首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural fragments of the human ceruloplasmin (CP) molecule and of erythrocyte receptors which provide for the specific interaction of CP with erythrocytes were identified, and their properties were investigated. The interaction of CP with erythrocytes, both intact and treated with neuroaminidase and proteolytic enzymes (trypsin, chymotrypsin, papaine, pronase E) is described. Experiments with CP reception were performed at 4 degrees C, using [125I]CP and [125I]asialo-CP. The parameters of binding were determined in Scatchard plots. It was demonstrated that the specific binding of CP to erythrocyte receptors is determined by its interaction with two structural sites of the carbohydrate moiety of the CP molecule, i.e., the terminal residues of sialic acids and a site, (formula; see text) located at a large distance from the chain terminus.  相似文献   

2.
Glycoproteins of the human erythrocyte membrane were labeled with tritiated sodium borohydride after oxidation of terminal galactosyl and N-acetylgalactosaminyl residues with galactose oxidase. After separation of the polypeptides on polyacrylamide slab gels, a scintillator was introduced into the gel, and the radioactive proteins were visualed by autoradiography (fluorography). The following results were obtained. (a) The erythrocyte membrane contains at least 20 glycoproteins, many of which are minor components. (b) The carbohydrate of all the labeled glycoproteins is exposed only to the outside, since no additional glycoproteins can be labeled in isolated unsealed ghosts. (c) The membrane contains two major groups of glycoproteins. The first group of proteins contains sialic acids linked to the penultimate galactosyl/N-acetylgalactosaminyl residues, which are efficiently labeled only after pretreatment with neuraminidase. The second group has terminal galactosyl/N-acetylgalactosaminyl residues which can be easily labeled without neuraminidase treatment. The glycoproteins from fetal erythrocytes all belong to the first group, whereas only five glycoproteins of erythrocytes from adults belong. (d) Trypsin cleaves the proteins containing sialic acids, and fragments containing carbohydrate remain tightly bound and exposed in the membrane. (e) Pronase cleaves Band 3 in addition to the sialic acid containing glycoproteins, but most of the glycoproteins still remain unmodified in the membrane. (f) No difference is seen between membrane glycoproteins from cells of different ABH blood groups.  相似文献   

3.
The comparison of protective effects of native ceruloplasmin (CP) and of preparation CP1 containing carbohydrate fragment GlcNAc(beta(1,4]GlcNAc which specifically binds on RBC (alpha(1,6)Fuc receptors showed that CP1 exhibits much more powerful protective effect on RBC in copper-induced lysis. It was found, however, that CP2 (native CP devoided of CP1) protected RBC as well as CP despite its inability of binding to RBC membrane. CP and CP1 in a similar way decrease copper concentration in RBC. It was shown that copper accumulation and GSH decrease in RBC are two independent and concurrent processes; the copper and GSH concentrations are not the factors determining RBC resistance to hemolysis. CP inhibits the reaction of superoxide radicals generation as a result of Cu interaction with -SH groups of RBC membrane; the effect is more pronounced than the effect of catalase or superoxide dismutase. CP and CP1 preparations equally inhibit this reaction. Apparently CP reception on RBC leads not only to membrane protection from superoxide and hydroxyl radicals but represents a more complex process.  相似文献   

4.
Sialic acid residues are the most abundant terminal carbohydrate residues of mammalian cells. Modification of the sialic acid residues by exposure of cells in culture to sialic acid precursor analogues resulted in a modifed susceptibility to polyoma viruses. In the present study, human breast and colon cancer cell lines were exposed for 65 h to these acid precursor analogues at 5 mM and their lectin binding pattern was analysed. Use of a panel of several different lectins indicated that the pretreatment of these cell lines with the sialic acid analogues did not change their lectin binding profile. The incorporation of these precursors into membrane glycoproteins was assessed by reversed phase high-performance liquid chromatography, which clearly demonstrated that the precursors were incorporated. The results therefore indicate that these analogues are highly specific for sialic acid and do not interfere with other biosynthetic pathways of membrane glycoconjugates.  相似文献   

