首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Signaling of the pleiotropic cytokine Interleukin-6 (IL-6) is coordinated by membrane-bound and soluble forms of the IL-6 receptor (IL-6R) in processes called classic and trans-signaling, respectively. The soluble IL-6R is mainly generated by ADAM10- and ADAM17-mediated ectodomain shedding. Little is known about the role of the 52-amino acid-residue-long IL-6R stalk region in shedding and signal transduction. Therefore, we generated and analyzed IL-6R stalk region deletion variants for cleavability and biological activity. Deletion of 10 amino acids of the stalk region surrounding the ADAM17 cleavage site substantially blocked IL-6R proteolysis by ADAM17 but only slightly affected proteolysis by ADAM10. Interestingly, additional deletion of the remaining five juxtamembrane-located amino acids also abrogated ADAM10-mediated IL-6R shedding. Larger deletions within the stalk region, that do not necessarily include the ADAM17 cleavage site, also reduced ADAM10 and ADAM17-mediated IL-6R shedding, questioning the importance of cleavage site recognition. Furthermore, we show that a 22-amino acid-long stalk region is minimally required for IL-6 classic signaling. The gp130 cytokine binding sites are separated from the plasma membrane by ∼96 Å. 22 amino acid residues, however, span maximally 83.6 Å (3.8 Å/amino acid), indicating that the three juxtamembrane fibronectin domains of gp130 are not necessarily elongated but somehow flexed to allow IL-6 classic signaling. Our findings underline a dual role of the IL-6R stalk region in IL-6 signaling. In IL-6 trans-signaling, it regulates proper proteolysis by ADAM10 and ADAM17. In IL-6 classic-signaling, it acts as a spacer to ensure IL-6·IL-6R·gp130 signal complex formation.  相似文献   

2.
The helical cytokine interleukin (IL) 6 and its specific binding subunit IL-6R alpha form a 1:1 complex which, by promoting homodimerization of the signalling subunit gp130 on the surface of target cells, triggers intracellular responses. We expressed differently tagged forms of gp130 and used them in solution-phase binding assays to show that the soluble extracellular domains of gp130 undergo dimerization in the absence of membranes. In vitro receptor assembly reactions were also performed in the presence of two sets of IL-6 variants carrying amino acid substitutions in two distinct areas of the cytokine surface (site 2, comprising exposed residues in the A and C helices, and site 3, in the terminal part of the CD loop). The binding affinity to IL-6R alpha of these variants is normal but their biological activity is poor or absent. We demonstrate here that both the site 2 and site 3 IL-6 variants complexed with IL-6R alpha bind a single gp130 molecule but are unable to dimerize it, whereas the combined site 2/3 variants lose the ability to interact with gp130. The binding properties of these variants in vitro, and the result of using a neutralizing monoclonal antibody directed against site 3, lead to the conclusion that gp130 dimer is formed through direct binding at two independent and differently oriented sites on IL-6. Immunoprecipitation experiments further reveal that the fully assembled receptor complex is composed of two IL-6, two IL-6R alpha and two gp130 molecules. We propose here a model representing the IL-6 receptor complex as hexameric, which might be common to other helical cytokines.  相似文献   

3.
Molecular cloning and expression of an IL-6 signal transducer, gp130   总被引:100,自引:0,他引:100  
M Hibi  M Murakami  M Saito  T Hirano  T Taga  T Kishimoto 《Cell》1990,63(6):1149-1157
Interleukin-6 (IL-6) signal is transduced through a membrane glycoprotein, gp130, which associates with IL-6 receptor (IL-6-R). A cDNA encoding human gp130 has been cloned, revealing that it consists of 918 amino acids with a single transmembrane domain. The extracellular region comprises six units of a fibronectin type III module, and part of this region of approximately 200 amino acids has features typical of a cytokine receptor family. A cDNA-expressed gp130 showed no binding property to IL-6 or several other cytokines. Although a transfectant with an IL-6-R cDNA expressed mainly low affinity IL-6 binding sites, an increase in high affinity binding sites was observed after cotransfection with a gp130 cDNA. This confirmed that a gp130 is involved in the formation of high affinity IL-6 binding sites. A cloned gp130 could associate with a complex of IL-6 and soluble IL-6-R and transduce the growth signal when expressed in a murine IL-3-dependent cell line.  相似文献   

