首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on previous screening for keratinolytic nonpathogenic fungi, Paecilomyces marquandii and Doratomyces microsporus were selected for production of potent keratinases. The enzymes were purified and their main biochemical characteristics were determined (molecular masses, optimal temperature and pH for keratinolytic activity, N-terminal amino acid sequences). Studies of substrate specificity revealed that skin constituents, such as the stratum corneum, and appendages such as nail but not hair, feather, and wool were efficiently hydrolyzed by the P. marquandii keratinase and about 40% less by the D. microsporus keratinase. Hydrolysis of keratin could be increased by the presence of reducing agents. The catalytic properties of the keratinases were studied and compared to those of some known commercial proteases. The profile of the oxidized insulin B-chain digestion revealed that both keratinases, like proteinase K but not subtilisin, trypsin, or elastase, possess broad cleavage specificity with a preference for aromatic and nonpolar amino acid residues at the P-1 position. Kinetic studies were performed on a synthetic substrate, succinyl-Ala-Ala-Pro-Phe-p-nitroanilide. The keratinase of P. marquandii exhibited the lowest Km among microbial keratinases reported in the literature, and its catalytic efficiency was high in comparison to that of D. microsporus keratinase and proteinase K. All three keratinolytic enzymes, the keratinases of P. marquandii and D. microsporus as well as proteinase K, were significantly more active on keratin than subtilisin, trypsin, elastase, chymotrypsin, or collagenase.  相似文献   

2.
A keratinolytic protease from the fungus Doratomyces microsporus was investigated for its ability to hydrolyse different native proteins. The purified enzyme was incubated for up to 24 h with keratinous substrates as well as with non-keratinous proteins. The results showed that the enzyme was broad specific since it hydrolysed various globular and fibrillar proteins. The hydrolysis of keratinous substrates decreased in the following order: skin keratins > nail keratins > hair keratins. With non-keratinous substrates, the order was: casein > BSA > elastin. Feather keratin and collagen could not be hydrolysed. Comparison of the enzyme with some known proteolytic enzymes showed that on keratin from stratum corneum the activity of the keratinase was comparable to that of proteinase K, other enzymes were less active. Hydrolysis of porcine skin with the keratinase revealed the degradation of the epidermis while dermis was not damaged.  相似文献   

3.
Keratinase of Doratomyces microsporus   总被引:10,自引:0,他引:10  
 The fungus Doratomyces microsporus produced an extracellular keratinase during submerged aerobic cultivation in a medium containing a protein inducer for enzyme synthesis. The keratinase was purified to homogeneity using hydrophobic interaction chromatography followed by gel chromatography. The molecular weight was estimated to be 33 kDa (from SDS-PAGE analysis) or 30 kDa (by gel chromatography), suggesting a monomeric structure. The isoelectric point of the enzyme was determined to be around 9. The optimal pH and temperature for keratinolytic activity were pH 8–9 and 50 °C, respectively. The serine protease inhibitor PMSF totally inhibited the keratinase. The enzyme was not glycosylated. It was capable of hydrolysing different keratinous materials as well as some non-keratinous proteins. Hydrolysis of some synthetic substrates, specific for known proteinases, suggested that the keratinase of D. microsporus is close to proteinase K. Received: 9 July 1999 / Received revision: 13 September 1999 / Accepted: 17 September 1999  相似文献   

