首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Macrophage-derived foam cells in atherosclerotic lesions are generally thought to play a major role in the pathology of the disease. Because macrophages play a central role in the inflammatory response, and the atherosclerotic lesion has features associated with chronic inflammatory settings, we investigated foam cell inflammatory potential. THP-1-derived macrophages were treated with oxidized low density lipoprotein (OxLDL) for 3 days to lipid load the macrophages and establish a foam cell-like phenotype. The cells were then activated by treatment with lipopolysaccharide (LPS), and RNA was harvested at 0, 1, and 6 h after LPS addition. RNA from treated and control cells was hybridized to microarrays containing approximately 16,000 human cDNAs. Genes that exhibited a 4-fold or greater increase or decrease at either 1 or 6 h after LPS treatment were counted as LPS-responsive genes. Employing these criteria, 127 LPS-responsive genes were identified. Prior treatment of THP-1 macrophages with OxLDL affected the expression of 57 of these 127 genes. Among these 57 genes was a group of chemokine, cytokine, and signal transduction genes with pronounced expression changes. OxLDL pretreatment resulted in a significant perturbation of LPS-induced NF kappa B activation. Furthermore, some of the OxLDL effects appear to be mediated by the nuclear receptors retinoid X receptor and peroxisomal proliferator-activated receptor gamma because pretreatment of THP-1 macrophages with ligands for these receptors, followed by LPS treatment, recapitulates the OxLDL plus LPS results for several of the most significantly modulated genes.  相似文献   

3.
Acrolein is a highly electrophilic alpha,beta-unsaturated aldehyde present in a number of environmental sources, especially cigarette smoke. It reacts strongly with the thiol groups of cysteine residues by Michael addition and has been reported to inhibit nuclear factor-kappaB (NF-kappaB) activation by lipopolysaccharide (LPS). The mechanism by which it inhibits NF-kappaB is not clear. Toll-like receptors (TLRs) play a key role in sensing microbial components and inducing innate immune responses, and LPS-induced dimerization of TLR4 is required for activation of downstream signaling pathways. Thus, dimerization of TLR4 may be one of the first events involved in activating TLR4-mediated signaling pathways. Stimulation of TLR4 by LPS activates both myeloid differential factor 88 (MyD88)- and TIR domain-containing adapter inducing IFNbeta(TRIF)-dependent signaling pathways leading to activation of NF-kappaB and IFN-regulatory factor 3 (IRF3). Acrolein inhibited NF-kappaB and IRF3 activation by LPS, but it did not inhibit NF-kappaB or IRF3 activation by MyD88, inhibitor kappaB kinase (IKK)beta, TRIF, or TNF-receptor-associated factor family member-associated NF-kappaB activator (TANK)-binding kinase 1 (TBK1). Acrolein inhibited LPS-induced dimerization of TLR4, which resulted in the down-regulation of NF-kappaB and IRF3 activation. These results suggest that activation of TLRs and subsequent immune/inflammatory responses induced by endogenous molecules or chronic infection can be modulated by certain chemicals with a structural motif that enables Michael addition.  相似文献   

4.
5.
6.
7.
Toll-like receptor 4 (TLR4) is unique among the TLRs in its use of multiple adaptor proteins leading to activation of both the interferon regulatory factor 3 (IRF3) and nuclear factor κB (NF-κB) pathways. Previous work has demonstrated that TLR4 initiates NF-κB activation from the plasma membrane, but that subsequent TLR4 translocation to the endosomes is required for IRF3 activation. Here we have characterized several components of the signaling pathway that governs TLR4 translocation and subsequent IRF3 activation. We find that phospholipase C γ2 (PLCγ2) accounts for LPS-induced inositol 1,4,5-trisphosphate (IP(3)) production and subsequent calcium (Ca(2+)) release. Blockage of PLCγ2 function by inhibitors or knockdown of PLCγ2 expression by siRNAs in RAW 264.7 macrophages lead to reduced IRF3, but enhanced NF-κB activation. In addition, bone marrow-derived macrophages from PLCγ2-deficient mice showed impaired IRF3 phosphorylation and expression of IRF3-regulated genes after LPS stimulation. Using cell fractionation, we show that PLCγ2-IP(3)-Ca(2+) signaling cascade is required for TLR4 endocytosis following LPS stimulation. In conclusion, our results describe a novel role of the PLCγ2-IP(3)-Ca(2+) cascade in the LPS-induced innate immune response pathway where release of intracellular Ca(2+) mediates TLR4 trafficking and subsequent activation of IRF3.  相似文献   

8.
9.
Being one of the key kinases downstream of Toll-like receptors, IRAK1 has initially thought to be responsible for NFkappaB activation. Yet IRAK1 knock-out mice still exhibit NFkappaB activation upon lipopolysaccharide (LPS) challenge, suggesting that IRAK1 may play other un-characterized function. In this report, we show that IRAK1 is mainly involved in Stat3 activation and subsequent interleukin-10 (IL-10) gene expression. Splenocytes from IRAK1-deficient mice fail to exhibit LPS-induced Stat3 serine phosphorylation and IL-10 gene expression yet still maintain normal IL-1beta gene expression upon LPS challenge. Mechanistically, we observe that IRAK1 modification upon LPS challenge leads to its modification, nuclear distribution, and interaction with Stat3. IRAK1 can directly use Stat3 as a substrate and cause Stat3 serine 727 phosphorylation. In addition, nuclear IRAK1 binds directly with IL-10 promoter in vivo upon LPS treatment. Atherosclerosis patients usually have elevated serum IL-10 levels. We document here that IRAK1 is constitutively modified and localized in the nucleus in the peripheral blood mononuclear cells from atherosclerosis patients. These observations reveal the mechanism for the novel role of IRAK1 in the complex Toll-like receptor signaling network and indicate that IRAK1 regulation may be intimately linked with the pathogenesis and/or resolution of atherosclerosis.  相似文献   

10.
11.
Toll/IL-1R domain-containing adaptor inducing IFN-β (TRIF) is an adaptor molecule that is recruited to TLR3 and -4 upon agonist stimulation and triggers activation of IFN regulatory factor 3 (IRF3) and expression of type 1 IFNs, which are critical for cellular antiviral responses. We show that Akt is a downstream molecule of TRIF/TANK-binding kinase 1 (TBK1) and plays an important role in the activation of IRF3 by TLR3 and -4 agonists. Blockade of Akt by a dominant-negative mutant or by short interfering RNA decreased IRF3 activation and IFN-β expression induced by polyinosinic:polycytidylic acid [poly(I:C)], LPS, TRIF, and TBK1. Association of endogenous TBK1 and Akt was observed in macrophages when stimulated with poly(I:C) and LPS. In vitro kinase assays combined with reversed-phase liquid chromatography mass spectrometry analysis showed that TBK1 enhanced phosphorylation of Akt on Ser(473), whereas knockdown of TBK1 expression by short interfering RNA in macrophages decreased poly(I:C)- and LPS-induced Akt phosphorylation. Embryonic fibroblasts derived from TBK1 knockout mice also showed impaired Akt phosphorylation in response to poly(I:C) and LPS. To our knowledge, our results demonstrate a new regulatory mechanism for Akt activation mediated by TBK1 and a novel role of Akt in TLR-mediated immune responses.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号