首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tissue-specific patterns and levels of protein expression were characterized in transgenic carrot plants transformed with the β-glucuronidase (GUS) gene driven by one of five promoters: Cauliflower mosaic virus 35S (35S) and double 35S (D35S), Arabidopsis ubiquitin (UBQ3), mannopine synthase (mas2) from Agrobacterium tumefaciens or the rooting loci promoter (rolD) from A. rhizogenes. Five independently transformed carrot lines of each promoter construct were assessed for GUS activity. In leaves, activity was highest in plants with the D35S, 35S and UBQ3 promoters, while staining was weak in plants with the mas2 promoter, and only slight visual staining was present in the leaf veins of plants containing rolD promoter . Strong staining was seen in the lateral roots, including root tips, hairs and the vascular tissues of plants expressing the 35S, D35S and UBQ3. Lateral roots of plants containing the rolD construct also showed staining in these tissues while the mas2 promoter exhibited heightened staining in the root tips. Relatively strong GUS staining was seen throughout the tap root with all the promoters tested.. When GUS expression was quantified, the UBQ3 promoter provided the highest activity in roots of mature plants, while plants with the D35S and 35S promoter constructs had higher activity in the leaves. Although plants containing the mas2 promoter had higher levels of activity compared to the rolD plants, these two promoters were significantly weaker than D35S, 35S and UBQ3. The potential for utilization of specific promoters to target expression of desired transgenes in carrot tissues is demonstrated.  相似文献   

2.
3.
4.
The pattern and expression level of β-glucuronidase (gus) reporter gene regulated by six heterologous promoters were studied in transgenic Populus tremula × P. alba plants obtained by Agrobacterium-mediated transformation. Binary vector constructs used contained the following promoter sequences: the CaMV35S from cauliflower mosaic virus; its duplicated version fused to the enhancer sequence from alfalfa mosaic virus; CsVMV from cassava vein mosaic virus; ubiquitin 3 from Arabidopsis thaliana (UBQ3); S-adenosyl-L-methionine synthetase (Sam-s) from soybean; and the rolA from Agrobacterium rhizogenes. Histochemical staining of root, stem and leaf tissues showed phloem and xylem-specific gus expression under rolA promoter, and constitutive expression with the other putative constitutive promoters. Quantitative GUS expression of 10 – 15 independently transformed in vitro grown plants, containing each promoter, was determined by fluorimetric GUS assays. The UBQ3-gus fusion induced the highest average expression level, although an extensive variation in expression levels was observed between independent transgenic lines for all the constructs tested.  相似文献   

5.
We compared the organ specificity and the strength of different constitutive (CaMV-35S, CaMV-35Somega, Arabidopsis ubiquitin UBQ1, and barley leaf thionin BTH6 promoter) and one inducible promoter (soybean heat-shock promoter Gmshp17.3) in stably transformed Arabidopsis thaliana plants. For this purpose we constructed a set of plant expression vectors equipped with the different promoters. Using the uidA reporter gene we could show that the CaMV-35S promoter has the highest expression level which was enhanced two-to threefold by the addition of a translational enhancer (TMV omega element) without altering the organ specificity of the promoter. The barley leaf thionin promoter was almost inactive in the majority of lines whereas the ubiquitin promoter exhibited an intermediate strength. The heat-shock promoter was inducible up to 18-fold but absolute levels were lower than in the case of the ubiquitin promoter. Conclusive quantitative results for different organs and developmental stages were obtained by the analysis of 24 stably transformed lines per promoter construct.  相似文献   