4.
The increasing demands of keratinases for biodegradation of recalcitrant keratinaceous waste like chicken feathers has lead to research on newer potential bacterial keratinases to produce high-value products with biological activities. The present study reports a novel keratinolytic bacterium Bacillus velezensis strain ZBE1 isolated from deep forest soil of Western Ghats of Karnataka, which possessed efficient feather keratin degradation capability and induced keratinase production. Production kinetics depicts maximum keratinase production (11.65 U/mL) on 4th day with protein concentration of 0.61 mg/mL. Effect of various physico-chemical factors such as, inoculum size, metal ions, carbon and nitrogen sources, pH and temperature influencing keratinase production were optimized and 3.74 folds enhancement was evidenced through response surface methodology. Silver (AgNP) and zinc oxide (ZnONP) nanoparticles with keratin hydrolysate produced from chicken feathers by the action of keratinase were synthesized and verified with UV–Visible spectroscopy that revealed biological activities like, antibacterial action against Bacillus cereus and Escherichia coli. AgNP and ZnONP also showed potential antioxidant activities through radical scavenging activities by ABTS and DPPH. AgNP and ZnONP revealed cytotoxic effect against MCF-7 breast cancer cell lines with IC50 of 5.47 µg/ml and 62.26 µg/ml respectively. Characterizations of nanoparticles were carried out by Fourier transform infrared spectroscopy, scanning electron microscopy with energy dispersive X-ray, X-ray diffraction, thermogravimetric analysis and atomic force microscopy analysis to elucidate the thermostability, structure and surface attributes. The study suggests the prospective applications of keratinase to trigger the production of bioactive value-added products and significant application in nanotechnology in biomedicine.  相似文献   

5.
Degradation of chicken feathers by Chrysosporium georgiae   总被引:1,自引:0,他引:1  
Using a baiting technique, Chrysosporium georgiae was isolated from chicken feathers. Twenty-eight different fungal isolates were evaluated for their ability to produce keratinase enzymes using a keratin–salt agar medium containing either white chicken feathers or a prepared feather keratin suspension (KS). The Chrysosporium species were able to use keratin and grow at different rates. Chrysosporium georgiae completely degraded the added keratin after 9 days of incubation. Degradation of feathers by C. georgiae was affected by several cultural factors. Highest keratinolytic activity occurred after 3 weeks of incubation at 6 and 8~pH at 30 °C. Chrysosporium georgiae was able to degrade white chicken feathers, whereas bovine and human hair and sheep wool were not degraded and did not support fungal growth. Addition of 1% glucose to the medium containing keratin improved fungal growth and increased enzyme production. Higher keratin degradation resulted in high SH accumulation and the utilization of the carbohydrate carbon in the medium resulted in high keto-acid accumulation but decreased ammonia accumulation. Supplementation of the keratin–salt medium with minerals such as NH4Cl and MgSO4 slightly increased mycelial growth, but decreased production of extracelluar keratinase. Keratinase enzymes were very poorly produced in the absence of keratin, indicating its inducible nature. Analysis of endocellular keratinases in the mycelial homogenate indicated higher activity of intracellular keratinase as compared to the extracellular enzyme in culture filtrates. Chrysosporium georgiae was the most superior for keratinase production among the Chrysosporium species tested in the presence or absence of glucose. It produced more of the intracellular enzymes than the exocellular ones. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
A keratinolytic protease activity secreted by Kocuria rosea when cultured in bioreactors using feathers as unique carbon and nitrogen source was purified and characterized. This novel keratinase activity was purified from the bioreaction broth growing media to apparent homogeneity after single step, (24-fold purification with a high yield of 54%) using DEAE column chromatography. The native molecular mass of the enzyme determined by gel filtration chromatography was 240 kDa. K. rosea extracellular keratinase was stable in a broad range of pH (8–11) and temperature (10–60 °C) profile with optimums at pH 10 and 40 °C. Crystalline soybean trypsin inhibitor (type I-S), 4-(2-aminoethyl) benzenesulfonyl floride (AEBSF) and chymostatin, strongly inhibited the keratinolytic activity indicating that the keratinase belongs to the serine protease family. The Km for the soluble keratin degradation from feathers was 242 μM. The enzyme was resistant to denaturing or reducing agents such as dithiotreitol and 2-mercaptoethanol. All of the biochemical characteristics, raising the potential use of this enzyme in numerous industrial applications.  相似文献   

