首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Marco HG  Stoeva S  Voelter W  Gäde G 《Peptides》2000,21(9):1313-1321
We have isolated a peptide from extracts of sinus glands from a South African spiny lobster species, Jasus lalandii, by high-performance liquid chromatography (HPLC) and identified it as a putative molt-inhibiting hormone (MIH) by (i) an in vitro assay with J. lalandii Y-organs to measure the inhibition of ecdysteroid synthesis and (ii) an immunoassay using antiserum raised against MIH of the edible crab. The MIH of J. lalandii has 74 amino acid residues, a molecular mass of 9006 Da, a free N-terminus and an amidated C-terminus. The full primary sequence has been obtained from sequencing various digest fragments (tryptic, endoproteinase Asp-N, cyanogen bromide) of the unreduced (native) peptide: RFTFDCPGMMGQRYLYEQVEQVCDDCYNLYREEKIAVNCRENCFLNSWFTVCLQATMREHETPRFDIWR SIILKA-NH(2). Structural comparisons with other peptides show that the J. lalandii MIH belongs to the peptide family which includes the crustacean hyperglycemic hormone, molt-inhibiting hormone and vitellogenesis-inhibiting hormone (cHH/MIH/VIH). This novel peptide has 36-43% sequence identity to putative MIHs from other decapod crustaceans and 32-34% identity to the two cHH peptides previously identified in this spiny lobster species. This is the first report of a peptide with MIH activity in the Palinuridae infraorder.  相似文献   

2.
3.
4.
The neuro-endocrine X-organ sinus-gland complex of crustaceans produces and releases the neuropeptides of the crustacean hyperglycemic hormone (cHH)/molt-inhibiting hormone (MIH)/gonad-inhibiting hormone (GIH) family that regulate important physiological processes, such as growth, reproduction and molting. We cloned two full-length cDNAs encoding the preprocHH-A and preprocHH-B of the Norway lobster Nephrops norvegicus of 132 and 131 amino acid residues. The two cHHs differ in the preprohormone but not in the mature peptide sequence. The mature cHH was expressed in bacteria as GST fusion protein that, in bioassay, shows a hyperglycemic activity similar to that of native cHH present in an eyestalk extract.  相似文献   

5.
6.
7.
Crustacean hyperglycemic hormone (CHH), molt-inhibiting hormone (MIH), and gonad-inhibiting hormone (GIH) are members of a major peptide family produced from the X-organ sinus gland complex in the eyestalk of crustaceans. This peptide family plays important roles in controlling several physiologic processes such as regulation of growth and reproduction. In this study the complementary DNA encoding a peptide related to the CHH/MIH/GIH family (so-called Pem-CMG) of the black tiger prawn Penaeus monodon was successfully expressed in the yeast Pichia pastoris under the control of the AOX1 promoter. The recombinant Pem-CMG was secreted into the culture medium using the -factor signal sequence; of Saccharomyces cerevisiae without the Glu-Ala-Glu-Ala spacer peptide. The amino terminus of the recombinant Pem-CMG was correctly processed as evidenced by amino-terminal peptide sequencing. The recombinant Pem-CMG was purified by reverse-phase high-performance liquid chromotography and used in a biological assay for CHH activity. The final yield of the recombinant Pem-CMG after purification was 260 µg/L of the culture medium. Both crude and purified recombinant Pem-CMG produced from P. pastoris showed the ability to elevate the glucose level in the hemolymph of eyestalk-ablated P. monodon, which demonstrates that Pem-CMG peptide functions as hyperglycemic hormone in P. monodon.  相似文献   

8.
The CHH/MIH/GIH peptide family of black tiger prawn (Paneaus monodon) is important in shrimp reproduction and growth enhancement. In this study, the cDNA that encodes the complete peptide that is related to the CHH/MIH/GIH family (so-called, Pem-CMG) in the eyestalk of P. monodon was successfully expressed in a methylotrophic yeast Pichia pastoris under the control of an alcohol oxidase promoter. In order to obtain the secreted Pem-CMG, a secretion signal of either the Saccharomyces cerevisiae alpha-factor or Pem-CMG was employed. The results demonstrated that alphaPem-CMG, either with (alpha2EACMG) or without (alphaCMG) the Glu-Ala repeats, was secreted into the medium, while Pem-CMG with its own secretion signal failed to be secreted. The total protein amount that was secreted from the transformant that contained either alpha2EACMG or alphaMG was approximately 60 mg/l and 150 mg/l, respectively. The N-terminus of the Pem-CMG peptide of both alpha2EACMG and alphaCMG was correctly processed. This produced the mature Pem-CMG peptide.  相似文献   

