首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial CMP kinases are specific for CMP and dCMP, whereas the related eukaryotic NMP kinase phosphorylates CMP and UMP with similar efficiency. To explain these differences in structural terms, we investigated the contribution of four key amino acids interacting with the pyrimidine ring of CMP (Ser36, Asp132, Arg110 and Arg188) to the stability, catalysis and substrate specificity of Escherichia coli CMP kinase. In contrast to eukaryotic UMP/CMP kinases, which interact with the nucleobase via one or two water molecules, bacterial CMP kinase has a narrower NMP-binding pocket and a hydrogen-bonding network involving the pyrimidine moiety specific for the cytosine nucleobase. The side chains of Arg110 and Ser36 cannot establish hydrogen bonds with UMP, and their substitution by hydrophobic amino acids simultaneously affects the K(m) of CMP/dCMP and the k(cat) value. Substitution of Ser for Asp132 results in a moderate decrease in stability without significant changes in K(m) value for CMP and dCMP. Replacement of Arg188 with Met does not affect enzyme stability but dramatically decreases the k(cat)/K(m) ratio compared with wild-type enzyme. This effect might be explained by opening of the enzyme/nucleotide complex, so that the sugar no longer interacts with Asp185. The reaction rate for different modified CMP kinases with ATP as a variable substrate indicated that none of changes induced by these amino acid substitutions was 'propagated' to the ATP subsite. This 'modular' behavior of E. coli CMP kinase is unique in comparison with other NMP kinases.  相似文献   

2.
This paper describes the study of a highly purified pyrimidine nucleoside monophosphate kinase from rat bone marrow cells. Short-term storage (24 h at 4 degrees C) of the purified enzyme in the absence of dithiothreitol, a sulfhydryl reducing agent, led to considerable losses of enzyme activity. Most of the lost activity could be regained, however, by incubating the enzyme with 50 mM dithiothreitol. Enzyme stabilization by dithiothreitol and reactivation by dithiothreitol were enhanced in the presence of phosphate buffer. Severe enzyme inhibition was produced by micromolar concentrations of sulfhydryl group reagents. Chromatographic, electrofocusing, and sucrose gradient centrifugation experiments revealed that the enzyme has a molecular weight of about 26,000, an isoelectric point of 4.7, and a sedimentation coefficient of 2.5. These experiments were also carried out with enzyme preparations which had been almost completely inactivated by means of dialysis to remove dithiothreitol. Enzyme preparations of this type displayed at least one additional enzyme form. This form(s) was inactive but capable of being partially reactivated by dithiothreitol. The inactive form(s) exhibited the same apparent molecular weight as the native enzyme but possessed a higher isoelectric point (5.7). A working hypothesis was presented which states (1) that inactive enzyme forms arise because of disulfide bond formation, (2) that enzyme sulfhydryl groups are less susceptible to oxidation in the presence of phosphate buffer, and (3) that enzyme reactivation by dithiothreitol results from the regeneration of critical enzyme sulfhydryls.  相似文献   

3.
5-Oxo-L-prolinase, an enzyme that catalyzes the conversion of 5-oxo-L-proline (L-pyroglutamate; L-2-pyrrolidone-5-carboxylate) to L-glutamate coupled with the cleavage of ATP to ADP and Pi, has been purified about 1600-fold from rat kidney. Purification was carried out in the presence of 5-oxo-L-proline which protects the enzyme under a variety of conditions. An estimate of the molecular weight (about 325,000) was made by gel filtration on Sephadex G-200. K+ (or NH4+) and Mg2+ were required for activity. GTP, ITP, CTP, and UTP were much less active than ATP; dATP was 43% as active as ATP. ADP inhibited and addition of pyruvate kinase and phosphoenolpyruvate activated the reaction. The enzyme, which is protected during storage by dithiothreitol, is inhibited by p-hydroxymercuribenzoate, N-ethylmaleimide, and iodoacetamide. The apparent Km values for 5-oxo-L-proline and ATP are, respectively, 0.05 and 0.17 mM. The pH profile indicates a broad range of activity from about pH 5.5 to pH 11.2 with apparent maxima at about pH 7 and pH 9.7. The formation of Pi and glutamate was equimolar over a wide pH range. When the enzyme was incubated with ATP, Mg2+, K+, and L-2-imidazolidone-4-carboxylate or L-dihydroorotate, cleavage of ATP to ADP and Pi occurred, but no cleavage of the imino acid substrates was observed; when the enzyme was incubated under these conditions with 2-piperidone-6-carboxylate, 4-oxy-5-oxoproline, and 3-oxy-5-oxoproline, the corresponding dicarboxylic amino acids were formed, but the molar ratio of Pi to amino acid formation was significantly greater than unity.  相似文献   

