首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To identify genetic determinants of classical swine fever virus (CSFV) virulence and host range, chimeras of the highly pathogenic Brescia strain and the attenuated vaccine strain CS were constructed and evaluated for viral virulence in swine. Upon initial screening, only chimeras 138.8v and 337.14v, the only chimeras containing the E2 glycoprotein of CS, were attenuated in swine despite exhibiting unaltered growth characteristics in primary porcine macrophage cell cultures. Additional viral chimeras were constructed to confirm the role of E2 in virulence. Chimeric virus 319.1v, which contained only the CS E2 glycoprotein in the Brescia background, was markedly attenuated in pigs, exhibiting significantly decreased virus replication in tonsils, a transient viremia, limited generalization of infection, and decreased virus shedding. Chimeras encoding all Brescia structural proteins in a CS genetic background remained attenuated, indicating that additional mutations outside the structural region are important for CS vaccine virus attenuation. These results demonstrate that CS E2 alone is sufficient for attenuating Brescia, indicating a significant role for the CSFV E2 glycoprotein in swine virulence.  相似文献   

2.
E2 is one of the three envelope glycoproteins of classical swine fever virus (CSFV). Previous studies indicate that E2 is involved in several functions, including virus attachment and entry to target cells, production of antibodies, induction of protective immune response in swine, and virulence. Here, we have investigated the role of E2 glycosylation of the highly virulent CSFV strain Brescia in infection of the natural host. Seven putative glycosylation sites in E2 were modified by site-directed mutagenesis of a CSFV Brescia infectious clone (BICv). A panel of virus mutants was obtained and used to investigate whether the removal of putative glycosylation sites in the E2 glycoprotein would affect viral virulence/pathogenesis in swine. We observed that rescue of viable virus was completely impaired by removal of all putative glycosylation sites in E2 but restored when mutation N185A reverted to wild-type asparagine produced viable virus that was attenuated in swine. Single mutations of each of the E2 glycosylation sites showed that amino acid N116 (N1v virus) was responsible for BICv attenuation. N1v efficiently protected swine from challenge with virulent BICv at 3 and 28 days postinfection, suggesting that glycosylation of E2 could be modified for development of classical swine fever live attenuated vaccines.  相似文献   

3.
As the main immunogen that could stimulate neutralized antibody in pigs, recombinant E2 protein of CSFV was expressed in CHO‐dhfr?cells driven by endogenous Txnip promoter from Chinese hamster. Different fragments of Txnip promoter were amplified by PCR from isolated genomic DNA of CHO cells and cloned into different expression vectors. Compared with CMV promoter, CHO‐pTxnip‐4‐rE2 (F12) cell clone with the highest yield of rE2 protein was established by random insertion of the expression cassette driven by 860 bp sequences of Txnip promoter. In combination with treatment of 800 nM MTX for copy amplification of inserted expression cassette, the dynamic expression profile of rE2 protein was observed. Then inducible expression strategy of balance between viable cell density and product yield was conducted by mixed addition of 0.1 mM NADH and 0.1 mM ATP in culture medium at day 3 of batch‐wise culture. It could be concluded that Txnip promoter would be a promising alternative promoter for recombinant antigen protein expression in transgenic cells.  相似文献   

4.
Classical swine fever virus (CSFV) outer surface E2 glycoprotein represents an important target to induce protective immunization during infection but the influence of N-glycosylation pattern in antigenicity is yet unclear. In the present work, the N-glycosylation of the E2-CSFV extracellular domain expressed in goat milk was determined. Enzymatic N-glycans releasing, 2-aminobenzamide (2AB) labeling, weak anion-exchange and normal-phase HPLC combined with exoglycosidase digestions and mass spectrometry of 2AB-labeled and unlabeled N-glycans showed a heterogenic population of oligomannoside, hybrid and complex-type structures. The detection of two Man8GlcNAc2 isomers indicates an alternative active pathway in addition to the classical endoplasmic reticulum processing. N-acetyl or N-glycolyl monosialylated species predominate over neutral complex-type N-glycans. Asn207 site-specific micro-heterogeneity of the E2 most relevant antigenic and virulence site was determined by HPLC-mass spectrometry of glycopeptides. The differences in N-glycosylation with respect to the native E2 may not disturb the main antigenic domains when expressed in goat milk.  相似文献   

