共查询到20条相似文献,搜索用时 15 毫秒
1.
Pseudomonas aeruginosa is an opportunistic pathogen that contributes to the mortality of immunocompromised individuals and patients with cystic fibrosis. Pseudomonas infection presents clinical challenges due to its ability to form biofilms and modulate host-pathogen interactions through the secretion of virulence factors. The calcium-regulated alkaline protease (AP), a member of the repeats in toxin (RTX) family of proteins, is implicated in multiple modes of infection. A series of full-length and truncation mutants were purified for structural and functional studies to evaluate the role of Ca(2+) in AP folding and activation. We find that Ca(2+) binding induces RTX folding, which serves to chaperone the folding of the protease domain. Subsequent association of the RTX domain with an N-terminal α-helix stabilizes AP. These results provide a basis for the Ca(2+)-mediated regulation of AP and suggest mechanisms by which Ca(2+) regulates the RTX family of virulence factors. 相似文献
2.
Nutritional factors controlling exocellular protease production by Pseudomonas aeruginosa. 总被引:8,自引:4,他引:8
下载免费PDF全文

A defined medium capable of supporting growth and exocellular protease production by clinical isolates of Pseudomonas aeruginosa has been developed. Control of protease production is effected by a mixture of three amino acids and glucose. 相似文献
3.
Caballero AR Moreau JM Engel LS Marquart ME Hill JM O'Callaghan RJ 《Analytical biochemistry》2001,290(2):330-337
Pseudomonas aeruginosa secretes multiple proteases that have been implicated as virulence factors and the detection of each specific enzyme can be difficult to determine. Unlike the three Pseudomonas enzymes that have been well characterized (elastase A, elastase B, and alkaline protease), the activity of protease IV in multiple assays has yet to be described. This study defines new assays for Pseudomonas proteases and compares protease IV activity to the activities of elastase A, elastase B, and alkaline protease. Six in vitro assays were studied: zymography, elastin congo red assay, staphylolytic assay, colorimetric peptide assay, solid-phase colorimetric peptide assay, and poly-l-lysine degradation. Casein zymography distinguished protease IV from elastase B and alkaline protease, and gelatin zymography differentiated all four proteases. The elastin congo red assay detected mainly elastase B while the staphylolytic assay was specific for elastase A. Protease IV activity was assayed specifically by the colorimetric assay and two new assays, the solid-phase colorimetric assay and degradation of poly-L-lysine in the presence of EDTA. Alkaline protease could be specifically assayed by poly-L-lysine degradation in the presence of N-alpha-p-tosyl-L-lysine chloromethyl ketone. The results identified three specific assays for protease IV, a new assay specific for alkaline protease, and showed that protease IV has a distinct enzymatic specificity relative to the three other Pseudomonas proteases. 相似文献
4.
A Bayoudh N Gharsallah M Chamkha A Dhouib S Ammar M Nasri 《Journal of industrial microbiology & biotechnology》2000,24(4):291-295
An alkaline protease produced by Pseudomonas aeruginosa MN1, isolated from an alkaline tannery waste water, was purified and characterized. The enzyme was purified 25-fold by gel
filtration and ion exchange chromatography to a specific activity of 82350 U mg−1. The molecular weight of the enzyme was estimated to be 32000 daltons. The optimum pH and temperature for the proteolytic
activity were pH 8.00 and 60°C, respectively. Enzyme activity was inhibited by EDTA suggesting that the preparation contains
a metalloprotease. Enzyme activity was strongly inhibited by Zn2+, Cu2+ and Hg2+(5 mM), while Ca2+ and Mn2+ resulted in partial inhibition. The enzyme is different from other Pseudomonas aeruginosa alkaline proteases in its stability at high temperature; it retained more than 90% and 66% of the initial activity after
15 and 120 min incubation at 60°C. Journal of Industrial Microbiology & Biotechnology (2000) 24, 291–295.
Received 09 June 1999/ Accepted in revised form 24 January 2000 相似文献
5.
Antigenic specificities of Pseudomonas aeruginosa alkaline protease and elastase defined by human T cell clones 总被引:5,自引:0,他引:5
Virulent strains of Pseudomonas aeruginosa derive their pathogenicity, in part, from their secretion of two proteolytic enzymes, alkaline protease (AP) and elastase (E). Human T lymphocytes specific for AP and E can be detected in the blood of immune donors and have afforded the opportunity to characterize the antigenicity of these proteins. To accomplish this goal, we have recently selected 68 human T cell clones from five different Pseudomonas-immune donors and determined their fine specificities. Fifty-five (81%) were found to be protease specific, demonstrating the immunogenicity of the exoenzymes in humans. These clones defined five AP and three E specificities and suggested the existence of at least five allomorphic determinants expressed on the proteases of various Pseudomonas strains. Limiting dilution analysis confirmed a number of antigenic relationships suggested by the long-term T cell clones and revealed that T cells specific for allomorphic protease determinants were at least as frequent in the blood of immune donors as were T cells committed to conserved determinants. Thus, both primary and long-term human T cell clones showed specificity patterns that distinguished proteases from different Pseudomonas strains. These observations describe a heretofore unknown antigenic system of Pseudomonas aeruginosa that should assist in defining the nature and specificity of Pseudomonas immunity in humans. 相似文献
6.