5.
We have examined the carbohydrate composition of corticosteroid-binding globulin (CBG) obtained from rat and human serum. Rat CBG contained a carbohydrate composition that was strikingly different from that of human CBG. Like other glycoproteins that circulate in human plasma, human CBG had a carbohydrate composition that was consistent with the presence of biantennary and triantennary oligosaccharide structures. In contrast, the carbohydrate composition of rat CBG indicated the presence of more than one sialic acid residue per antenna. It is not clear whether rat CBG contains a carbohydrate structure with sialic acids attached to both galactose and N-acetylglucosamine on the same antenna, or a terminal disialylated structure (sialic acid linked alpha 2-8 to sialic acid). These structural variations may play a role in the interaction of CBG with its receptor.  相似文献   

6.
The major glycoprotein g2 was purified from three strains of Rous sarcoma virus, representing subgroups A, B, and C. Carbohydrate analysis showed that glucosamine, mannose, galactose, fucose and sialic acid constitute 40% of the weight of the subgroup A glycoprotein and 15% of the subgroup B and C glycoproteins. The molar ratios of sugars were very similar and amino acid compositions were similar but not identical for the three glycoproteins. Glycosidase digestions of subgroup A and C glycoproteins suggested the presence of two types of oligosaccharide chains, the complex serum type, with terminal sequences sialic acidα-Galβ-GlcNAcβ- and the high mannose type with terminal α-linked mannosyl residues. After removal of 70% of the carbohydrate by glycosidases, subgroup A glycoprotein contained only glucosamine and mannose, in the molar ratio 2.0:1.3. The sequence of sugar release was consistent with oligosaccharide structures such as those which have been described for other glycoproteins. The plant lectins concanavalin A and wheat germ agglutinin were shown to interact strongly with the g2 glycoprotein from viruses of all three subgroups.  相似文献   

7.
Glycoproteins in the plasma membrane of rat hepatoma cells were labeled at their externally exposed tyrosine residues with 131I and at their galactose and sialic acid residues with 3H. The degradation of both isotopes in the total cell protein fraction, in glycoproteins purified by concanavalin A, and in glycoproteins separated on two-dimensional gels was determined. Similarly, the total cellular membrane glycoproteins were metabolically labeled with [35S]methionine and [3H]fucose. The fate of both incorporated labels was followed by lectin chromatography or by precipitation of the proteins with specific antibodies followed by electrophoretic gel separation. In both labeling experiments, the carbohydrate markers were lost from the ligand- recognized fraction with similar kinetics as from the total cell protein fraction. In some glycoprotein species which were separated by two-dimensional gel electrophoresis, the polypeptide portion exhibited up to a twofold slower rate of degradation relative to that of the carbohydrate moiety. This difference is most pronounced in carbohydrate- rich glycoproteins. To corroborate this finding, double-labeled membrane glycoproteins were incorporated into reconstituted phospholipid vesicles which were then transferred via fusion into the plasma membrane of mouse fibroblasts. Both the polypeptide and carbohydrate moieties of the transferred membrane glycoproteins were degraded with the same relative kinetics as in the original hepatoma cells. The rate of degradation is mostly a function of the structural properties of the membrane components as shown by the preservation of metabolically stable fucogangliosides of Reuber H-35 hepatoma cells transferred onto the fibroblasts. The technique of insertion of membrane components into the plasma membrane of another cell should assist in the elucidation of the exact route and mechanism of membrane protein destruction.  相似文献   