5.
Classical swine fever virus (CSFV) is the causative agent of classical swine fever (CSF), a highly contagious disease of pigs. There are numerous CSFV strains that differ in virulence, resulting in clinical disease with different degrees of severity. Low-virulent and moderately virulent isolates cause a mild and often chronic disease, while highly virulent isolates cause an acute and mostly lethal hemorrhagic fever. The live attenuated vaccine strain GPE(-) was produced by multiple passages of the virulent ALD strain in cells of swine, bovine, and guinea pig origin. With the aim of identifying the determinants responsible for the attenuation, the GPE(-) vaccine virus was readapted to pigs by serial passages of infected tonsil homogenates until prolonged viremia and typical signs of CSF were observed. The GPE(-)/P-11 virus isolated from the tonsils after the 11th passage in vivo had acquired 3 amino acid substitutions in E2 (T830A) and NS4B (V2475A and A2563V) compared with the virus before passages. Experimental infection of pigs with the mutants reconstructed by reverse genetics confirmed that these amino acid substitutions were responsible for the acquisition of pathogenicity. Studies in vitro indicated that the substitution in E2 influenced virus spreading and that the changes in NS4B enhanced the viral RNA replication. In conclusion, the present study identified residues in E2 and NS4B of CSFV that can act synergistically to influence virus replication efficiency in vitro and pathogenicity in pigs.  相似文献   

6.
Classical swine fever (CSF) is a severe hemorrhagic disease of swine caused by the pestivirus CSF virus (CSFV). Amino acid exchanges or deletions introduced by site-directed mutagenesis into the putative active site of the RNase residing in the glycoprotein E(rns) of CSFV abolished the enzymatic activity of this protein, as demonstrated with an RNase test suitable for detection of the enzymatic activity in crude cell extracts. Incorporation of the altered sequences into an infectious CSFV clone resulted in recovery of viable viruses upon RNA transfection, except for a variant displaying a deletion of the histidine codon at position 297 of the long open reading frame. These RNase-negative virus mutants displayed growth characteristics in tissue culture that were undistinguishable from wild-type virus and were stable for at least seven passages. In contrast to animals inoculated with an RNase-positive control virus, infection of piglets with an RNase-negative mutant containing a deletion of the histidine codon 346 of the open reading frame did not lead to CSF. Neither fever nor extended viremia could be detected. Animals infected with this mutant did not show decrease of peripheral B cells, a characteristic feature of CSF in swine. Animal experiments with four other mutants with either exchanges of codons 297 or 346 or double exchanges of both codons 297 and 346 showed that all these RNase-negative mutants were attenuated. All viruses with mutations affecting codon 346 were completely apathogenic, whereas those containing only changes of codon 297 consistently induced clinical symptoms for several days, followed by sudden recovery. Analyses of reisolated viruses gave no indication for the presence of revertants in the infected animals.  相似文献   

7.
E1, along with E(rns) and E2, is one of the three envelope glycoproteins of classical swine fever virus (CSFV). E1 and E2 are anchored to the virus envelope at their carboxyl termini, and E(rns) loosely associates with the viral envelope. In infected cells, E2 forms homodimers and heterodimers with E1 mediated by disulfide bridges between cysteine residues. The E1 protein of CSFV strain Brescia contains six cysteine residues at positions 5, 20, 24, 94, 123, and 171. The role of these residues in the formation of E1-E2 heterodimers and their effect on CSFV viability in vitro and in vivo remain unclear. Here we observed that recombinant viruses harboring individual cysteine-to-serine substitutions within the E1 envelope protein still have formation of E1-E2 heterodimers which are functional in terms of allowing efficient virus progeny yields in infected primary swine cells. Additionally, these single cysteine mutant viruses were virulent in infected swine. However, a double mutant harboring Cys24Ser and Cys94Ser substitutions within the E1 protein altered formation of E1-E2 heterodimers in infected cells. This recombinant virus, E1ΔCys24/94v, showed delayed growth kinetics in primary swine macrophage cultures and was attenuated in swine. Furthermore, despite the observed diminished growth in vitro, infection with E1ΔCys24/94v protected swine from challenge with virulent CSFV strain Brescia at 3 and 28 days postinfection.  相似文献   