7.
《Process Biochemistry》2010,45(5):617-626
A new keratinolytic enzyme-producing bacterium was isolated from slaughter house polluted water and identified as Bacillus pumilus A1. Medium composition and culture conditions for the keratinases production by B. pumilus A1 were optimized using two statistical methods: Plackett–Burman design applied to find the key ingredients and conditions for the best yield of enzyme production and central composite design used to optimize the concentration of the five significant variables: feathers meal, soy peptone, NaCl, KCl, and KH2PO4. The medium optimization resulted in a 3.4-fold increase in keratinase production (87.73 U/ml) compared to that of the initial medium (25.9 U/ml). The zymography analysis shows the presence of at least five keratinolytic enzymes. The keratinolytic activity of the extracellular proteinases was examined by incubation with non-autoclaved chicken feathers. Complete solubilisation of whole feathers was observed after a 6-h incubation at temperatures ranging from 45 °C to 60 °C. The crude enzyme exhibited maximal activity at 60 °C and pH 8.5 or 55 °C and pH 9.0 using casein or keratin as substrates, respectively.  相似文献   

8.
In this study, three feather degrading bacterial strains were isolated from agroindustrial residues from a Brazilian poultry farm. Three Gram-positive, spore-forming, rod-shaped bacteria and were identified as B. subtilis 1271, B. licheniformis 1269 and B. cereus 1268 using biochemical, physiologic and molecular methods. These Bacillus spp. strains grew and produced keratinases and peptidases using chicken feather as the sole source of nitrogen and carbon. B. subtilis 1271 degraded feathers completely after 7 days at room temperature and produced the highest levels of keratinase (446 U ml?1). Feather hydrolysis resulted in the production of serine, glycine, glutamic acid, valine and leucine as the major amino acids. Enzymography and zymography analyses demonstrated that enzymatic extracts from the Bacillus spp. effectively degraded keratin and gelatin substrates as well as, casein, hemoglobin and bovine serum albumin. Zymography showed that B. subtilis 1271 and B. licheniformis 1269 produced peptidases and keratinases in the 15?C140 kDa range, and B. cereus produced a keratinase of ~200 kDa using feathers as the carbon and nitrogen source in culture medium. All peptidases and keratinases observed were inhibited by the serine specific peptidase inhibitor phenylmethylsulfonyl fluoride (PMSF). The optimum assay conditions of temperature and pH for keratinase activity were 40?C50°C and pH 10.0 for all strains. For gelatinases the best temperature and pH ranges were 50?C70°C and pH 7.0?C11. These isolates have potential for the biodegradation of feather wastes and production of proteolytic enzymes using feather as a cheap and eco-friendly substrate.  相似文献   

9.
《Process Biochemistry》2014,49(4):647-654
The keratin-degrading strain Stenotrophomonas maltophilia BBE11-1 secretes two keratinolytic proteases, KerSMD and KerSMF. However, the genes encoding these proteases remain unknown. Here, we have isolated these two genes with a modified TAIL-PCR (thermal asymmetric interlaced PCR) method based on the N-terminal amino acid sequences of mature keratinases. These two keratinase genes encode serine proteases with PPC (bacterial pre-peptidase C-terminal) domain, which are successfully expressed with the help of pelB leader in Escherichia coli cells. Recombinant KerSMD (48 kDa) shows a better activity in feather degradation, higher thermostability and substrate specificity than KerSMF (40 kDa). KerSMD has a t1/2 of 90 min at 50 °C and 64 min at 60 °C, and a better tolerance to surfactants SDS and triton X-100. The predicted model of KerSMD helps to explain the phenomenon of auto-catalytic C-terminal propeptide truncation, the special function of PPC domain, and the molecular weight of the C-terminal-processed mature keratinase KerSMD. This work not only provides a new way to overproduce keratinases but also helps to explore keratinases folding mechanism.  相似文献   

10.
AIMS: The aim of this study was to determine the keratinolytic ability of a range of bacteria and subsequently, to characterize the keratinase showing the greatest biotechnological potential. METHODS AND RESULTS: Nine bacteria, reported to produce extracellular proteases, were screened for production of keratinases. Of these, Lysobacter NCIMB 9497 exhibited the highest keratinolytic activity. The keratinase from this strain (Mr 148 kDa) was purified and characterized. Optimum activity occurred at 50 degrees C; no inhibition was demonstrated by phenylmethylsulphonyl fluoride (PMSF), but inhibition by EDTA was demonstrated. CONCLUSIONS: This study indicates that keratinase is a metalloprotease with a high degree of keratinolytic activity and stability. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first detailed report of a metalloprotease with keratinolytic activity. The novel reaction mechanism, degree of keratinolytic activity and stability indicate considerable biotechnological potential in the leather industry, and in the processing of poultry waste.  相似文献   