4.
The incubation of chloroplast fructose-1,6-bisphosphatase with both dithiothreitol and protein denaturants made sulfhydryl groups available for reaction with [1-14C]iodoacetamide (10-12 mol iodoacetamide incorporated/mol enzyme). Digestion of S-carboxyamidomethylated enzyme with trypsin and polyacrylamide gel electrophoresis, in the presence of sodium dodecylsulfate, yielded two 14C-labeled fragments whose apparent molecular mass were 10 kDa and 16 kDa. In the absence of either dithiothreitol or protein denaturants the incorporation of iodoacetamide to the enzyme was lower than 4 mol. When chloroplast fructose-1,6-bisphosphatase was initially incubated with dithiothreitol (2.5 mM) and (a) high concentrations of both fructose 1,6-bisphosphate (4 mM) and Ca2+ (0.3 mM) or (b) low concentrations of both fructose 1,6-bisphosphate (0.8 mM) and Ca2+ (0.05 mM) in the presence of either 2-propanol (15%, by vol.), trichloroacetate (0.15 M) or chloroplast thioredoxin-f (0.5 microM) and subsequently subjected to proteolysis and electrophoresis, S-carboxyamidomethylated tryptic fragments had similar molecular masses. Thus, conditions that stimulated the specific activity of chloroplast fructose-1,6-bisphosphatase caused conformational changes which favoured both the reduction of disulfide bridges and the exposure of sulfhydryl groups. In this aspect, thioredoxin exerted structural and kinetic effects similar to compounds not involved in redox reactions (organic solvents, chaotropic anions). These results indicated that the modification of hydrophobic (intramolecular) interactions in chloroplast fructose-1,6-bisphosphatase constituted the underlying mechanism in light-activation by the ferredoxin-thioredoxin system.  相似文献   

5.
Human pyrimidine nucleoside monophosphate kinase is a polymorphic enzyme having two allelic gene products, UMPK 1 and UMPK 2, in several populations. A procedure is described for the partial purification of this enzyme from human red blood cells resulting in a 1500-fold purification of the enzyme for UMPK 1 and 583-fold for UMPK 2. The purified enzyme preparation catalyzed the phosphorylation of UMP, CMP, and dCMP, and used ATP as the preferred phosphate donor. The heavy metals, mercury, and copper, were found to be strong inhibitors of pyrimidine nucleoside monophosphate kinase activity. EDTA was found to protect the enzyme from inactivation by the heavy metals, and 2-mercaptoethanol stabilized the enzyme during purification. UMPK 1 and UMPK 2 were found to have similar kinetic properties; however, UMPK 2 had a slower electrophoretic mobility and greater thermolability than UMPK 1.  相似文献   

6.
Two soluble NAD(+) kinase isoenzymes (isoenzymes 1 and 2) from Euglena gracilis were separated by preparative electrophoresis and characterized. They display several similar properties: both have an identical apparent molecular weight of 68 kDa and their activities are independent on calmodulin, insensitive to 2-mercaptoethanol but inhibited by p-chloromercurybenzoate, 5, 5'-dithiobis(2-nitrobenzoate) and, surprisingly, by low dithiothreitol concentrations, the inhibition by dithiothreitol being irreversible for isoenzyme 1 but reversible for isoenzyme 2. Nevertheless, the two isoenzymes mainly differ by their specificities towards triphosphate nucleotides and their catalytic mechanisms. Isoenzyme 1 is as active in the presence of ATP as of GTP and acts by a ping-pong mechanism with a k(M) for NAD(+) of 0.26 mM and a k(M) for low MgATP(2-)concentrations of 0.03 mM. Isoenzyme 2 is three-fold more active in the presence of GTP than of ATP and operates by a sequential mechanism with k(M)s for NAD(+) and MgGTP(2-) of 1.03 and 0.20 mM, respectively. This study shows the evidence for the existence of two structurally similar but catalytically different NAD(+) kinase isoenzymes in E. gracilis. One resembles the enzyme previously described in bacteria. The other displays a catalytic mechanism identical to that of NAD(+) kinase from other organisms but remains unique among all the NAD(+) kinases studied to-date regarding its specificity towards GTP.  相似文献   