6.
The ability of the heterologous promoters, rolCP and CoYMVP, to drive expression of the gusA reporter gene in the vegetative tissues of apple (Malus pumila Mill.) has been studied using transgenic plants produced by Agrobacterium-mediated transformation. Replicate plants of each transgenic clone were propagated in soil to a uniform size and samples of leaf, petiole, stem, and root were taken for the measurement of -glucuronidase (GUS) activity by fluorometric assay. The levels of expression were compared with those in tissues of a representative clone containing the CaMV 35S promoter. These quantitative GUS data were related to the copy number of transgene loci assessed by Southern blotting. The CoYMV promoter was slightly more active than the rolC promoter, although both expressed gusA at a lower level than the CaMV 35S promoter. In clones containing the rolC promoter with multiple transgene loci, expression values were generally among the highest or lowest in the range. The precise location of GUS activity in each tissue was identified by staining of whole leaves and tissue sections with a chromogenic substrate. This analysis demonstrated that with both the rolC and CoYMV promoters the reporter gene activity was primarily localised to vascular tissues, particularly the phloem. Our results indicate that both promoters would be suitable to drive the expression of transgenes to combat pests and diseases of apple that are dependent on interaction with the phloem.  相似文献   

7.
Transgenic Casuarinaceae and reporter genes provide valuable tools to study gene expression in transgenic actinorhizal nodules. In this paper, we discuss the use of ß-glucuronidase for the histochemical localization and quantification of gene expression in transgenic plants of Allocasuarina verticillata and Casuarina glauca nodulated by the actinomycete Frankia. We also report on the genetic transformation of A. verticillata by the Agrobacterium tumefaciens strain C58C1(pGV2260) containing the 35S-mgfp5-ER construct encoding a modified green fluorescent protein of Aequorea victoria in a binary vector. The evolution of the GFP fluorescence was monitored through all stages of the regeneration process. The data indicate that GFP is not toxic in Casuarinaceae and that this reporter gene can be used for visual screening of transformed calli and transgenic plants. The fluorescence pattern of gfp provides a new tool for monitoring in vivo transgene expression in actinorhizal plants.  相似文献   

8.
Male-sterile lines were generated in oilseed mustard (Brassica juncea) with a cytotoxic gene (barnase) in conjunction with either of two tapetum-specific promoters, TA29 and A9. Several transformation vectors based on different promoter and marker gene combinations were developed and tested for their efficacy in generating agronomically viable male-sterile lines. Use of strong constitutive promoters (e.g. CaMV 35S or its double-enhancer variant) to express the marker gene (bar) in barnase constructs generated male-sterile plants at an extremely low frequency with most plants showing abnormalities in vegetative morphology, poor female fertility, low seed germination frequencies and/or distortion in segregation ratios of transgenes. Such abnormalities were considerably reduced on using weaker promoters (e.g. nos) to drive the marker gene (nptII) in barnase constructs and could therefore be attributed to leaky expression of the barnase gene under enhancing effects of strong constitutive promoters. We show that the use of a Spacer DNA fragment between the barnase gene (driven by a tapetum-specific promoter) and the CaMV 35S promoter-driven bar gene insulates tissue-specific expression of the barnase gene over all developmental stages of transgenic plants and significantly enhances recovery of agronomically viable male-sterile lines. All TA29-barnase male-sterile lines containing the Spacer DNA fragment exhibited normal morphology, growth and seed set on backcrossing as observed for wild-type plants. Around 75% of single-copy events tested further also showed proper segregation of the marker gene/male-sterile phenotype among backcross progeny. Constructs based on the use of Spacer DNA fragments as insulators could be successfully used to alleviate limitations associated with transformation of plant systems using cytotoxic genes for development of agronomically viable male-sterile lines in crop plants and for cell/tissue ablation studies in general.  相似文献   

9.
The success of plant genetic transformation relies greatly on the strength and specificity of the promoters used to drive genes of interest. In this study, we analyzed gfp gene expression mediated by a polyubiquitin promoter (Gmubi) from soybean (Glycine max) in stably transformed soybean tissues. Strong GFP expression was observed in stably transformed proliferative embryogenic tissues. In whole transgenic plants, GFP expression was observed in root tips, main and lateral roots, cotyledons and plumules in young plants as well as in leaf veins, petioles, flower petals, pollen, pods and developing seeds in mature plants. GFP expression was localized mainly in epidermal cells, leaf mesophyll, procambium and vascular tissues. Introduction of an intron-less version of the Gmubi promoter (Gmupri) displayed almost the same GFP expression pattern albeit at lower intensities. The Gmubi promoter showed high levels of constitutive expression and represents an alternative to viral promoters for driving gene expression in soybean.  相似文献   