4.
Binding of interleukin-6 (IL-6) to its specific receptor IL-6R is a prerequisite for the activation of the signal-transducing receptor glycoprotein 130 (gp130). A soluble form of the IL-6R (sIL-6R) in complex with IL-6 can activate cells lacking membrane-bound IL-6R (trans-signaling). IL-6-trans-signaling is counterbalanced by a naturally occurring, soluble form of gp130 (sgp130), whereby signaling via the membrane-bound IL-6R is not affected. Many inflammatory and neoplastic disorders are driven by IL-6 trans-signaling. By analysis of the three-dimensional structure of gp130 in complex with IL-6 and sIL-6R, we identified amino acid side chains in gp130 as candidates for the generation of sgp130 muteins with increased binding affinity to IL-6/sIL-6R. In addition, with information from modeling and NMR analysis of the membrane proximal domain of gp130, we generated a more stable variant of sgp130Fc. Proteins were tested for binding to the IL-6/sIL-6R-complex, for inhibition of IL-6/sIL-6R-induced cell proliferation and of acute phase gene expression. Several mutations showed an additive effect in improving the binding affinity of human sgp130 toward human IL-6/sIL-6R. Finally, we demonstrate the species specificity of these mutations in the optimal triple mutein (T102Y/Q113F/N114L) both in vitro and in a mouse model of acute inflammation.  相似文献   

5.
Cytokines are key mediators for the regulation of hemopoiesis and the coordination of immune responses. They exert their various functions through activation of specific cell surface receptors, thereby initiating intracellular signal transduction cascades which lead to defined cellular responses. As the common signal-transducing receptor subunit of at least seven different cytokines, gp130 is an important member of the family of hemopoietic cytokine receptors which are characterized by the presence of at least one cytokine-binding module. Mutants of gp130 that either lack the Ig-like domain D1 (DeltaD1) or contain a distinct mutation (F191E) within the cytokine-binding module have been shown to be severely impaired with respect to IL-6 induced signal transduction. After cotransfection of COS-7 cells with a combination of both inactive gp130 mutants, signal transduction in response to IL-6 is restored. Whereas cells transfected with DeltaD1 do not bind IL-6/sIL-6R complexes, cells transfected with the F191E mutant bind IL-6/sIL-6R with low affinity. Combination of DeltaD1 and F191E, however, leads to high-affinity ligand binding. These data suggest that two different gp130 epitopes, one on each receptor chain, sequentially cooperate in asymmetrical binding of IL-6/IL-6R in a tetrameric signaling complex. On the basis of our data, a model for the mechanism of IL-6-induced gp130 activation is proposed.  相似文献   

6.
Interleukin-6 (IL-6) is a cytokine with many activities. It has functions in the regulation of the immune system and the nervous system. Furthermore, IL-6 is involved in liver regeneration and in the metabolic control of the body. On target cells, IL-6 binds to an 80 kDa IL-6 receptor (IL-6R). The complex of IL-6 and IL-6R associates with a second protein, gp130, which thereupon dimerizes and initiates intracellular signaling. Whereas gp130 is expressed on all cells, IL-6R is only present on few cells in the body including hepatocytes and some leukocytes. Cells, which do not express IL-6R cannot respond to the cytokine, since gp130 alone has no measurable affinity for IL-6. Interestingly, a soluble form of IL-6R (sIL-6R) comprising the extracellular portion of the receptor can bind IL-6 with a similar affinity as the membrane bound IL-6R. The complex of IL-6 and sIL-6R can bind to gp130 on cells, which do not express the IL-6R, and which are unresponsive to IL-6. This process has been called trans-signaling. Here I will review published evidence that IL-6 trans-signaling is pro-inflammatory whereas classic IL-6 signaling via the membrane bound IL-6R is needed for regenerative or anti-inflammatory activities of the cytokine. Furthermore, the detailed knowledge of IL-6 biology has important consequences for therapeutic strategies aimed at the blockade of the cytokine IL-6.  相似文献   

