首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Absorption of a pooled human gamma globulin preparation with acetone-treated measles virus-infected cells removed all antibodies to measles virus antigens except a portion of the antibody to the fusion (F) protein. The residual anti-F antibody had hemolysis-inhibiting and virus-neutralizing activities, inhibited spread of infection through cell fusion, and was effective in protection of passively immunized mice from fatal measles encephalitis, providing evidence for the protective role of human antibody to the F protein of measles virus.  相似文献   

2.
T M Varsanyi  B Morein  A Lve    E Norrby 《Journal of virology》1987,61(12):3896-3901
The importance of each of the two surface glycoproteins of measles virus in active and passive immunization was examined in mice. Infected-cell lysates were depleted of either the hemagglutinin (H) or fusion (F) glycoprotein by using multiple cycles of immunoaffinity chromatography. The products were used to prepare immune-stimulating complexes (iscoms) containing either F or H glycoprotein. Such complexes are highly immunogenic, possibly as a result of effective presentation of viral proteins to the immune system [B. Morein, B. Sundquist, S. H?glund, K. Dalsgaard, and A. Osterhaus, Nature (London) 308:457-460, 1984]. Groups of 3-week-old BALB/c mice were inoculated with the iscom preparations. All animals developed hemolysis-inhibiting antibodies, whereas only sera of animals immunized with the iscoms containing the H glycoprotein had hemagglutination-inhibiting antibodies. Sera from animals immunized with the H or F preparation only precipitated the homologous glycoprotein in radioimmune precipitation assays. The immunized animals were challenged with a lethal dose of the hamster neurotropic variant of measles virus. Of the 7-week-old animals in the nonimmunized control group, 50% died within 10 days after challenge. No animals in the immunized groups showed symptoms of disease throughout the observation period of 3 months. Passive administration of anti-H monoclonal antibodies gave full protection against the 100% lethal acute infection with the hamster neurotropic variant of measles virus in newborn mice, whereas anti-F monoclonal antibodies failed to protect the animals. This study emphasizes that both H and F glycoproteins need to be considered in the development of measles virus subunit vaccines.  相似文献   

3.
The biological activity of monoclonal antibodies specific for the hemagglutinin protein of measles virus strain CAM recognizing six epitope groups according to their binding properties to measles virus strain CAM/R401 was investigated in vivo in our rat model of measles encephalitis. When injected intraperitoneally into measles virus-infected suckling rats, some monoclonal antibodies modified the disease process and prevented the necrotizing encephalopathy seen in untreated animals. The analysis of measles virus brain isolates revealed emergence of variants that resisted neutralization with the passively transferred selecting monoclonal antibody but not with other monoclonal antibodies. Monoclonal antibody escape mutants were also isolated in vitro, and their neurovirulence varied in the animal model. Sequence data from the hemagglutinin gene of measles virus localize a major antigenic surface determinant of the hemagglutinin protein between amino acid residues 368 and 396, which may be functionally important for neurovirulence. The data indicate that the interaction of antibodies with the measles virus H protein plays an important role in the selection of neurovirulent variants. These variants have biological properties different from those of the parent CAM virus.  相似文献   

4.
麻疹病毒受体与病毒侵入   总被引:1,自引:0,他引:1  
麻疹病毒是一种具囊膜的负链RNA病毒,两种主要的囊膜蛋白血凝素蛋白(H)和膜融合蛋白(F)表达在膜表面负责病毒侵入过程中与宿主受体的结合和膜融合过程.病毒囊膜蛋白与受体的相互作用是病毒侵入宿主的关键步骤,决定了病毒感染能力、种属和组织嗜性.因此,囊膜病毒与受体的结合位点往往成为重要的抗病毒药物的靶点.目前已发现的3种麻疹病毒受体包括CD46、SLAM和Nectin-4.以下综述了麻疹病毒受体的特征及在病毒侵入中的作用、麻疹病毒H蛋白与受体的相互作用机制,为抗病毒药物设计及麻疹病毒作为肿瘤治疗性载体的应用提供理论依据.  相似文献   