8.
通过基因组定量研究猪瘟病毒在细胞中的增殖特性   总被引:1,自引:0,他引:1  
应用间接免疫荧光、Real-time PCR和病毒感染滴度(TCID50)测定技术,分别从病毒抗原、病毒基因组RNA复制水平和病毒感染滴度变化3个方面,研究了猪瘟病毒(CSFV)在PK-15细胞中增殖的特点,用猪瘟病毒石门株感染96孔板培养的细胞,1×102个TCID50/孔,间接免疫荧光检测结果显示感染后8h能检测到被荧光抗体染色的感染细胞,随感染时间的延长,出现荧光的细胞数量逐渐增多,在感染后72h,几乎所有细胞均能出现荧光。Real-time PCR结果显示在细胞感染初期的8~24h,病毒的基因组RNA复制呈加速趋势,其拷贝数在感染后72h达到高峰。此外,在感染后8h能检测到病毒基因组负链RNA转录,不过负链RNA在病毒增殖过程中维持在较低的水平。TCID50测定结果表明CSFV的感染滴度增加趋势与基因组类似,在病毒感染8h后能检测到具有感染性的子代病毒,感染滴度在8~20h之间逐渐增长,24~48h之间增长速度稍减慢,在感染后48~52h达到高峰,能在72h之内维持较高的感染滴度。  相似文献   

9.
10.
11.
It has been reported that genes encoding antigens of bacterial and viral pathogens can be expressed in plants and are shown to induce protection antibodies. The structural protein E2 of classical swine fever virus (CSFV), which has been shown to carry critical epitopes, has been expressed in different systems. Here, we report the expression of CFSV E2 gene in tobacco chloroplasts. Mice immunized with leaf extracts elicited specific antibodies. This indicated that the expressed E2 proteins had a certain degree of immunogenicity. To our knowledge, this is the first report showing induction of protective antibody in response to classical swine fever virus (CSFV) by immunization with antigen protein E2 expressed in tobacco chloroplasts, which will open a new way to protection from CSFV by plant chloroplasts as bioreactors.  相似文献   

12.

Objective

To develop a simple method for efficient expression of classical swine fever virus (CSFV) E2 protein.

Results

The pFastBac HT B vector (pFastHTB-M1) was modified by adding a melittin signal peptide sequence. The E2 gene fragment without the transmembrane region was cloned into pFastHTB-M1. The modified vector has clear advantage over the original one, as evidenced by the purified recombinant E2 protein that was detected significantly by SDS-PAGE.

Conclusions

The modified vector has the potential for large-scale production and easy purification of the CSFV E2 protein or other proteins of interests.
  相似文献   

13.
Proteolytic processing of polyproteins is considered a crucial step in the life cycle of most positive-strand RNA viruses. An enhancement of NS2-3 processing has been described as a major difference between the noncytopathogenic (non-CP) and the cytopathogenic (CP) biotypes of pestiviruses. The effects of accelerated versus delayed NS2-3 processing on the maturation of the other nonstructural proteins (NSP) have never been compared. In this study, we analyzed the proteolytic processing of NSP in Classical swine fever virus (CSFV). Key to the investigation was a panel of newly developed monoclonal antibodies (MAbs) that facilitated monitoring of all nonstructural proteins involved in virus replication (NS2, NS3, NS4A, NS5A, and NS5B). Applying these MAbs in Western blotting and radioimmunoprecipitation allowed an unambiguous identification of the mature proteins and precursors in non-CP CSFV-infected cells. Furthermore, the kinetics of processing were determined by pulse-chase analyses for non-CP CSFV, CP CSFV, and a CP CSFV replicon. A slow but constant processing of NS4A/B-5A/B occurred in non-CP CSFV-infected cells, leading to balanced low-level concentrations of mature NSP. In contrast, the turnover of the polyprotein precursors was three times faster in CP CSFV-infected cells and in cells transfected with a CP CSFV replicon, causing a substantial increase of mature NSP concentrations. We conclude that a delayed processing not only of NS3 but further of all NSP represents a hallmark of regulation in non-CP pestiviruses.  相似文献   

14.
Classical Swine Fever Virus (CSFV) causes classical swine fever, a highly contagious hemorrhagic fever affecting both feral and domesticated pigs. Outbreaks of CSF in Europe, Asia, Africa and South America had significant adverse impacts on animal health, food security and the pig industry. The disease is generally contained by prevention of exposure through import restrictions (e.g. banning import of live pigs and pork products), localized vaccination programmes and culling of infected or at‐risk animals, often at very high cost. Current CSFV‐modified live virus vaccines are protective, but do not allow differentiation of infected from vaccinated animals (DIVA), a critical aspect of disease surveillance programmes. Alternatively, first‐generation subunit vaccines using the viral protein E2 allow for use of DIVA diagnostic tests, but are slow to induce a protective response, provide limited prevention of vertical transmission and may fail to block viral shedding. CSFV E2 subunit vaccines from a baculovirus/insect cell system have been developed for several vaccination campaigns in Europe and Asia. However, this expression system is considered expensive for a veterinary vaccine and is not ideal for wide‐spread deployment. To address the issues of scalability, cost of production and immunogenicity, we have employed an Agrobacterium‐mediated transient expression platform in Nicotiana benthamiana and formulated the purified antigen in novel oil‐in‐water emulsion adjuvants. We report the manufacturing of adjuvanted, plant‐made CSFV E2 subunit vaccine. The vaccine provided complete protection in challenged pigs, even after single‐dose vaccination, which was accompanied by strong virus neutralization antibody responses.  相似文献   