7.
The effect of differential signalling by IL-6 and leukaemia inhibitory factor (LIF) which signal by gp130 homodimerisation or LIFRβ/gp130 heterodimerisation on survival and hypertrophy was studied in neonatal rat cardiomyocytes. Both LIF and IL-6 [in the absence of soluble IL-6 receptor (sIL-6Rα)] activated Erk1/2, JNK1/2, p38-MAPK and PI3K signalling peaking at 20 min and induced cytoprotection against simulated ischemia-reperfusion injury which was blocked by the MEK1/2 inhibitor PD98059 but not the p38-MAPK inhibitor SB203580. In the absence of sIL-6R, IL-6 did not induce STAT1/3 phosphorylation, whereas IL-6/sIL-6R and LIF induced STAT1 and STAT3 phosphorylation. Furthermore, IL-6/sIL-6R induced phosphorylation of STAT1 Tyr701 and STAT3 Tyr705 were enhanced by SB203580. IL-6 and pheneylephrine (PE), but not LIF, induced cardiomyocyte iNOS expression and nitric oxide (NO) production. IL-6, LIF and PE induced cardiomyocyte hypertrophy, but with phenotypic differences in ANF and SERCA2 expression and myofilament organisation with IL-6 more resembling PE than LIF. Transfection of cardiomyocytes with full length or truncated chimaeric gp130 cytoplasmic domain/Erythropoietin receptor (EpoR) extracellular domain fusion constructs showed that the membrane proximal Box 1 and Box 2 containing region of gp130 was necessary and sufficient for MAPK and PI3K activation; hypertrophy; SERCA2 expression and iNOS/NO induction in the absence of JAK/STAT activation. In conclusion, IL-6 can signal in cardiomyocytes independent of sIL-6R and STAT1/3 and furthermore, that Erk1/2 and PI3K activation by IL-6 are both necessary and sufficient for induced cardioprotection. In addition, p38-MAPK may act as a negative feedback regulator of JAK/STAT activation in cardiomyocytes.  相似文献   

8.
9.
Human osteoblasts produce interleukin-6 (IL-6) and respond to IL-6 in the presence of soluble IL-6 receptor (sIL-6R), but the cell surface expression of IL-6R and the mechanism of sIL-6R production are largely unknown. Three different human osteoblast-like cell lines (MG-63, HOS, and SaOS-2) and bone marrow-derived primary human osteoblasts expressed both IL-6R and gp130 as determined by flow cytometry and immunoprecipitation. However, the membrane-bound IL-6R was nonfunctional, as significant tyrosine phosphorylation of gp130 did not occur in the presence of IL-6. Phorbol myristate acetate induced a dramatic increase of both IL-6R shedding (i.e. the production of sIL-6R) and IL-6 release in osteoblast cultures, but the cell surface expression of gp130 remained unchanged. IL-6 complexed with sIL-6R, either exogenously introduced or derived from the nonfunctional cell surface form by shedding, induced rapid tyrosine phosphorylation of gp130. This effect was inhibited by neutralizing antibodies to either sIL-6R or gp130, indicating that the gp130 activation was induced by IL-6/sIL-6R/gp130 interaction. Protein kinase C inhibitors blocked phorbol myristate acetate-induced and spontaneous shedding of IL-6R resulting in the absence of sIL-6R in the culture medium, which in turn also prevented the activation of gp130. In conclusion, human osteoblasts express cell surface IL-6R, which is unable to transmit IL-6-induced signals until it is shed into its soluble form. This unique mechanism provides the flexibility for osteoblasts to control their own responsiveness to IL-6 via the activation of an IL-6R sheddase, resulting in an immediate production of functionally active osteoblast-derived sIL-6R.  相似文献   