5.
Measles virus does not turn off host cell polypeptide synthesis, making it difficult to precisely identify the polypeptides specified by the virus during the infectious cycle. By using the technique of immune precipitation with measles-specific antisera, the host cell background has been eliminated, and new observations have been made concerning measles virus polypeptides H, P, NP, F, and M. The H polypeptide is first synthesized as a monomer which is processed by further glycosylation and by the formation of disulfide-bonded dimers. Polypeptide P (70,000 daltons) has been found to occur also as a 65,000-dalton molecule, P2, and both forms of the molecule are equally phosphorylated. Polypeptide NP is processed from a cleavage-sensitive form (which undergoes cleavage during the process of isolation to form polypeptide 6 [41,000 daltons]) to a form which is resistant to this cleavage. The fusion and hemolysin polypeptide is first found in the cells as a 55,000-dalton precursor, F0, which is clearly resolved from the NP polypeptide on gel electrophoresis. The measles virus F0 protein identified in previous reports had not been resolved from the 60,000-dalton NP polypeptide. The M protein occurs in the infected cells as two distinct bands, and, as in the case of Sendai virus, one of these two M protein bands represents a phosphorylated form of the other.  相似文献   

6.
E Malvoisin  F Wild 《Journal of virology》1990,64(10):5160-5162
To study the contribution of the measles virus fusion (F) protein in the immune response, anti-F monoclonal antibodies were prepared by using a vaccinia-measles virus F recombinant. In contrast to previously described anti-F monoclonal antibodies, these antibodies not only neutralized virus infectivity and inhibited fusion but also passively protected mice. Since these monoclonal antibodies recognize a configurational epitope, presentation of the antigen during infection may play an important role in the immune response. These factors are discussed in relation to vaccination.  相似文献   

7.
Polyclonal sera obtained from African children with acute measles were used to screen a panel of 15-mer overlapping peptides representing the sequence of measles virus (MV) fusion (F) protein. An immunodominant antigenic region from the F protein (p32; amino acids 388 to 402) was found to represent an amino acid sequence within the highly conserved cysteine-rich domain of the F protein of paramyxoviruses. Epitope mapping of this peptide indicated that the complete 15-amino-acid sequence was necessary for high-affinity interaction with anti-MV antibodies. Immunization of two strains of mice with the p32 peptide indicated that it was immunogenic and could induce antipeptide antibodies which cross-reacted with and neutralized MV infectivity in vitro. Moreover, passive transfer of antipeptide antibodies conferred significant protection against fatal rodent-adapted MV-induced encephalitis in susceptible mice. These results indicate that this epitope represents a candidate for inclusion in a future peptide vaccine for measles.  相似文献   

8.
9.
Neutralizing monoclonal antibodies specific for the fusion (F) glycoprotein of human parainfluenza type 3 virus (PIV3) were used to select neutralization-resistant antigenic variants. Sequence analysis of the F genes of the variants indicated that their resistance to antibody binding, antibody-mediated neutralization or to both was a result of specific amino acid substitutions within the neutralization epitopes of the F1 and F2 subunits. Comparison of the locations of PIV3 neutralization epitopes with those of Newcastle disease and Sendai viruses indicated that the antigenic organization of the fusion proteins of paramyxoviruses is similar. Furthermore, some of the PIV3 epitopes recognized by syncytium-inhibiting monoclonal antibodies are located in an F1 cysteine cluster region which corresponds to an area of the measles virus F protein involved in fusion activity.  相似文献   

10.
During measles virus (MV) replication, approximately half of the internal M and N proteins, together with envelope H and F glycoproteins, are selectively enriched in microdomains rich in cholesterol and sphingolipids called membrane rafts. Rafts isolated from MV-infected cells after cold Triton X-100 solubilization and flotation in a sucrose gradient contain all MV components and are infectious. Furthermore, the H and F glycoproteins from released virus are also partly in membrane rafts (S. N. Manié et al., J. Virol. 74:305-311, 2000). When expressed alone, the M but not N protein shows a low partitioning (around 10%) into rafts; this distribution is unchanged when all of the internal proteins, M, N, P, and L, are coexpressed. After infection with MGV, a chimeric MV where both H and F proteins have been replaced by vesicular stomatitis virus G protein, both the M and N proteins were found enriched in membrane rafts, whereas the G protein was not. These data suggest that assembly of internal MV proteins into rafts requires the presence of the MV genome. The F but not H glycoprotein has the intrinsic ability to be localized in rafts. When coexpressed with F, the H glycoprotein is dragged into the rafts. This is not observed following coexpression of either the M or N protein. We propose a model for MV assembly into membrane rafts where the virus envelope and the ribonucleoparticle colocalize and associate.  相似文献   