7.
Bacterial cytidylate kinase or cytidine monophosphate kinase (CMP kinase) catalyses the phosphoryl transfer from ATP to CMP and dCMP, resulting in the formation nucleoside diphosphates. In eukaryotes, CMP/UMP kinase catalyses the conversion of UMP and CMP to, respectively, UDP and CDP with high efficiency. This work describes for the first time a model of bacterial cytidylate kinase or cytidine monophosphate kinase (CMP kinase) from mycobacterium tuberculosis (MtCMPK). We modeled MtPCMPK in apo form and in complex with cytidine 5′-monophosphate (CMP) to try to determine the structural basis for specificity. Comparative analysis of the model of MtCMPK allowed identification of structural features responsible for ligand affinities. Analysis of the molecular dynamics simulations of these two systems indicates the structural features responsible for the stability of the structure, and may help in the identification of new inhibitors for this enzyme.  相似文献   

8.
A simplified purification procedure for mung bean nuclease has been developed yielding a stable enzyme that is homogeneous in regards to shape and size. The nuclease is a glycoprotein consisting of 29% carbohydrate by weight. It has a molecular weight of 39 000 as determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The enzyme contains 1 sulfhydryl group and 3 disulfide bonds per molecule. It has a high content (12.6 mol %) of aromatic residues. Approximately 70% of the enzyme molecules contain a peptide bond cleavage at a single region in the protein. The two polypeptides, 25 000 and 15 000 daltons, are covalently linked by a disulfide bond(s). Both the cleaved and intact forms of the enzyme are equally active in the hydrolysis of the phosphate ester linkages in either DNA, RNA, or adenosine 3'-monophophate. The enzymatic activity of mung bean nuclease can be stabilized at pH 5 in the presence of 0.1 mM zinc acetate, 1.0 mM cysteine, and 0.001% Triton X-100. The enzyme can be inactivated and reactivated by the removal and readdition of Zn2+ or sulfhydryl compounds.  相似文献   

9.
Manganese superoxide dismutase (Mn-SOD) has been purified with a high yield (320 mg) from human liver (2 kg) and crystallized. Low-angle laser light scattering of the enzyme has shown that native enzyme is a tetrametic form. Four of the eight cysteine residues in the tetramer reacted with 5,5'-dithiobis(2-nitrobenzoic acid) or with iodoacetamide. The others were only reactive in protein heated with SDS or urea after reduction with dithiothreitol or 2-mercaptoethanol. The reactive sulfhydryl group was found to be located at Cys196 by amino acid sequence analysis of Nbs2-reactive peptides isolated by activated thiol-Sepharose covalent chromatography. Incubation of Mn-SOD in 1% SDS for 2 or 3 days at 25 degrees C or 5 min at 100 degrees C gave material showing two prominent components on polyacrylamide gel electrophoresis in the presence of 0.1% SDS. The major component had a molecular mass of 23 kDa; the other, 25 kDa. Reduction of the protein by dithiothreitol or 2-mercaptoethanol heated in SDS produced only the 25-kDa monomer species. Essentially, no thiol groups were detected in the 23-kDa form, in which two cysteine residues appear to have been oxidized to form an intrasubunit disulfide. This indicates that Cys196 has a reactive sulfhydryl and appears to be a likely candidate for a mixed disulfide formation in vivo.  相似文献   

10.
Different carbon and nitrogen sources had little effect on the level of dihydroxyacetone kinase formed in the cells of Gluconobacter suboxydans. The enzyme was purified to homogeneity from cell-free extract of the organism by ammonium sulfate fractionation and chromatographies on DEAE-cellulose, hydroxyapatite and Sephadex G-200 (60-fold purification, 6% yield). Its molecular weight was 260,000; it was stabilized by addition of ATP, dithiothreitol, 2-mercaptoethanol or EDTA, and it reacted optimally at pH 6.5. d-Glyceraldehyde was equally as effective as DHA as a phosphate acceptor (Km: 0.30 mM each). UTP showed 15% of the reactivity of ATP as a phosphate donor. Km values for ATP were 0.33 mM in phosphorylation of dihydroxyacetone and 0.39 mM with d-glyceraldehyde. The enzyme activity was dependent on Mg2+ but not on Mn2+. The reaction with dihydroxyacetone as an acceptor was inhibited by d-glyceraldehyde. The inhibition was competitive with respect to dihydroxyacetone 3Ki=0.09 mM) and noncompetitive with respective to ATP (Ki=5.7 mM).  相似文献   