9.
The primary structure of the major form of CHH from sinus glands of the crayfish, Orconectes limosus, was determined by manual Edman microsequencing. It is a 72-residue peptide with a calculated Mr of 8400 Da. In the number of residues, it is identical to the CHH of Carcinus maenas and very similar to MIH (moult inhibiting hormone) of Homarus americanus. All three peptides have pGlu as N-terminus in common, and Val-NH2 is the C-terminal residue in Orconectes and Carcinus CHH. Six Cys residues occupy identical position in the three peptides. There is a 61% sequence identity with Carcinus CHH, and an 81% identity with Homarus MIH.  相似文献   

10.
Molt-inhibiting hormone (MIH) negatively regulates the synthesis of ecdysteroid molting hormones by crustacean Y-organs. We report here the expression of blue crab (Callinectes sapidus) MIH in insect cells using recombinant baculovirus. Insect Sf9 cells were transfected with recombinant baculovirus containing a DNA insert encoding the C. sapidus MIH prohormone (signal sequence plus mature hormone). The construct was designed to yield a mature, fully processed recombinant MIH (recMIH). Several baculovirus recombinants showing no contamination with wild-type viral DNA were subsequently analyzed for their ability to direct expression of recMIH. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins from infected cells revealed time-dependent expression of two proteins of approximately the predicted size for the C. sapidus MIH prohormone and mature hormone. Western blot results (using antiserum against MIH of Carcinus maenas) indicated that the proteins were MIH-immunoreactive. N-Terminal amino acid sequence data and mass spectral analysis indicated the expressed proteins were of the correct sequence and molecular mass. Cell lysates containing the recombinant protein dose-dependently suppressed the synthesis of ecdysteroids by Y-organs in vitro. We anticipate the recombinant peptide will prove useful for studies of the structure and function of MIH.  相似文献   

11.
12.
The tentative elucidation of the 3D-structure of vitellogenesis inhibiting hormone (VIH) peptides is conversely underprivileged by difficulties in gaining enough peptide or protein, diffracting crystals, and numerous extra technical aspects. As a result, no structural information is available for VIH peptide sequences registered in the Genbank. In this situation, it is not surprising that predictive methods have achieved great interest. Here, in this study the molt-inhibiting hormone (MIH) of the kuruma prawn (Marsupenaeus japonicus) is used, to predict the structure of four VIHrelated peptides in the crustacean species. The high similarity of the 3D-structures and the calculated physiochemical characteristics of these peptides suggest a common fold for the entire family.  相似文献   

13.
14.
甲壳动物高血糖激素家族生理功能研究进展   总被引:6,自引:1,他引:5  
甲壳动物高血糖激素家族是甲壳动物特有的神经多肽激素家族,主要由眼柄的X-器窦腺复合体(XO-SG)合成与分泌,包括高血糖激素(CHH)、蜕皮抑制激素(MIH)、性腺抑制激素(GIH)和大颚器抑制激素(MOIH),协同调控着甲壳动物的生长、繁殖与蜕皮等生理生化过程.本文就目前CHH家族神经肽的功能研究,包括功能研究的方法、各个激素的功能以及分泌调控等研究进展作一综述.  相似文献   

15.
Crustacean hyperglycemic hormone (CHH) and molt-inhibiting hormone (MIH) have similar amino acid sequences and therefore comprise a peptide family referred to as the CHH family. All MIHs unexceptionally have an additional glycine residue at position 12, which is lacking in all CHHs. In order to understand the relevance of the absence of the glycine residue for hyperglycemic activity, a mutant CHH having a glycine residue insertion was prepared, and its hyperglycemic activity was assessed. This mutant CHH had the same disulfide bond arrangement as the recombinant CHH produced in Escherichia coli cells, and exhibited a similar circular dichroism spectrum to the recombinant CHH, indicating that the two CHHs possessed similar conformations. The mutant CHH showed a hyperglycemic effect weaker than the recombinant CHH by about one order of magnitude. These results suggest that the insertion of a glycine residue is one of the indices for structural and functional divergence of the CHH family peptides.  相似文献   