11.
The role of specific sequences in the transmembrane (TM) domain of Newcastle disease virus (NDV) fusion (F) protein in the structure and function of this protein was assessed by replacing this domain with the F protein TM domains from two other paramyxoviruses, Sendai virus (SV) and measles virus (MV), or the TM domain of the unrelated glycoprotein (G) of vesicular stomatitis virus (VSV). Mutant proteins with the SV or MV F protein TM domains were expressed, transported to cell surfaces, and proteolytically cleaved at levels comparable to that of the wild-type protein, while mutant proteins with the VSV G protein TM domain were less efficiently expressed on cell surfaces and proteolytically cleaved. All mutant proteins were defective in all steps of membrane fusion, including hemifusion. In contrast to the wild-type protein, the mutant proteins did not form detectable complexes with the NDV hemagglutinin-neuraminidase (HN) protein. As determined by binding of conformation-sensitive antibodies, the conformations of the ectodomains of the mutant proteins were altered. These results show that the specific sequence of the TM domain of the NDV F protein is important for the conformation of the preactivation form of the ectodomain, the interactions of the protein with HN protein, and fusion activity.  相似文献   

12.
Recombinant modified vaccinia virus Ankara (MVA), encoding the measles virus (MV) fusion (F) and hemagglutinin (H) (MVA-FH) glycoproteins, was evaluated in an MV vaccination-challenge model with macaques. Animals were vaccinated twice in the absence or presence of passively transferred MV-neutralizing macaque antibodies and challenged 1 year later intratracheally with wild-type MV. After the second vaccination with MVA-FH, all the animals developed MV-neutralizing antibodies and MV-specific T-cell responses. Although MVA-FH was slightly less effective in inducing MV-neutralizing antibodies in the absence of passively transferred antibodies than the currently used live attenuated vaccine, it proved to be more effective in the presence of such antibodies. All vaccinated animals were effectively protected from the challenge infection. These data suggest that MVA-FH should be further tested as an alternative to the current vaccine for infants with maternally acquired MV-neutralizing antibodies and for adults with waning vaccine-induced immunity.  相似文献   

13.
Measles virus nucleocapsid protein protects rats from encephalitis.   总被引:7,自引:6,他引:1  
Lewis rats immunized with recombinant vaccinia virus expressing the nucleocapsid (N) protein of measles virus were protected from encephalitis when subsequently challenged by intracerebral infection with neurotropic measles virus. Immunized rats revealed polyvalent antibodies to the N protein of measles virus in the absence of any neutralizing antibodies as well as an N protein-specific proliferative lymphocyte response. Depletion of CD8+ T lymphocytes did not abrogate the protective potential of the N protein-specific cell-mediated immune response in rats, while protection could be adoptively transferred with N protein-specific CD4+ T lymphocytes. These results indicate that a CD4+ cell-mediated immune response specific for the N protein of measles virus is sufficient to control measles virus infections of the central nervous system.  相似文献   

14.
将麻疹病毒F和HA基因插入到痘苗病毒中,分别处于痘苗启动子P7.5与P11控制下,获得重组病毒vLmF和vCmH。用抗F多肽抗体和HA单抗进行ELISA检测,结果表明,两株重组病毒均能表达相应的麻疹蛋白。蛋白印迹显示重组病毒表达产物在分子大小,蛋白切割和糖化方面与麻疹病毒糖蛋白一致。两株重组病毒分别免疫家兔都能产生较高滴度的麻疹抗体,这些抗体具有中和作用和血溶抑制作用。此外,vCmH产生的抗体还具有血凝抑制作用。  相似文献   