11.
A cAMP-independent protamine kinase has been purified from extracts of the yeast Candida lipolytica by ion-exchange and affinity chromatography. Two subunits with apparent Mr's of 52,000 and 36,000 were resolved by SDS-PAGE. The purified kinase exhibited about 20% activity with casein and histone Type VII-S as substrates relative to protamine. The enzyme was inactive against other protein substrates tested, and was essentially insensitive to AMP, cAMP, cGMP up to 0.2 mM, the polyamines spermine and spermidine up to 1 mM, N-ethylmaleimide (5 mM), 2-mercaptoethanol (20 mM), or dithiothreitol (2 mM), and several cations like Zn2+, N1+, or Co2+ at 0.1 mM each. Ca2+ at 3 mM inhibited protamine kinase activity by 50%, which was reversed by EGTA.  相似文献   

12.
N-Acetylglucosamine kinase (ATP:2-acetamido-2-deoxy-D-glucose 6-phosphotransferase, EC 2.7.1.59) catalyzes the first reaction in the inducible N-acetylglucosamine catabolic pathway of Candida albicans, an obligatory aerobic yeast. As a part of continuing biochemical studies concerning the regulation of gene expression in a simple eukaryote, N-acetylglucosamine kinase has been purified and characterized biochemically. The enzyme has been purified about 300-fold from the crude extract and its molecular weight of 75 000 has been determined by Sephadex G-100 gel filtration. Isolation and analysis procedures are described. The kinase reaction is optimal within a pH range of 7--8. The enzyme is strictly specific for GlcNAc as phosphate acceptor; ATP is the phosphoryl group donor for the kinase reaction and to a lesser extent dATP and CTP. Km values for GlcNAc and ATP are 1.33 mM and 1.82 mM, respectively. The enzyme required Mg2+, which may be replaced by other bivalent metal ions such as Mn2+, Ca2+, Ba2+ and Co2+ for a lesser degree of effectiveness. The purified enzyme is extremely sensitive to thermal denaturation and becomes completely inactive by heating at 65% C for 2 min. The enzyme is also inactivated by sulphydryl reagents such as p-chloromercuribenzene sulfonic acid and N-ethylmaleimide.  相似文献   

13.
A protein kinase with high specificity for histone H1 was purified from a plasmacytoma microsomal fraction by a high-salt wash, ammonium sulfate precipitation, chromatography on DEAE-cellulose, hydroxyapatite and Sephadex G-200 columns, and the main properties of this kinase were studied. A sulfhydryl compound, such as 2-mercaptoethanol or dithiothreitol, was necessary for full activity. The optimum pH was 7.4-7.8. After purification, the histone H1 kinase was not stimulated by cAMP or cGMP. It was not inhibited by the heat-stable cAMP-dependent protein kinase inhibitor from beef heart. It utilized preferentially GTP over ATP as phosphate donor. Km values for ATP and GTP were 58 microM and 1.4 microM respectively; the Km for histone H1 was 14 microgram ml-1. The molecular weight was approximately 90 000 by gel-exclusion chromatography. Analysis of the purified H1-specific protein kinase by polyacrylamide gel electrophoresis in dodecylsulfate showed two bands having molecular weights of approximately 64 000 and 54 000. Many characteristics of this kinase were similar to those of the chromatin-bound protein kinase reported by other workers in rapidly proliferating cells.  相似文献   