10.
Ectopic overexpression of an oat PHYA cDNA in tobacco under the cauliflower mosaic virus 35S promoter results in plants with reduced morphological responses to far-red radiation (FR). We have tested the hypothesis that it is possible to molecularly ‘mask’ steins and leaves to FR-induced elongation and senescence responses by targeting the over-expression of PHYA with appropriate promoters. Oat PHYA was expressed in tobacco (Nicotiana tabacum L. cv Xanthi) under the 35S and two Arabidopsis promoters: UBQ1 and CAB. The internodes of wild type, UBQ:PHYA, and CAB:PHYA plants, which exhibited little or no oat PHYA overexpression, responded to localized FR treatments with a marked increase in elongation. In contrast, 35S:PHYA plants, which overexpressed PHYA to high levels in all parts of the shoot, did not respond to FR treatments directed to their stems. Leaf senescence responses to FR were remarkably localized, and sensitivity to FR was also inversely correlated with the local PHYA expression level. Thus, chlorophyll content, specific leaf weight, and nitrate reductase activity in leaf spots treated with FR were highly reduced in wild type and UBQ:PHYA plants, but not in the CAB:PHYA and 35S:PHYA counterparts. Our results suggest that it may be feasible to obtain transgenic crop plants in which certain organs or tissues are made ‘blind’ to phytochrome-perceived signals of canopy density, but whose general photomorphogenic competence is not greatly disturbed.  相似文献   

11.
Kamo KK 《Plant cell reports》2003,21(8):797-803
UidA silencing did not occur following three seasons of dormancy for 23 independently transformed lines of Gladiolus plants carrying the bar- uidA fusion gene under control of either the cauliflower mosaic virus 35S (CaMV 35S), ubiquitin ( UBQ3), mannopine synthase ( mas2), or rolD promoters. The highest levels of GUS (beta-glucuronidase) expression were observed in callus, shoots, and roots of plants carrying the bar- uidA fusion gene under control of the CaMV 35S promoter and in shoots and roots of greenhouse-grown plants that contained the rolD promoter. There was no major difference in GUS expression when plants carrying the fusion gene driven by either the CaMV 35S, mas2, or UBQ3 promoters were grown in vitro as compared to growth in the greenhouse, although plants containing the rolD promoter expressed at 4- to 11-fold higher levels in shoots and roots, respectively, when grown in the greenhouse. The levels of GUS expression in greenhouse-grown plants were higher in roots than shoots for all four promoters. Of the 21 plants analyzed, 20 contained one to three copies of the bar- uidA fusion gene. Of the 23 plants analyzed, 11 had rearrangements of the transgene, but without apparent effects on levels of GUS expression.  相似文献   

12.
Two putative promoters from Australian banana streak badnavirus (BSV) isolates were analysed for activity in different plant species. In transient expression systems the My (2105 bp) and Cv (1322 bp) fragments were both shown to have promoter activity in a wide range of plant species including monocots (maize, barley, banana, millet, wheat, sorghum), dicots (tobacco, canola, sunflower, Nicotiana benthamiana, tipu tree), gymnosperm (Pinus radiata) and fern (Nephrolepis cordifolia). Evaluation of the My and Cv promoters in transgenic sugarcane, banana and tobacco plants demonstrated that these promoters could drive high-level expression of either the green fluorescent protein (GFP) or the -glucuronidase (GUS) reporter gene (uidA) in vegetative plant cells. In transgenic sugarcane plants harbouring the Cv promoter, GFP expression levels were comparable or higher (up to 1.06% of total soluble leaf protein as GFP) than those of plants containing the maize ubiquitin promoter (up to 0.34% of total soluble leaf protein). GUS activities in transgenic in vitro-grown banana plants containing the My promoter were up to seven-fold stronger in leaf tissue and up to four-fold stronger in root and corm tissue than in plants harbouring the maize ubiquitin promoter. The Cv promoter showed activities that were similar to the maize ubiquitin promoter in in vitro-grown banana plants, but was significantly reduced in larger glasshouse-grown plants. In transgenic in vitro-grown tobacco plants, the My promoter reached activities close to those of the 35S promoter of cauliflower mosaic virus (CaMV), while the Cv promoter was about half as active as the CaMV 35S promoter. The BSV promoters for pregenomic RNA represent useful tools for the high-level expression of foreign genes in transgenic monocots.  相似文献   