8.
Therapeutic glycoproteins produced in different host cells by recombinant DNA technology often contain terminal GlcNAc and Gal residues. Such glycoproteins clear rapidly from the serum as a consequence of binding to the mannose receptor and/or the asialoglycoprotein receptor in the liver. To increase the serum half-life of these glycoproteins, we carried out in vitro glycosylation experiments using TNFR-IgG, an immunoadhesin molecule, as a model therapeutic glycoprotein. TNFR-IgG is a disulfide-linked dimer of a polypeptide composed of the extracellular portion of the human type 1 (p55) tumor necrosis factor receptor (TNFR) fused to the hinge and Fc regions of the human IgG(1) heavy chain. This bivalent antibody-like molecule contains four N-glycosylation sites per polypeptide, three in the receptor portion and one in the Fc. The heterogeneous N-linked oligosaccharides of TNFR-IgG contain sialic acid (Sia), Gal, and GlcNAc as terminal sugar residues. To increase the level of terminal sialylation, we regalactosylated and/or resialylated TNFR-IgG using beta-1,4-galactosyltransferase (beta1,4GT) and/or alpha-2,3-sialyltransferase (alpha2,3ST). Treatment of TNFR-IgG with beta1,4GT and UDP-Gal, in the presence of MnCl(2), followed by MALDI-TOF-MS analysis of PNGase F-released N-glycans showed that the number of oligosaccharides with terminal GlcNAc residues was significantly decreased with a concomitant increase in the number of terminal Gal residues. Similar treatment of TNFR-IgG with alpha2,3ST and CMP-sialic acid (CMP-Sia), in the presence of MnCl(2), produced a molecule with an approximately 11% increase in the level of terminal sialylation but still contained oligosaccharides with terminal GlcNAc residues. When TNFR-IgG was treated with a combination of beta1,4GT and alpha2,3ST (either in a single step or in a stepwise fashion), the level of terminal sialylation was increased by approximately 20-23%. These results suggest that in vitro galactosylation and sialylation of therapeutic glycoproteins with terminal GlcNAc and Gal residues can be achieved in a single step, and the results are similar to those for the stepwise reaction. This type of in vitro glycosylation is applicable to other glycoproteins containing terminal GlcNAc and Gal residues and could prove to be useful in increasing the serum half-life of therapeutic glycoproteins.  相似文献   

9.
The structures of the carbohydrate moieties of glycoproteins in snake venoms are largely unknown. In the present study, we have analyzed venoms of several species of snakes as well as plasma and tissue glycoproteins from one species of cobra (Naja naja kaouthia) by lectin affinity staining of Western blots. The data demonstrate that glycoproteins in cobra venom invariably contain terminal alpha-galactosyl residues with negligible proportions of sialic acids. Interestingly, however, terminal alpha-galactosyl residues are present in significantly lower proportions in cobra tissues such as brain, liver, lung, kidney, spleen, muscle, and totally absent in cobra plasma glycoproteins. In sharp contrast to cobras, venom glycoproteins of other snakes do not contain terminal alpha-galactosyl residues but do contain terminal 2,3- and/or 2,6-linked sialic acids as well as beta-galactosyl residues. Cobra venom also contains high molecular weight heavily glycosylated proteins bearing poly-N-acetyllactosaminyl oligosaccharides, the majority of which appear to be linked to the protein core via O-glycosidic bonds.  相似文献   

10.
A major cell surface sialoglycoprotein with Concanavalin A receptor activity has been isolated from rat Zajdela ascites hepatoma cells. The sialic acid residues of the plasma membrane glycoproteins were specifically labeled by oxidation with NaIO4 followed by reduction with NaB3H4. Surface-labeled glycoproteins were released by short incubations with TPCK-trypsin at 37°C and then separated by gel filtration on Sepharose 6B column. The predominantly labeled fraction, GP II2, was then purified by chromatography on DEAE-cellulose equilibrated with 0.05 M phosphate buffer, pH 7.5, and eluted with increasing molarities of NaCl. It was shown to be homogeneous by protein and carbohydrate staining on SDS-polyacrylamide gels, isoelectric focusing, rechromatography on DEAE-cellulose and immunoelectrophoresis. It has an apparent molecular weight of 110,000 daltons. The location of GP II2on the cell surface was confirmed by the fact that it could be labeled metabolically with, D-(3H) glucosamine and externally through the nonpenetrating periodate-NaB3H4 system. GP II2could not be removed from the cell surface by high salt concentrations, chelator, or chaotropic agents but was released from the membrane by detergents. This suggests that GP II2could be an integral protein. Analysis of the carbohydrate composition of GP II2 revealed galactose, N-acetylglucosamine, N-acetylgalactosamine, and sialic acid as major constituents and mannose as a minor one. This suggests that it contains carbohydrate chains both O- and N-linked to the polypeptide chain, most of them being O-linked. Finally, GP II2has a potent Concanavalin A receptor activity. It inhibits the interaction between Concanavalin A and hepatoma cells and suppresses its effects on hepatoma cell proliferation.  相似文献   