14.
The progesterone-induced purple phosphatase isolated from the uterine flushings of pigs is activated by a variety of reagents that cleave disulfide bonds, including 2-mercaptoethanol, dithiothreitol, L-ascorbate, L-cysteine, sulfite, and cyanide. It is inhibited by various mercurials, iodoacetamide, O-iodosobenzoate, and hydrogen peroxide. Thiols increase the specific phosphatase activity from 25 to about 300 units per mg of enzyme. This activation is accompanied by a shift in the extinction maximum to higher energy to yield a protein with a pink coloration. Following maximum activation there is a gradual decrease in enzyme activity and protein color which is accompanied by loss of ferrous iron from the protein. Sodium dithionite at 10 mM or higher causes an immediate inhibition of phosphatase activity and bleaching of color, and can be used to prepare the iron-free apoprotein. The latter can be partially reactivated by Fe3+ salts but not by Fe2+. The Fe3+ restores the pink form of the enzyme with a specific activity of about 200 units/mg of protein. Cu2+ also causes some reactivation, but other metal ions were ineffective. ESR studies showed that the pink form of phosphatase contains approximately 1 atom of high spin ferric iron per molecule. It is concluded that the phosphatase requires a free thiol and Fe3+ for activity. Reduction of the iron leads to complete loss of both color and enzyme activity. The color change from purple to pink represents disulfide reduction and is not due to reduction of iron.  相似文献   

15.
A gamma-glutamyl kinase (ATP-L-glutamate 5-phosphotransferase) was purified about 85-fold from crude extracts of Pseudomonas aeruginosa strain PAO 1 by (NH4)2SO4 precipitation, molecular-sieving by Sephadex G-150 and DEAE-cellulose chromatography. The molecular weight of this enzyme was 84,000. The preparation catalysed formation of gamma-glutamyl hydroxamate from L-glutamate, ATP and Mg2+ or Mn2+ with concomitant hydrolysis of ATP to ADP + Pi. L-Proline inhibited the gamma-glutamyl kinase activity by 50% at 5 mM and almost completely at 30 mM. The inhibition of L-proline was non-competitive, wherease L-methionine-DL-sulphoximine inhibited the enzyme competitively. Proline was found to inhibit the gamma-glutamyl kinase activity of the wild-type strain and of representatives of two of the three transductional classes of proline-auxotrophic mutants. Strain PAO 879, a mutant representing the third transductional class of proline auxotrophs, lacked proline-inhibitible gamma-glutamyl kinase. Thiol-blocking reagents inhibited the gamma-glutamyl kinase and this effect was prevented by dithiothreitol.  相似文献   

16.
An Escherichia coli strain expressing three recombinant enzymes, i.e., cytidine 5'-monophosphate (CMP) kinase, sialic acid aldolase and cytidine 5'-monophosphate N-acetylneuraminic acid (CMP-NeuAc) synthetase, was utilized as a biocatalyst for the production of CMP-NeuAc. Both recombinant E. coli extract and whole cells catalyzed the production of CMP-NeuAc from CMP (20 mM), N-acetylmannosamine (40 mM), pyruvate (60 mM), ATP (1 mM), and acetylphosphate (60 mM), resulting in 90% conversion yield based on initial CMP concentration used. It was confirmed that endogenous acetate kinase can catalyze not only the ATP regeneration in the conversion of CMP to CDP but also the conversion of CDP to CTP. On the other hand, endogenous pyruvate kinase and polyphosphate kinase could not regenerate ATP efficiently. The addition of exogenous acetate kinase to the reaction mixture containing the cell extract increased the conversion rate of CMP to CMP-NeuAc by about 1.5-fold, but the addition of exogenous inorganic pyrophosphatase had no influence on the reaction. This E. coli strain could also be employed as an enzyme source for in situ regeneration of CMP-NeuAc in a sialyltransferase catalyzed reaction. About 90% conversion yield of alpha2,3-sialyl-N-acetyllactosamine was obtained from N-acetyllactosamine (20 mM), CMP (2 mM), N-acetylmannosamine (40 mM), pyruvate (60 mM), ATP (1 mM), and acetyl phosphate (80 mM) using the recombinant E. coli extract and alpha2,3-sialyltransferase.  相似文献   