11.
The main keratinase (kerA) gene from the Bacillus licheniformis S90 was optimized by two codon optimization strategies and expressed in Pichia pastoris in order to improve the enzyme production compared to the preparations with the native kerA gene. The results showed that the corresponding mutations (synonymous codons) according to the codon bias in Pichia pastoris were successfully introduced into keratinase gene. The highest keratinase activity produced by P. pastoris pPICZαA-kerAwt, pPICZαA-kerAopti1 and pPICZαA-kerAopti2 was 195 U/ml, 324 U/ml and 293 U/ml respectively. In addition, there was no significant difference in biomass concentration, target gene copy numbers and relative mRNA expression levels of every positive strain. The molecular weight of keratinase secreted by recombinant P. pastori was approx. 39 kDa. It was optimally active at pH 7.5 and 50°C. The recombinant keratinase could efficiently degrade both α-keratin (keratin azure) and β-keratin (chicken feather meal). These properties make the P. pastoris pPICZαA-kerAopti1 a suitable candidate for industrial production of keratinases.  相似文献   

12.
The keratinase gene from Bacillus licheniformis MKU3 was cloned and successfully expressed in Bacillus megaterium MS941 as well as in Pichia pastoris X33. Compared with parent strain, the recombinant B. megaterium produced 3-fold increased level of keratinase while the recombinant P. pastoris strain had produced 2.9-fold increased level of keratinase. The keratinases from recombinant P. pastoris (pPZK3) and B. megaterium MS941 (pWAK3) were purified to 67.7- and 85.1-folds, respectively, through affinity chromatography. The purified keratinases had the specific activity of 365.7 and 1277.7 U/mg, respectively. Recombinant keratinase from B. megaterium was a monomeric protein with an apparent molecular mass of 30 kDa which was appropriately glycosylated in P. pastoris to have a molecular mass of 39 kDa. The keratinases from both recombinant strains had similar properties such as temperature and pH optimum for activity, and sensitivity to various metal ions, additives and inhibitors. There was considerable enzyme stability due to its glycosylation in yeast system. At pH 11 the glycosylated keratinase retained 95% of activity and 75% of its activity at 80 degrees C. The purified keratinase hydrolyzed a broad range of substrates and displayed effective degradation of keratin substrates. The K(m) and V(max) of the keratinase for the substrate N-succinyl-Ala-Ala-Pro-Phe-pNA was found to be 0.201 mM and 61.09 U/s, respectively. Stability in the presence of detergents, surfactants, metal ions and solvents make this keratinase suitable for industrial processes.  相似文献   

13.
The alkaline elastase produced by alkalophilic Bacillus Ya-B was a new type of proteinase which had a very high optimum pH and high elastolytic activity. It also had a high hydrolyzing activity against keratin and collagen. The molecular weight was determined to be 23 700 and 25 000 by ultracentrifugation analysis and SDS-polycrylamide gel electrophoresis, respectively. The isoelectric point was 10.6. The optimum reaction temperature was 60°C. Like many alkaline proteinases, this enzyme required Ca2+ for stability. The optimum reaction pH was 11.75 toward casein and elastin-orcein. The Kcat/Km values of the enzyme to synthetic substrates were constant from pH 8.5 up to 12.75. The enzyme was stable in the pH range 5.0–10.0. The enzyme was inhibited by alkaline proteinase inhibitors Streptomyces subtilisin inhibitor and microbial alkaline proteinase inhibitor, but not by elastatinal or the metalloproteinase inhibitor metalloproteinase inhibitor. Sodium chloride inhibited the elastolytic activity but not the caseinolytic activity at a concentration below 0.2 M. The inhibitory effect of sodium chloride to elastolytic activity was much more prominent at pH 9.0 than at pH 11.5. More than 50% of the enzyme bound onto elastin in the pH range below the isoelectric point of this enzyme. The amino-terminal sequence of the enzyme was determined, and compared with those of subtilisin BPN′ and subtilisin Carlsberg. Extensive sequence homology was noted among these three enzymes.  相似文献   