13.
Arabidopsis CYP51A2 (AtCYP51A2) mediates the sterol 14α-demethylation step inde novo sterol biosynthesis, and is constitutively and highly expressed in all plant tissues (Kim et al., 2005). We exploited the molecular features of its expression and the fundamental role of sterol biosynthesis in cells to develop a plant-derived promoter. Our GUS expression analysis between transgenicArabidopsis lines forAtCYP51A2::GUS and35S::GUS revealed that activity of theAtCYP51A2 promoter was comparable to that of the35S promoter, based on enzymatic activities and protein levels. TheAtCYP51A2 promoter was also constitutively active in transgenic tobacco, indicating that 5′ regulatory elements could be conserved amongCYP51 promoters in dicot plants. A homologue ofAtCYP51A2 was identified from rape seed, a crop species closely related toArabidopsis. Its constitutive tissue expression pattern implies that the application of thisAtCYP51A2 promoter is possible for that species. Based on these results, we present a new binary vector system with the plant-derivedAtCYP51A2 promoter, which is able to constitutively and ectopically drive a transgene in various dicotyledonous plants. These two authors are equally contributed to this work.  相似文献   

14.
Strong constitutive promoters, such as CaMV35S, are widely used for plant transformation, but undesirable phenotypic changes have been reported when used to drive biotic stress tolerance and/or for modifying lignin content. The promoter of the eucalyptus cinnamoyl CoA reductase (CCR), a key enzyme of the lignin biosynthetic pathway, was shown to be preferentially expressed in vascular tissues both in herbaceous and woody transgenic plants but not eucalyptus. In this work, we transformed Eucalyptus globulus with the EgCCR promoter governing both β-glucuronidase (GUS) and GFP activity patterns. No statistical differences were found between the survival rate and percentage of GUS positive shoots between eucalyptus transformed with either the constitutive CaMV35S or with the EgCCR promoter. The EgCCR transformed plantlets exhibited high GUS expression levels associated with the vascular tissues opening the possibility of targeting vascular-associated traits such as lignin content or vascular pathogen resistance in adult elite plants of eucalyptus while avoiding the undesirable pleiotropic effects caused by strong constitutive promoters.  相似文献   

15.
16.
The octopine synthase (ocs or ocs-like) element has been previously reported to be responsive to the plant hormones, auxin, salicylic acid, and methyl jasmonate. Using transient assays with carrot protoplasts, we have demonstrated that an ocs element from the soybean auxin-inducible GH2/4 promoter is not only activated by strong auxins (i.e, 2,4-dichlorophenoxyacetic acid, 2,4,5-trichlorophenoxyacetic acid, -naphthalene acetic acid) and salicylic acid, but also by weak auxin analogues (-naphthalene acetic acid), inactive auxin analogs (i.e., 2,3-dichlorophenoxyacetic acid, 2,4,6-trichlorophenoxyacetic acid), and inactive salicylic acid analogs (3-hydroxybenzoic acid and 4-hydroxybenzoic acid). Our results indicate that the ocs element in the GH2/4 promoter is not selectively induced by plant hormones and might function similarly to tandem AP-1 sites in some animal glutathione S-transferase (GST) genes. The ocs element, like the AP-1 sites in animal GST promoters, may be induced not only by certain hormones but also by some non-hormonal stress-inducing or electrophilic agents.Abbreviations GST glutathione S-transferase - MUG 4-methyl-umbelliferyl-glucuronide - GUS -glucuronidase - 2,4-D 2,4-dichlorophenoxyacetic acid - 2,3-D 2,3-dichlorophenoxyacetic acid - 2,4,5-T 2,4,5-trichlorophenoxyacetic acid - 2,4,6-T 2,4,6-trichlorophenoxyacetic acid - NAA naphthalene acetic acid - SA salicylic acid - SARE putative salicylic acid-responsive element - BA benzoic acid - UTR untranslated region - nos nopaline synthase - ocs octopine synthase - mas mannopine synthase - ocs element-(–)46 CaMV 35S promoter-GUS reporter gene: the ocs element fused to a minimal –46 cauliflower mosaic virus 35S promoter fused to a GUS reporter gene with a 3 nos untranslated region  相似文献   