17.
Glutathione transferases (GSTs) in Class Pi (rat GST-P (7-7) and human GST-pi) were inactivated by treatment with 0.05-1 mM hydrogen peroxide (H2O2), while GSTs in Class Alpha (1-2) and Class Mu (3-3, 3-4) were not, even with 5 mM H2O2. In the presence of 1 mM reduced glutathione (GSH), the inactivated GST-P (-pi) was effectively reactivated by the action of thioltransferase, which had been partially purified from rat liver by GSH-Sepharose affinity chromatography and gel filtration using Sephadex G-75. Thus, inactivation of GST-P by H2O2 was indicated to involve concomitant formation of disulfide bonds between cysteinyl residues. Single GST-P or GST-pi subunits are known to have four cysteinyl residues at the same positions, which can react with sulfhydryl group modifiers. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, GST-P treated with 1 mM H2O2 showed several extra bands, at least three, with apparent molecular weights of 21.5, 18, 37 kDa in addition to the native GST-P subunit band with a molecular weight of 23.5 kDa. These extra bands were identified as inactive forms since they returned to the native band with accompanying restoration of the activity when treated with dithiothreitol, mercaptoethanol, or thioltransferase. Disulfide bonds were formed mainly within subunits, causing an apparent reduction in molecular weight, only small amounts of binding between subunits being observed.  相似文献   

18.
A keratinolytic enzyme produced by Bacillus subtilis KS-1 isolated from poultry waste was purified and characterized using ultrfiltration, DEAE-Sephadex, and Sephadex G-100 chromatographies. The specific activity of the purified protease was 538.2 units/mg. The enzyme was shown to have a relative molecular mass of 25.4 kDa. The enzyme was made completely inactive by PMSF, which indicates a serine-protease. Dithiothreitol enhanced keratinolytic activity by 1.6 times at a concentration of 5.0 mM. These results suggest that the cleavage of the disulfide bonds with reducing agents can occur directly or by excretion of sulfite, which causes the sulfitolysis of the disulfide bonds. The first 10 amino acids of the N-terminal sequence are Ala-Gin-Pro-Val-Glu-Trp-Gly-Ile-Ser-Gln. The enzyme hydrolyzed casein and feather, but hydrolyzed casein more effectively than it did feather.  相似文献   

19.
The cellobiose phosphorylase (EC 2.4.1.20) of Cellvibrio gilvus, which is an endocellular enzyme, has been purified 196-fold with a recovery of 11% and a specific activity of 27.4 mumol of glucose 1-phosphate formed/min per mg of protein. The purification procedure includes fractionation with protamine sulphate, and hydroxyapatite and DEAE-Sephadex A-50 chromatography. The enzyme appears homogeneous on polyacrylamide-gel electrophoresis, and a molecular weight of 280 000 was determined by molecular-sieve chromatography. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis revealed a single band and mol.wt. 72 000, indicating that cellobiose phosphorylase consists of four subunits. The enzyme had a specificity for cellobiose, requiring Pi and Mg2+ for phosphorylation, but not for cellodextrin, gentibiose, laminaribiose, lactose, maltose, kojibiose and sucrose. The enzyme showed low thermostability, an optimum pH of 7.6 and a high stability in the presence of 2-mercaptoethanol or dithiothreitol. The Km values for cellobiose and Pi were 1.25 mM and 0.77 mM respectively. Nojirimycin acted as a powerful pure competitive inhibitor (with respect to cellobiose) of the enzyme (Ki = 45 microM). Addition of thiol-blocking agents to the enzyme caused 56% inhibition at 500 microM-N-ethylmaleimide and 100% at 20 microM-p-chloromercuribenzoate.  相似文献   

20.
Catalase is a major primary antioxidant defence component that primarily catalyses the decomposition of H(2) O(2) to H(2) O. Here we report the purification and characterization of catalase from chard (Beta vulgaris var. cicla). Following a procedure that involved chloroform treatment, ammonium sulfate precipitation and three chromatographic steps (CM-cellulose, Sephadex G-25, and Sephadex G-200), catalase was purified about 250-fold to a final specific activity of 56947 U/mg of protein. The molecular weight of the purified catalase and its subunit were determined to be 235 000 and 58 500 daltons, indicating that the chard catalase is a tetramer. The absorption spectra showed a soret peak at 406 nm, and there was slightly reduction by dithionite. The ratio of absorption at 406 and 275 nanometers was 1.5, the value being similar to that obtained for catalase from other plant sources. In the catalytic reaction, the apparent Km value for chard catalase was 50 mM. The purified protein has a broad pH optimum for catalase activity between 6.0 and 8.0. The enzyme had an optimum reaction temperature at 30 degrees C. Heme catalase inhibitors, such as azide and cyanide, inhibited the enzyme activity markedly and the enzyme was also inactivated by ?-mercaptoethanol, dithiothreitol and iodoacetamide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号