14.
Summary A new method of enzymatic peptide synthesis without any liquid added has been proposed. The method is based on the admixing of N-acylamino acid (peptide) esters and nucleophiles (amides or tert.-butylesters of amino acids or peptides, peptides) with various proteolytic enzymes such as α-chymotrypsin, trypsin, proteinase K, subtilisin, elastase and papain in the presence of Na2CO3. 10H2O. In most instances, acylating components were completely converted within a few hours giving satisfactory yields of desired peptide products.  相似文献   

15.
Candida antarctica lipase B (CAL-B)-catalysed regioselective deacetylation of 2′,3′,5′-tri-O-acetyl-1-β-d-arabinofuranosyluracil (1) and 2′,3′,5′-tri-O-acetyl-9-β-d-arabinofuranosyladenine (2) was studied. The choice of the reaction medium allowed the regioselective formation of products bearing different degree of acetylation: in isopropanol, CAL-B catalysed the formation of the corresponding 2′-O-acetylated arabinonucleosides, while hydrolyses afforded the 2′,3′-di-O-acetylated products. In particular, the procedure herein described allows a simple and efficient preparation of the reported vidarabine prodrug 2′,3′-di-O-acetyl-9-β-d-arabinofuranosyladenine, avoiding the utilisation of protective groups. Moreover, to achieve full deacetylation of the assayed substrates, a set of commercial hydrolases and fungal keratinases from Doratomyces microsporus (DMK) and Paecilomyces marquandii (PMK) were tested. While only PMK and DMK catalysed the quantitative complete deacetylation of 1, DMK accomplished full deacetylation of 2 in shorter time than the other assayed enzymes.  相似文献   

16.
Keratinases are proteolytic enzymes capable of degrading insoluble keratins. The importance of these enzymes is being increasingly recognized in fields as diverse as animal feed production, textile processing, detergent formulation, leather manufacture, and medicine. To enhance the thermostability of Bacillus licheniformis BBE11-1 keratinase, the PoPMuSiC algorithm was applied to predict the folding free energy change (ΔΔG) of amino acid substitutions. Use of the algorithm in combination with molecular modification of homologous subtilisin allowed the introduction of four amino acid substitutions (N122Y, N217S, A193P, N160C) into the enzyme by site-directed mutagenesis, and the mutant genes were expressed in Bacillus subtilis WB600. The quadruple mutant displayed synergistic or additive effects with an 8.6-fold increase in the t 1/2 value at 60 °C. The N122Y substitution also led to an approximately 5.6-fold increase in catalytic efficiency compared to that of the wild-type keratinase. These results provide further insight into the thermostability of keratinase and suggest further potential industrial applications.  相似文献   

17.
The world’s increasing population and shortage of food and feed is creating an urgently for us to look for new protein sources from waste products like keratinous waste. Poor management of these wastes has made them one of the major recalcitrant pollutants in nature. Microbial keratinases offers an economic and eco-friendly alternative for degrading and recycling keratinous waste into valuable byproducts. Diverse groups of microorganisms viz., bacteria, fungi and actinomycetes have the ability to degrade recalcitrant keratin by producing keratinase enzyme. Microbial keratinases exhibits great diversity in its biochemical properties with respect to activity and stability in various pH and temperature ranges as well as in the range of recalcitrant proteins it degrades like those present in feathers, hairs, nails, hooves etc. Owing to diverse properties and multifarious biotechnological implications, keratinases can be considered as promising biocatalysts for preparation of animal nutrients, protein supplements, leather processing, fiber modification, detergent formulation, feather meal processing for feed and fertilizer, the pharmaceutical, cosmetic and biomedical industries, and waste management. This review article presents an overview of keratin structure and composition, mechanism of microbial keratinolysis, diversity of keratinolytic microorganisms, and their potential applications in various fields.  相似文献   