Pseudomonas aeruginosa alkaline protease: evidence for secretion genes and study of secretion mechanism. 总被引:4,自引:1,他引:4
下载免费PDF全文

A 6.5-kb DNA fragment carrying the functions required for specific secretion of the extracellular alkaline protease produced by Pseudomonas aeruginosa was cloned. The whole 6.5-kb DNA fragment was transcribed in one direction and probably carried three genes involved in secretion. The expression in trans of these genes, together with the apr gene, in Escherichia coli allowed synthesis and secretion of the alkaline protease, which was extensively investigated by performing pulse-chase experiments under various conditions. We demonstrated the absence of a precursor form, as well as the independence of alkaline protease translocation from SecA. The absence of secretion genes impaired alkaline protease secretion; the protein then remained intracellular and was partially degraded. 相似文献
7.
Of 200 water isolates screened, five strains of Pseudomonas fluorescens and one strain of Pseudomonas aeruginosa were cyanogenic. Maximum cyanogenesis by two strains of P. fluorescens in a defined growth medium occurred at 25 to 30 degrees C over a pH range of 6.6 to 8.9. Cyanide production per cell was optimum at 300 mM phosphate. A linear relationship was observed between cyanogenesis and the log of iron concentration over a range of 3 to 300 microM. The maximum rate of cyanide production occurred during the transition from exponential to stationary growth phase. Radioactive tracer experiments with [1-14C]glycine and [2-14C]glycine demonstrated that the cyanide carbon originates from the number 2 carbon of glycine for both P. fluorescens and P. aeruginosa. Cyanide production was not observed in raw industrial wastewater or in sterile wastewater inoculated with pure cultures of cyanogenic Pseudomonas strains. Cyanide was produced when wastewater was amended by the addition of components of the defined growth medium. 相似文献
8.
Laarman AJ Bardoel BW Ruyken M Fernie J Milder FJ van Strijp JA Rooijakkers SH 《Journal of immunology (Baltimore, Md. : 1950)》2012,188(1):386-393
The complement system rapidly detects and kills Gram-negative bacteria and supports bacterial killing by phagocytes. However, bacterial pathogens exploit several strategies to evade detection by the complement system. The alkaline protease (AprA) of Pseudomonas aeruginosa has been associated with bacterial virulence and is known to interfere with complement-mediated lysis of erythrocytes, but its exact role in bacterial complement escape is unknown. In this study, we analyzed how AprA interferes with complement activation and whether it could block complement-dependent neutrophil functions. We found that AprA potently blocked phagocytosis and killing of Pseudomonas by human neutrophils. Furthermore, AprA inhibited opsonization of bacteria with C3b and the formation of the chemotactic agent C5a. AprA specifically blocked C3b deposition via the classical and lectin pathways, whereas the alternative pathway was not affected. Serum degradation assays revealed that AprA degrades both human C1s and C2. However, repletion assays demonstrated that the mechanism of action for complement inhibition is cleavage of C2. In summary, we showed that P. aeruginosa AprA interferes with classical and lectin pathway-mediated complement activation via cleavage of C2. 相似文献
9.
Cloning of the Pseudomonas aeruginosa alkaline protease gene and secretion of the protease into the medium by Escherichia coli. 总被引:5,自引:2,他引:5
下载免费PDF全文

Pseudomonas virulence is thought to depend on multiple characteristics, including the production of an extracellular alkaline protease. We report the isolation, from a PAO1 DNA genomic bank, of a cosmid carrying the structural gene coding for alkaline protease. By in vivo mutagenesis using transposon Tn1735, which functions as a transposable promoter, the expression of an 8.8-kilobase DNA fragment under control the tac promoter was obtained. When expressed in Escherichia coli, active alkaline protease was synthesized and secreted to the extracellular medium in the absence of cell lysis. 相似文献
10.
Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials 总被引:6,自引:0,他引:6
This study was aimed at the development of economical methods for higher yields of biosurfactant by suggesting the use of low-cost raw materials. Two oil-degrading strains, Pseudomonas aeruginosa GS9-119 and DS10-129, were used to optimize a substrate for maximum rhamnolipid production. Among the two strains, the latter produced maxima of 4.31, 2.98, and 1.77 g/L rhamnolipid biosurfactant using soybean oil, safflower oil, and glycerol, respectively. The yield of biosurfactant steadily increased even after the bacterial cultures reached the stationary phase of growth. Characterization of rhamnolipids using mass spectrometry revealed the presence of dirhamnolipids (Rha-Rha-C(10)-C(10)). Emulsification activity of the rhamnolipid biosurfactant produced by P. aeruginosa DS10-129 was greater than 70% using all the hydrocarbons tested, including xylene, benzene, hexane, crude oil, kerosene, gasoline, and diesel. P. aeruginosa GS9-119 emulsified only hexane and kerosene to that level. 相似文献
11.
12.
Animal fleshing (ANFL), the major proteinaceous solid waste discharged from leather manufacturing industries was used as the substrate for the production of alkaline protease by Pseudomonas aeruginosa. The strain isolated from the tannery wastewater was selected for its ability to produce protease of activity in the range 1160-1175 U ml(-1). The selective removal of non-fibrillar proteins such as albumin and globulin from ANFL by the protease enzyme during the progress of hydrolysis was confirmed using scanning electron microscopy (SEM). The breakdown of ANFL was also confirmed from the amino acid release into the fermentation medium by P. aeruginosa using high performance liquid chromatography (HPLC). 相似文献
13.
Of 200 water isolates screened, five strains of Pseudomonas fluorescens and one strain of Pseudomonas aeruginosa were cyanogenic. Maximum cyanogenesis by two strains of P. fluorescens in a defined growth medium occurred at 25 to 30 degrees C over a pH range of 6.6 to 8.9. Cyanide production per cell was optimum at 300 mM phosphate. A linear relationship was observed between cyanogenesis and the log of iron concentration over a range of 3 to 300 microM. The maximum rate of cyanide production occurred during the transition from exponential to stationary growth phase. Radioactive tracer experiments with [1-14C]glycine and [2-14C]glycine demonstrated that the cyanide carbon originates from the number 2 carbon of glycine for both P. fluorescens and P. aeruginosa. Cyanide production was not observed in raw industrial wastewater or in sterile wastewater inoculated with pure cultures of cyanogenic Pseudomonas strains. Cyanide was produced when wastewater was amended by the addition of components of the defined growth medium. 相似文献
14.
Formation of hemolysin by strains of Pseudomonas aeruginosa 总被引:1,自引:0,他引:1
R A Altenbern 《Canadian journal of microbiology》1966,12(2):231-241
15.
16.
E Meitert A M Petrescu A Butoianu 《Archives roumaines de pathologie expérimentales et de microbiologie》1990,49(1):37-42
Serological typing of Pseudomonas aeruginosa strains (228 strains) by slide coagglutination, using our own reagents (5 polyvalent and 22 monovalent ones, corresponding to the 22 serotypes in Meitert-Meitert scheme), led to identical results obtained by conventional slide agglutination. Utilization of live Ps. aeruginosa cells suspensions, killed by boiling or autoclaving, showed a 100% concordance of results, when using the second and the third suspension types and a 97.37% one between them and the live cells suspension. We noticed that reactions intensity was higher when using bacterial suspensions, boiled for 2.5 hours, in comparison with autoclaved cells suspensions, 30 minutes at 120 C. Compared to conventional slide agglutination, the slide coagglutination presents more advantages, being simple, rapid, specific and economical. 相似文献
17.
18.
Dextrose enhanced the growth of P. aeruginosa but suppressed the biosynthesis of pyocyanine. The preformed pigment could be released from dead cells. Pigmentation was not correlated directly with number of viable organisms in the culture. High concentration of maltose likewise inhibited pyocyanine production. Maltose contained in medium used for pyocyanine production by P. aeruginosa should be kept in low concentration or omitted. 相似文献
19.
Khan S Misra AK Tripathi CK Mishra BN Bihari V 《Indian journal of experimental biology》2006,44(2):151-156
Optimization of the fermentation medium for maximum alkaline protease production was carried out with a new strain of Pseudomonas aeruginosa (B-2). Replacing the protein source/inducer (albumin in place of casein) brought about significant increase in yield after 48 hr of inoculation. Three most effective medium constituents identified by initial screening method of Plackett-Burman were albumin, (NH4)2SO4 and glucose. Central Composite Design (CCD) and Response Surface Methodology (RSM) were used in the design of the experiment and in the analysis of the results. Optimum levels of the effective medium constituents were albumin (6.586%); (NH4)2SO4, 0.164%; and glucose, 6.72%. The alkaline protease production increased from 533460 to 793492 Ul(-1). 相似文献
20.