15.
The ability of monoclonal antibodies (MAbs) to passively cure an influenza virus pneumonia in the absence of endogenous T- and B-cell responses was investigated by treating C.B-17 mice, homozygous for the severe combined immunodeficiency (SCID) mutation, with individual monoclonal antiviral antibodies 1 day after pulmonary infection with influenza virus PR8 [A/PR/8/34 (H1N1)]. Less than 10% of untreated SCID mice survived the infection. By contrast, 100% of infected SCID mice that had been treated with a single intraperitoneal inoculation of at least 175 micrograms of a pool of virus-neutralizing (VN+) antihemagglutinin (anti-HA) MAbs survived, even if antibody treatment was delayed up to 7 days after infection. The use of individual MAbs showed that recovery could be achieved by VN+ anti-HA MAbs of the immunoglobulin G1 (IgG1), IgG2a, IgG2b, and IgG3 isotypes but not by VN+ anti-HA MAbs of the IgA and IgM isotypes, even if the latter were used in a chronic treatment protocol to compensate for their shorter half-lives in vivo. Both IgA and IgM, although ineffective therapeutically, protected against infection when given prophylactically, i.e., before exposure to virus. An Fc gamma-specific effector mechanism was not an absolute requirement for antibody-mediated recovery, as F(ab')2 preparations of IgGs could cure the disease, although with lesser efficacy, than intact IgG. An anti-M2 MAb of the IgG1 isotype, which was VN- but bound well to infected cells and inhibited virus growth in vitro, failed to cure. These observations are consistent with the idea that MAbs of the IgG isotype cure the disease by neutralizing all progeny virus until all productively infected host cells have died. VN+ MAbs of the IgA and IgM isotypes may be ineffective therapeutically because they do not have sufficient access to all tissue sites in which virus is produced during influenza virus pneumonia.  相似文献   

16.
Antibodies (Abs) contribute to the control of influenza virus infection in vivo by reducing progeny virus yield from infected cells (yield reduction [YR]) and by inhibiting progeny virus from spreading the infection to new host cells (virus neutralization [VN]). Previous studies showed that the infection could be resolved in severe combined immunodeficiency (SCID) mice by treatment with hemagglutinin (HA)-specific monoclonal antibodies (MAbs) that exhibit both VN and YR activities but not by MAbs that exhibited only YR activity. To determine whether virus clearance requires both activities, we measured the therapeutic activity of an HA-specific MAb (VN and YR) and its Fab fragment (VN) by intranasal (i.n.) administration to infected SCID mice. Immunoglobulin G (IgG) and Fab cleared the infection with i.n. 50% effective doses (ED(50)s) of 16 and 90 pmol, respectively. To resolve an established infection solely by VN activity, Fab must be present in the respiratory tract at an effective threshold concentration until all infected cells have died and production of virus has ceased. Because IgG and Fab had different half-lives in the respiratory tract (22 and 8 h, respectively) and assuming that both operated mainly or solely by VN, it could be estimated that clearance was achieved 24 h after Ab treatment when both reagents were present in the respiratory tract at approximately 10 pmol. This dose was approximately 200 times larger than the respiratory tract-associated Ab dose resulting from administration of the intraperitoneal ED(50) (270 pmol) of IgG. This indicated that our procedure of i.n. administration of Ab did not make optimal use of the Ab's therapeutic activity.  相似文献   

17.
目的分析浙江省流行的麻疹病毒(MV)的基因特征,为更好地防控麻疹提供科学参考。方法从GenBank检索并下载浙江省所有麻疹病毒株、中国麻疹疫苗株和WHO推荐参考株的血凝素蛋白(H)和核蛋白(N)的基因组序列,利用MEGA 6.0软件进行比对分析,构建种系进化树,确定浙江省麻疹病毒流行的基因型别,并进行同源性和基因变异分析。结果浙江省麻疹病毒以H1基因型为主(27株),其他基因型为辅(2株B3型)。H1a亚型(21/27)占绝对优势,其次为H1b亚型(6/27)。浙江省所有毒株间H蛋白的氨基酸同源性为96.9%~100.0%,与疫苗株Shanghai-191和Changchun-47的同源性均为95.0%~96.0%。浙江省所有毒株间N蛋白羧基末端的氨基酸同源性为82.7%~100.0%,与疫苗株Shanghai-191的同源性为85.8%~89.5%,与疫苗株Changchun-47的同源性为87.3%~91.0%。结论麻疹病毒H1基因型为浙江省麻疹流行的优势株,与现行参考疫苗株(A基因型)差异较大,因此针对麻疹病毒H1基因型疫苗的研制是今后浙江省麻疹病毒防控的关键。  相似文献   