10.
Li H  Wang H  Nicholas J 《Journal of virology》2001,75(7):3325-3334
Human herpesvirus 8 (HHV-8) is associated with Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease; in all of these diseases, interleukin-6 (IL-6) has been implicated as a likely mitogenic and/or angiogenic factor. HHV-8 encodes a homologue of IL-6 (viral IL-6 [vIL-6]) that has been shown to be biologically active in several assays and whose activities mirror those of its mammalian counterparts. Like these proteins, vIL-6 mediates its effects through the gp130 signal transducer, but signaling is not dependent on the structurally related IL-6 receptor (IL-6R; gp80) subunit of the receptor-signal transducer complex. However, as we have shown previously, IL-6R can enhance vIL-6 signal transduction and can enable signaling through a gp130 variant (gp130.PM5) that is itself unable to support vIL-6 activity, indicating that IL-6R can form part of the signaling complex. Also, our analysis of a panel of vIL-6 mutants in transfection experiments in Hep3B cells (that express IL-6R and gp130) showed that most were able to function normally in this system. Here, we have used in vitro vIL-6-receptor binding assays to demonstrate direct binding of vIL-6 to both gp130 and IL-6R and vIL-6-induced gp130-IL-6R complex formation, and we have extended our functional analyses of the vIL-6 variants to identify residues important for IL-6R-independent and IL-6R-dependent signaling through native gp130 and gp130.PM5, respectively. These studies have identified residues in vIL-6 that are important for IL-6R-independent and IL-6R-mediated functional complex formation between vIL-6 and gp130 and that may be involved directly in binding to gp130 and IL-6R.  相似文献   

11.
BACKGROUND: The pleiotropic cytokine interleukin-6 mediates its multiple effects at the cell level through a multimeric receptor consisting of a binding protein (gp80) and a signal transducer (gp130). A soluble form of gp80 (sIL-6R or gp55) is found released from the surface of cells and appears to possess interleukin-6 (IL-6) agonist activity. Increases in circulating levels of sIL-6R have been reported in different pathological conditions but the precise role of this protein in vivo remains unknown. MATERIALS AND METHODS: The cDNA encoding the extracellular domain of the rat IL-6R (sIL-6R) with an appropriate leader sequence has been cloned into the E1 region of an adenovirus vector under the control of the hCMV promoter (Ad5.sIL-6R). RESULTS: Infection of different human or rodent cell lines with Ad5.sIL-6R leads to extended production of recombinant sIL-6R protein into the culture media. The kinetics of transgene expression depends both on the cell type and the species. sIL-6R produced in this manner is biologically active as it confers responsiveness of human hepatoma cells (HepG2) to rat IL-6 stimulation. Adenovirus vectors have been shown to be highly effective for transient delivery of cytokines in vivo. Antibodies against recombinant rat soluble IL-6R were generated and an ELISA developed that allowed us to quantify sIL-6R concentrations. The sIL-6R expressing adenovirus vector has been instilled intratracheally into rats and induced an increase in lung sIL-6R concentration from Day 1 up to Day 10. We demonstrate the potency of our system to deliver in vivo or in vitro soluble cytokine receptors in a prolonged but transient manner.  相似文献   

12.
The soluble IL-6 receptor (sIL-6R) can increase IL-6-induced signalling by forming a complex with IL-6 and membrane-bound gp130 (the receptor beta chain which transduces signals). The conditions affecting this response to sIL-6R were studied using fibrinogen release from HepG2 hepatocytes. Exogenous sIL-6R had no effect alone or in the presence of a submaximal concentration of IL-6, but increased responses to supramaximal IL-6 concentrations in a concentration-related manner. Dexamethasone increased the expression of the membrane IL-6R and endogenous sIL6R release, and increased responses to supramaximal but not submaximal IL-6 concentrations. The amount of endogenous sIL-6R released is relatively small and is unlikely to influence the effects of the exogenous sIL-6R. The observed concentration-related decrease in sIL-6R production in the presence of IL-6 may indicate internalization of ligand/receptor complexes. This would significantly decrease the amount of IL-6R (soluble or membrane) available for signalling and limit continued functional response later in the cultures. These data indicate that the major factor influencing responses to exogenous sIL-6R is an excess of IL-6 which is necessary to form complexes with the sIL-6R, which can then interact with gp130 to increase signalling.  相似文献   