17.
18.
The cauliflower mosaic virus 35S (35S) and the enhanced 35S (E35S) promoters fused with maize alcohol dehydrogenase (Adh1) intron1 or maize shrunken locus (sh1) intronl along with maize Adh1 and rice actin (Act1) promoters fused to their respective first introns were tested for transient expression of the E.coli -glucuronidase (gus) reporter gene in cultured barley (Hordeum vulgare L) cells. The plasmids, carrying the respective promoterintron combinations to drive the gus fused to nopaline synthase (nos) terminator, were introduced into cultured barley cells using a particle gun. The rice Act1 promoter with its first intron gave the highest expression of all promoter intron combinations studied. This was followed by the E35S promoter and no significant differences were observed between the other two promoters tested. The rice actin promoter is now being used to drive selectable marker genes to obtain stably transformed cereal cells.NRCC No. 36482  相似文献   

19.
In recent years, RNA interference has been exploited as a tool for investigating gene function in plants. We tested the potential of double-stranded RNA interference technology for silencing a transgene in the actinorhizal tree Allocasuarina verticillata. The approach was undertaken using stably transformed shoots expressing the beta-glucuronidase (GUS) gene under the control of the constitutive promoter 35S; the shoots were further transformed with the Agrobacterium rhizogenes A4RS containing hairpin RNA (hpRNA) directed toward the GUS gene, and driven by the 35S promoter. The silencing and control vectors contained the reporter gene of the green fluorescent protein (GFP), thus allowing a screening of GUS-silenced composite plantlets for autofluorescence. With this rapid procedure, histochemical data established that the reporter gene was strongly silenced in both fluorescent roots and actinorhizal nodules. Fluorometric data further established that the level of GUS silencing was usually greater than 90% in the hairy roots containing the hairpin GUS sequences. We found that the silencing process of the reporter gene did not spread to the aerial part of the composite A. verticillata plants. Real-time quantitative polymerase chain reaction showed that GUS mRNAs were substantially reduced in roots and, thereby, confirmed the knock-down of the GUS transgene in the GFP(+) hairy roots. The approach described here will provide a versatile tool for the rapid assessment of symbiotically related host genes in actinorhizal plants of the Casuarinaceae family.  相似文献   

20.
cgMT1 is a metallothionein (MT)-like gene that was isolated from a cDNA library of young nitrogen-fixing nodules resulting from the symbiotic interaction between Frankia spp. and the actinorhizal tree Casuarina glauca. cgMT1 is highly transcribed in the lateral roots and nitrogen-fixing cells of actinorhizal nodules; it encodes a class I type 1 MT. To obtain insight into the function of cgMT1, we studied factors regulating the expression of the MT promoter region (PcgMT1) using a beta-glucuronidase (gus) fusion approach in transgenic plants of Arabidopsis thaliana. We found that copper, zinc, and cadmium ions had no significant effect on the regulation of PcgMT1-gus expression whereas wounding and H2O2 treatments led to an increase in reporter gene activity in transgenic leaves. Strong PcgMT1-gus expression also was observed when transgenic plants were inoculated with a virulent strain of the bacterial pathogen Xanthomonas campestris pv. campestris. Transgenic Arabidopsis plants expressing cgMT1 under the control of the constitutive 35S promoter were characterized by reduced accumulation of H2O2 when leaves were wounded and by increased susceptibility to the bacterial pathogen X. campestris. These results suggest that cgMT1 could play a role during the oxidative response linked to biotic and abiotic stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号