15.
E(rns) is an envelope glycoprotein of classical swine fever virus (CSFV) and has an unusual feature of RNase activity. In the present study, we demonstrate that E(rns) counteracts Newcastle disease virus (NDV)-mediated induction of IFN-beta. For this purpose, E(rns) fused to the enhanced green fluorescent protein (EGFP) was transiently expressed in porcine kidney 15 (PK15) cells. In luciferase activity assay, E(rns)-EGFP was found to prevent IFN-beta promoter-driven luciferase expression and block the induction of IFN-beta promoter mediated by NDV in a dosedependent manner. Through IFN-specific semi-quantitative RT-PCR detection, obvious decrease of IFN-beta mRNA in NDV-infected PK15 cells was observed in the presence of E(rns)-EGFP. In contrast, EGFP alone showed none of this block capacity. In addition, E(rns)-EGFP mutations with RNase inactivation were also found to block NDV-mediated induction of IFN-beta. These evidences establish a novel function for CSFV E(rns) glycoprotein in counteraction of the IFN-beta induction pathway.  相似文献   

16.
Chen  Shucheng  Li  Su  Sun  Huimin  Li  Yongfeng  Ji  Shengwei  Song  Kun  Zhang  Lingkai  Luo  Yuzi  Sun  Yuan  Ma  Jifei  Liu  Pinghuang  Qiu  Hua-Ji 《Applied microbiology and biotechnology》2018,102(2):961-970
Applied Microbiology and Biotechnology - Classical swine fever virus (CSFV) is the causative agent of classical swine fever (CSF), a highly contagious and economically important disease of pigs....  相似文献   

17.
E(rns) is an envelope glycoprotein of classical swine fever virus (CSFV) with unusual RNase activity. Recently, E(rns) was found to have a new function of counteracting the beta-interferon (IFN-beta) induction pathway. In this study, wildtype ErnsSM and two mutated E(rns) proteins ErnsH297k and ErnsH346k were expressed in insect cells and purified for RNase activity and function analysis. RNase activity assay in vitro demonstrated that only wildtype E(rns) protein had RNase activity. However, both wildtype ErnsSM and the two mutated E(rns)ErnsH297k and ErnsH346k as exogenous proteins had a block effect on Newcastle disease virus (NDV)-mediated IFN-beta promoter induction.  相似文献   

18.
反向遗传学技术在猪瘟病毒研究中的应用   总被引:1,自引:0,他引:1  
刘大飞  孙元  仇华吉 《生物工程学报》2009,25(10):1441-1448
猪瘟目前在许多国家流行并对养猪业造成巨大损失。虽然常规疫苗(如中国猪瘟兔化弱毒疫苗,即C株)在猪瘟防控中发挥巨大作用,但近年来在猪瘟防控中出现的新情况,如非典型感染、持续性感染及免疫失败等;同时目前世界上许多国家正开展的猪瘟扑灭计划使得弱毒疫苗的应用受到很大限制。因此,加强猪瘟病毒在致病机理、传播机制等方面的研究以及加快新型猪瘟疫苗的开发是当务之急。近年来,反向遗传学技术的发展为猪瘟病毒基因功能研究和疫苗制备方面开辟了新思路。以下回顾了反向遗传操作技术在猪瘟病毒基因功能研究与标记疫苗株构建方面的研究进展,同时提出了该领域目前面临的问题,并对其未来发展方向进行了展望。  相似文献   

19.
20.
基于Semliki Forest病毒RNA复制子的猪瘟RNA疫苗初步研究   总被引:7,自引:0,他引:7  
将猪瘟病毒E2基因克隆于我们此前构建的衍生于Semliki Forest病毒(semliki forest virus,SFV)RNA复制子的新型真核表达载体pSFV1CS中,获得重组质粒pSFV1CS-E2。用纯化的pSFV1CS-E2分别转染BHK-21细胞和293T细胞,经间接免疫荧光试验检测显示,CSFV E2基因在转染细胞中得到表达。小鼠接种试验结果表明,10μg或100μg pSFV1CS-E2可诱导小鼠产生猪瘟特异性抗体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号