13.
Interleukin (IL)-6, IL-11 and cililary neurotrophic factor (CNTF) belong to the same family of hematopoietic and neurotrophic cytokines. Their receptor complexes contain a cytokine-binding alpha receptor and the common glycoprotein (gp)130 subunit for signal transduction. The extracellular parts of the alpha-receptor subunits consist of a membrane-proximal cytokine-binding domain and an N-terminal immunoglobulin (Ig)-like domain with unknown function. We examined the role of the Ig-like domain of IL-6R by constructing deletion mutants lacking the Ig domain (IL-6RDeltaIg and soluble IL-6RDeltaIg). IL-6RDeltaIg was shed as effectively as wild-type IL-6R from transfected COS-7 cells upon 4beta-phorbol 12-myristate 13-acetate (PMA) treatment, whereas nonstimulated shedding of IL-6RDeltaIg was not observed. The shed sIL-6RDeltaIg from PMA-treated cells, as well as the transmembrane IL-6RDeltaIg, had the same biological activity as wild-type sIL-6R, as measured by the induction of haptoglobin secretion in HepG2-IL-6 cells and IL-6-dependent proliferation of IL-6RDeltaIg transfected BAF/gp130 cells. In COS-7 cells transfected with IL-6RDeltaIg or soluble IL-6RDeltaIg cDNA, transport of the deletion mutants through the secretory pathway appeared to be delayed because a sizeable proportion of the mutants was detected as an endo-beta-N-acetylglucosaminidase-sensitive intermediate, suggesting that transport and processing of the DeltaIg mutants on the secretory pathway were impaired. These experiments suggest that the Ig-like domain of the IL-6R is important for intracellular transport of IL-6R through the secretory pathway. Furthermore, the Ig-like domain is necessary for noninduced shedding of the IL-6R, whereas it has no function in PKC-dependent shedding of the IL-6R.  相似文献   

14.
Signal transduction in response to interleukin-6 (IL-6) requires binding of the cytokine to its receptor (IL-6R) and subsequent homodimerization of the signal transducer gp130. The complex of IL-6 and soluble IL-6R (sIL-6R) triggers dimerization of gp130 and induces responses on cells that do not express membrane bound IL-6R. Naturally occurring soluble gp130 (sgp130) can be found in a ternary complex with IL-6 and sIL-6R. We created recombinant sgp130 proteins that showed binding to IL-6 in complex with sIL-6R and inhibited IL-6/sIL-6R induced proliferation of BAF/3 cells expressing gp130. Surprisingly, sgp130 proteins did not affect IL-6 stimulated proliferation of BAF/3 cells expressing gp130 and membrane bound IL-6R, indicating that sgp130 did not interfere with IL-6 bound to IL-6R on the cell surface. Additionally, sgp130 partially inhibited proliferation induced by leukemia inhibitory factor (LIF) and oncostatin M (OSM) albeit at higher concentrations. Recombinant sgp130 protein could be used to block the anti-apoptotic effect of sIL-6R on lamina propria cells from Crohn disease patients. We conclude that sgp130 is the natural inhibitor of IL-6 responses dependent on sIL-6R. Furthermore, recombinant sgp130 is expected to be a valuable therapeutic tool to specifically block disease states in which sIL-6R transsignaling responses exist, e.g. in morbus Crohn disease.  相似文献   

15.
16.
Interleukin-6 (IL-6) plays an important role in immune responses and signals via two different pathways. When IL-6 binds to its non-signalling membrane-bound receptor (IL-6R), a non-covalent dimer of the ubiquitous interleukin-6 signal transducer gp130 is recruited to initiate intracellular signalling cascades. This so-called classical signalling pathway is restricted to cells expressing the membrane-bound IL-6R, such as hepatocytes and certain leukocytes. In addition, an alternative trans-signalling pathway uses soluble forms of IL-6R (sIL-6R) in complex with IL-6 to activate cells expressing gp130, but not membrane-bound IL-6R. In both cases, a tetrameric or hexameric signalling complex consisting of two gp130 molecules and one or two molecules each of IL-6 and (s)IL-6R is formed. The structure of the hexameric complex of the ligand-binding domains of gp130 (D1-D3) with IL-6 and sIL-6R has been solved by X-ray crystallography as well as the full-length extracellular part of gp130 (D1-D6) as a monomer. Since gp130 exists as a preformed dimer on the cell surface, we used a sgp130Fc fusion protein - consisting of two extracellular gp130 regions (D1-D6) dimerised by an IgG1-Fc part - to study the structure of unliganded gp130 extracellular domains in solution by small-angle X-ray scattering (SAXS). The SAXS data indicated that sgp130Fc forms a rigid molecule in solution. The low resolution structural model reveals an elongated assembly with an Fc base and two gp130 arms, whereby the orientation of the ligand-binding domains D1-D3 with respect to the membrane-proximal domains D4-D6 differs from that in the crystallographic monomer. Functional implications of these findings are discussed.  相似文献   

