotype of these various strains of tg mice are relevant to that observed in AD continues to be a challenge. Here we provide a critical review of the AD-like neuropathology and behavioral phenotypes of several well-known and utilized tg mice that express human APP transgenes.  相似文献   

19.
This study investigated the direct roles of hydrogen peroxide (H2O2) in kidney aging using transgenic mice overexpressing glutathione peroxidase‐1 (GPX1 TG). We demonstrated that kidneys in old mice recapitulated kidneys in elderly humans and were characterized by glomerulosclerosis, tubular atrophy, interstitial fibrosis, and loss of cortical mass. Scavenging H2O2 by GPX1 TG significantly reduced mitochondrial and total cellular reactive oxygen species (ROS) and mitigated oxidative damage, thus improving these pathologies. The potential mechanisms by which ROS are increased in the aged kidney include a decreased abundance of an anti‐aging hormone, Klotho, in kidney tissue, and decreased expression of nuclear respiratory factor 2 (Nrf2), a master regulator of the stress response. Decreased Klotho or Nrf2 was not improved in the kidneys of old GPX1 TG mice, even though mitochondrial morphology was better preserved. Using laser capture microdissection followed by label‐free shotgun proteomics analysis, we show that the glomerular proteome in old mice was characterized by decreased abundance of cytoskeletal proteins (critical for maintaining normal glomerular function) and heat shock proteins, leading to increased accumulation of apolipoprotein E and inflammatory molecules. Targeted proteomic analysis of kidney tubules from old mice showed decreased abundance of fatty acid oxidation enzymes and antioxidant proteins, as well as increased abundance of glycolytic enzymes and molecular chaperones. GPX1 TG partially attenuated the remodeling of glomerular and tubule proteomes in aged kidneys. In summary, mitochondria from GPX1 TG mice are protected and kidney aging is ameliorated via its antioxidant activities, independent and downstream of Nrf2 or Klotho signaling.  相似文献   

20.
It has been recently recognized that the increased oxidative stress (ROS overproduction) in obese condition is a key contributor to the pathogenesis of obesity-associated metabolic diseases. Apelin is an adipocytokine secreted by adipocytes, and known for its anti-obesity and anti-diabetic properties. In obesity, both oxidative stress and plasma level of apelin are increased. However, the regulatory roles of apelin on oxidative stress in adipocytes remain unknown. In the present study, we provide evidence that apelin, through its interaction with apelin receptor (APJ), suppresses production and release of reactive oxygen species (ROS) in adipocytes. This is further supported by the observations that apelin promotes the expression of anti-oxidant enzymes via MAPK kinase/ERK and AMPK pathways, and suppresses the expression of pro-oxidant enzyme via AMPK pathway. We further demonstrate that apelin is able to relieve oxidative stress-induced dysregulations of the expression of anti- and pro-oxidant enzymes, mitochondrial biogenesis and function, as well as release of pro- and anti-inflammatory adipocytokines. This study, for the first time, reveals the antioxidant properties of apelin in adipocytes, and suggests its potential as a novel therapeutic target for metabolic diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号