18.
Comparative data on the properties of four thiol proteinase inhibitors, and of four serine proteinase inhibitors (two subtilisin and two trypsin inhibitors) isolated from seeds of Vigna are presented. They were similar in their molecular weights (5000–15,000) and dissociation constants (10?8–10?9m). The range of isoelectric points of the thiol proteinase inhibitors was 6.5 to 10.6, and of the serine proteinase inhibitors was 5.0 to 5.9. The amino acid compositions of one papain isoinhibitor, one of subtilisin, and one of trypsin are presented. Papain inhibitor A1 and subtilisin inhibitor 2a were low in cystine. All of the inhibitors were stable upon heating to 80 °C for 5 min at low pH. The subtilisin inhibitor did not bind to catalytically inactive subtilisin derivatives, whereas the papain inhibitor was stoichiometrically bound to the Hg or thioacetamide derivatives of papain. Incubation of the subtilisin inhibitor with catalytic amounts of subtilisin led to the formation of a modified form with the same inhibitor activity as the native inhibitor but with a different electrophoretic mobility. There was no indication of a similar modification of the papain inhibitor by papain. Separate sites are present on the trypsin-chymotrypsin inhibitors for trypsin and chymotrypsin. The papain inhibitors have the same binding sites for papain and ficin.  相似文献   

19.
Keratinases are exciting proteolytic enzymes that display the capability to degrade the insoluble protein keratin. These enzymes are produced by diverse microorganisms belonging to the Eucarya, Bacteria, and Archea domains. Keratinases display a great diversity in their biochemical and biophysical properties. Most keratinases are optimally active at neutral to alkaline pH and 40–60°C, but examples of microbial keratinolysis at alkalophilic and thermophilic conditions have been well documented. Several keratinases have been associated to the subtilisin family of serine-type proteases by analysis of their protein sequences. Studies with specific substrates and inhibitors indicated that keratinases are often serine or metalloproteases with preference for hydrophobic and aromatic residues at the P1 position. Keratinolytic enzymes have several current and potential applications in agroindustrial, pharmaceutical, and biomedical fields. Their use in biomass conversion into biofuels may address the increasing concern on energy conservation and recycling.  相似文献   

20.
Aims:  To determine the ability of a novel Bacillus subtilis AMR isolated from poultry waste to hydrolyse human hair producing peptidases including keratinases and hair keratin peptides.
Methods and Results:  The Bacillus subtilis AMR was identified using biochemical tests and by analysis of 16S rDNA sequence. The isolate was grown in medium containing human hair as the sole source of carbon and nitrogen. The supplementation of hair medium (HM) with 0·01% yeast extract increased the keratinolytic activity 4·2-fold. B. subtilis AMR presented high keratinase production on the 8th day of fermentation in hair medium (HM) supplemented with 0·01% yeast extract (HMY) at pH 8·0. Keratinase yield was not correlated with increase in biomass. Zymography showed keratin-degrading peptidases migrating at c. 54, 80 and 100 kDa and gelatin-degrading bands at c. 80, 70 63, 54 32 and 15 kDa. Keratinases were optimally active at 50°C and pH 9·0 and was fully inhibited by the serine proteinase inhibitor (PMSF). Scanning electron microscopy showed complete degradation of the hair cuticle after exposure to B. subtilis AMR grown in HMY. MALDI-TOF analysis of culture supernatant containing peptides produced during enzymatic hydrolysis of hair by B. subtilis AMR revealed fragments in a range of 800–2600 Da.
Conclusions:  This study showed that B. subtilis AMR was able to hydrolyse human hair producing serine peptidases with keratinase and gelatinase activity as well as hair keratin peptides.
Significance and Impact of the Study:  This is the first report describing the production and partial characterization of keratinases by a B. subtilis strain grown in a medium containing human hair . These data suggest that peptides obtained from enzymatic hair hydrolysis may be useful for future applications on pharmaceutical and cosmetic formulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号