17.
Chen D  Nicholas J 《Journal of virology》2006,80(19):9811-9821
Human herpesvirus 8 interleukin-6 (vIL-6) displays 25% amino acid identity with human IL-6 (hIL-6) and shares an overall four-helix-bundle structure and gp130-mediated STAT/mitogen-activated protein kinase signaling with its cellular counterpart. However, vIL-6 is distinct in that it can signal through gp130 alone, in the absence of the nonsignaling gp80 alpha-subunit of the IL-6 receptor. To investigate the structural requirements for gp80 independence of vIL-6, a series of expression vectors encoding vIL-6/hIL-6 chimeric and site-mutated IL-6 proteins was generated. The replacement of hIL-6 residues with three vIL-6-specific tryptophans implicated in gp80 independence from crystallographic studies or the A and C helices containing these residues did not confer gp80 independence to hIL-6. The N- and C-terminal regions of vIL-6 could be substituted with hIL-6 sequences with the retention of gp80-independent signaling, but substitutions of other regions of vIL-6 (helix A, A/B loop, helix B, helix C, and proximal half of helix D) with equivalent sequences of hIL-6 abolished gp80 independence. Interestingly, the B helix of vIL-6 was absolutely required for gp80 independence, despite the fact that this region contains no receptor-binding residues. Point mutational analysis of helix C, which contains residues involved in physical and functional interactions with gp130 domains 2 and 3 (cytokine-binding homology region), identified a variant, VI120EE, that was able to signal and dimerize gp130 only in the presence of gp80. gp80 was also found to stabilize gp130:g130 dimers induced by a distal D helix variant of vIL-6 that was nonetheless able to signal independently of gp80. Together, our data reveal the crucial importance of overall vIL-6 structure and conformation for gp80-independent signaling and provide functional and physical evidence of the stabilization of vIL-6-induced gp130 signaling complexes by gp80.  相似文献   

18.
Interleukin-6 (IL-6) is a differentiation and growth factor for a variety of cell types and its excessive production plays a major role in the pathogenesis of multiple myeloma and post-menopausal osteoporosis. IL-6, a four-helix bundle cytokine, is believed to interact sequentially with two transmembrane receptors, the low-affinity IL-6 receptor (IL-6R alpha) and the signal transducer gp130, via distinct binding sites. In this paper we show that combined mutations in the predicted A and C helices, previously suggested to establish contacts with gp130, give rise to variants with no bioactivity but unimpaired binding to IL-6R alpha. These mutants behave as full and selective IL-6 receptor antagonists on a variety of human cell lines. Furthermore, a bifacial mutant was generated (called IL-6 super-antagonist) in which the antagonist mutations were combined with amino acid substitutions in the predicted D helix that increase binding for IL-6R alpha. The IL-6 super-antagonist has no bioactivity, but improved first receptor occupancy and, therefore, fully inhibits the wild-type cytokine at low dosage. The demonstration of functionally independent receptor binding sites on IL-6 suggests that it could be possible to design super-antagonists of other helical cytokines which drive the assembly of structurally related multisubunit receptor complexes.  相似文献   

19.
Interleukin-6 (IL-6) drives the sequential assembly of a receptor complex formed by the IL-6 receptor (IL-6R alpha) and the signal transducing subunit, gp130. A model of human IL-6 (hIL-6) was constructed by homology using the structure of bovine granulocyte colony stimulating factor. The modeled cytokine was predicted to interact sequentially with the cytokine binding domains of IL-6R alpha and gp130 bridging them in a way similar to that of the interaction between growth hormone and its homodimeric receptor. Several residues on helices A and C which were predicted as contact points between IL-6 and gp130 and therefore essential for IL-6 signal transduction, were subjected to site-directed mutagenesis individually or in combined form. Interestingly, while single amino acid changes never produced major alterations in IL-6 bioactivity, a subset of double mutants of Y31 and G35 showed a considerable reduction of biological activity and were selectively impaired from associating with gp130 in binding assays in vitro, while they maintained wild-type affinity towards hIL-6-R alpha. More importantly, we demonstrated the antagonistic effect of mutant Y31D/G35F versus wild-type IL-6.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号