18.
Corey EA  Iorio RM 《Journal of virology》2007,81(18):9900-9910
The hemagglutinin (H) protein of measles virus (MV) mediates attachment to cellular receptors. The ectodomain of the H spike is thought to consist of a membrane-proximal stalk and terminal globular head, in which resides the receptor-binding activity. Like other paramyxovirus attachment proteins, MV H also plays a role in fusion promotion, which is mediated through an interaction with the viral fusion (F) protein. The stalk of the hemagglutinin-neuraminidase (HN) protein of several paramyxoviruses determines specificity for the homologous F protein. In addition, mutations in a conserved domain in the Newcastle disease virus (NDV) HN stalk result in a sharp decrease in fusion and an impaired ability to interact with NDV F in a cell surface coimmunoprecipitation (co-IP) assay. The region of MV H that determines specificity for the F protein has not been identified. Here, we have adapted the co-IP assay to detect the MV H-F complex at the surface of transfected HeLa cells. We have also identified mutations in a domain in the MV H stalk, similar to the one in the NDV HN stalk, that also drastically reduce fusion yet do not block complex formation with MV F. These results indicate that this domain in the MV H stalk is required for fusion but suggest either that mutation of it indirectly affects the H-dependent activation of F or that the MV H-F interaction is mediated by more than one domain in H. This points to an apparent difference in the way the MV and NDV glycoproteins interact to regulate fusion.  相似文献   

19.
Expression of measles virus antigens in Streptococcus gordonii   总被引:1,自引:0,他引:1  
The measles virus proteins haemagglutinin (HA) and fusion protein (F), which together mediate attachment and penetration of the virus in the host cell and can elicit production of neutralising antibodies in the course of natural infection were expressed in the vaccine vector Streptococcus gordonii, a Gram-positive bacterium normally present in the human oral cavity. HA and F were expressed as fusion proteins attached to the bacterial surface, and were both found to be immunogenic when the recombinant S. gordonii were inoculated subcutaneously in mice.  相似文献   

20.
The human parainfluenza virus type 3 (HPIV3) fusion (F) and hemagglutinin-neuraminidase (HN) glycoproteins are the principal components involved in virion receptor binding, membrane penetration, and ultimately, syncytium formation. While the requirement for both F and HN in this process has been determined from recombinant expression studies, stable physical association of these proteins in coimmunoprecipitation studies has not been observed. In addition, coexpression of other heterologous paramyxovirus F or HN glycoproteins with either HPIV3 F or HN does not result in the formation of syncytia, suggesting serotype-specific protein differences. In this study, we report that simian virus 5 and Sendai virus heterologous HN proteins and measles virus hemagglutinin (H) were found to be down-regulated when coexpressed with HPIV3 F. As an alternative to detecting physical associations of these proteins by coimmunoprecipitation, further studies were performed with a mutant HPIV3 F protein (F-KDEL) lacking a transmembrane anchor and cytoplasmic tail and containing a carboxyl-terminal retention signal for the endoplasmic reticulum (ER). F-KDEL was defective for transport to the cell surface and could down-regulate surface expression of HPIV3 HN and heterologous HN/H proteins from simian virus 5, Sendai virus, and measles virus in coexpression experiments. HN/H down-regulation appeared to result, in part, from an early block to HPIV3 HN synthesis, as well as an instability of the heterologous HN/H proteins within the ER. In contrast, coexpression of F-KDEL with HPIV3 wild-type F or the heterologous receptor-binding proteins, respiratory syncytial virus glycoprotein (G) and vesicular stomatitis virus glycoprotein (G), were not affected in transport to the cell surface. Together, these results support the notion that the reported serotype-specific restriction of syncytium formation may involve, in part, down-regulation of heterologous HN expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号