16.
The crustacean molt-inhibiting hormone (MIH) suppresses ecdysteroid synthesis by the Y-organ. The MIH of the kuruma prawn Penaeus japonicus has recently been isolated and its cDNA cloned. In this study, we expressed the MIH in Escherichia coli to obtain a large quantity of this hormone with biological activity. The MIH cDNA was processed and ligated into an expression plasmid. E. coli was transformed with this plasmid, and then the recombinant MIH (r-MIH) was expressed. The r-MIH was put through the refolding reaction and was purified by reverse-phase HPLC. N-terminal amino acid sequence and time-of-flight mass spectral analyses supported the idea that the r-MIH had the entire sequence. By in vitro bioassay using the Y-organ of the crayfish, the r-MIH was found to be comparable to natural MIH in inhibiting ecdysteroid synthesis.  相似文献   

17.
The crustacean hyperglycemic hormone (CHH) peptide family includes four types of neuropeptide in decapod and isopod crustaceans, and the ion-transport peptide in orthopteran insects. To identify a new member of this family in Insecta, a PCR-based search for cDNAs encoding CHH-family peptides was carried out in the silkworm Bombyx mori. A cDNA, named BmCHHL (Bombyx mori CHH-like protein), with an open reading frame of 110 amino acids was isolated. Sequence analyses suggested that the conceptual protein was a precursor of a peptide of 72 amino acids which was amidated at the carboxy terminus. The BmCHHL sequence exhibited significant similarities to members of the CHH family including the orthopteran ion-transport peptide. BmCHHL expression was detected in five or six cells (per hemisphere) in the frontal area of the brain in day 4 fifth instar larvae.  相似文献   

18.
The crustacean X-organ–sinus gland (XO–SG) complex controls molt-inhibiting hormone (MIH) production, although extra expression sites for MIH have been postulated. Therefore, to explore the expression of MIH and distinguish between the crustacean hyperglycemic hormone (CHH) superfamily, and MIH immunoreactive sites (ir) in the central nervous system (CNS), we cloned a CHH gene sequence for the crab Portunus pelagicus (Ppel-CHH), and compared it with crab CHH-type I and II peptides. Employing multiple sequence alignments and phylogenic analysis, the mature Ppel-CHH peptide exhibited residues common to both CHH-type I and II peptides, and a high degree of identity to the type-I group, but little homology between Ppel-CHH and Ppel-MIH (a type II peptide). This sequence identification then allowed for the use of MIH antisera to further confirm the identity and existence of a MIH-ir 9 kDa protein in all neural organs tested by Western blotting, and through immunohistochemistry, MIH-ir in the XO, optic nerve, neuronal cluster 17 of the supraesophageal ganglion, the ventral nerve cord, and cell cluster 22 of the thoracic ganglion. The presence of MIH protein within such a diversity of sites in the CNS, and external to the XO–SG, raises new questions concerning the established mode of MIH action.  相似文献   

19.
In crustaceans, molt-inhibiting hormone (MIH) is presumed to regulate molting through suppressing synthesis and/or secretion of ecdysteroids by the Y-organ. Recently, a recombinant MIH of the kuruma prawn Penaeus japonicus was produced in E. coli. To approximate the secondary structure of native and recombinant MIH of P. japonicus containing six cysteine residues, the arrangements of disulfide bridges in both MIHs were determined by characterizing their enzymatic digests, and their circular dichroism spectra were measured. The arrangements of disulfide bonds in both MIHs were determined to be identical, and they were linked between Cys7 and Cys44, Cys24 and Cys40, and Cys27 and Cys53. The circular dichroism spectra of both MIHs were very close, and demonstrated that they were rich in a-helix. a-Helix contents in native and recombinant MIHs were calculated to be 49.3% and 46.0%, respectively. All these results strongly suggested that the recombinant MIH was folded in the same manner as the native MIH.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号