11.
Sperm binding activity has been detected in zona pellucida (ZP) glycoproteins and it is generally accepted that this activity resides in the carbohydrate moieties. In the present study we aim to identify some of the specific carbohydrate molecules involved in the bovine sperm-ZP interaction. We performed sperm binding competition assays, in vitro fecundation (IVF) in combination with different lectins, antibodies and neuraminidase digestion, and chemical and cytochemical analysis of the bovine ZP. Both MAA lectin recognising alpha-2,3-linked sialic acid and neuraminidase from Salmonella typhimurium with catalytic activity for alpha-2,3-linked sialic acid, demonstrated a high inhibitory effect on the sperm-ZP binding and oocyte penetration. These results suggest that bovine sperm-ZP binding is mediated by alpha-2,3-linked sialic acid. Experiments with trisaccharides (sialyllactose, 3'-sialyllactosamine and 6'-sialyllactosamine) and glycoproteins (fetuin and asialofetuin) corroborated this and suggest that at least the sequence Neu5Ac(alpha2-3)Gal(beta1-4)GlcNAc is involved in the sperm-ZP interaction. Moreover, these results indicate the presence of a sperm plasma membrane specific protein for the sialic acid. Chemical analysis revealed that bovine ZP glycoproteins contain mainly Neu5Ac (84.5%) and Neu5GC (15.5%). These two types of sialic acid residues are probably linked to Galbeta1,4GlcNAc and GalNAc by alpha-2,3- and alpha-2,6-linkages, respectively, as demonstrated by lectin cytochemical analysis. The use of a neuraminidase inhibitor resulted in an increased number of spermatozoa bound to the ZP and penetrating the oocyte. From this last result we hypothesize that a neuraminidase from cortical granules would probably participate in the block to polyspermy by removing sialic acid from the ZP.  相似文献   

12.
The mechanism by which macrophages recognize tumor cells is still unknown. We have studied interactions between rat liver macrophages and rat L 5222 leukemia cells. These tumor cells, but not normal leukocytes or erythrocytes, adhere to freshly isolated macrophages in vitro. Binding of tumor cells by macrophages can be inhibited by N-acetyl-D-galactosamine, D-galactose and more potently by glycoproteins with terminal N-acetyl-D-galactosamine or D-galactose residues. Tumor cell adhesion is calcium-dependent. The relevant leukemia cell membrane structures which bear terminal beta-D-galactosyl or related residues have been determined as trypsin- and pronase-sensitive, and hence may presumably be glycoproteins. The tumor cell receptor on liver macrophages appears to be a lectin with the carbohydrate specificity N-acetyl-D-galactosamine greater than D-galactose greater than L-fucose.  相似文献   

13.
The acceptor activities of subcellular membrane preparations for the terminal sugars, galactose and sialic acid, were compared using a Golgi fraction purified from rat liver as an exogenous emzymes source for sugar transfer. Data are presented which strongly suggest that completion of carbohydrate chains of membrane glycoproteins and glycolipids occurs in the Golgi apparatus. Significant differences of acceptability of galactose and sialic acid were found between plasma membranes of rat liver and hepatoma cells (AH-130), indicating "incompleteness" of sugar chains in the latter.  相似文献   

14.
Role of carbohydrates in rat leukemia cell-liver macrophage cell contacts   总被引:1,自引:0,他引:1  
The mechanism by which macrophages recognize tumor cells is still unknown. We have studied interactions between rat liver macrophages and rat L 5222 leukemia cells. These tumor cells, but not normal leukocytes or erythrocytes, adhere to freshly isolated macrophages in vitro. Binding of tumor cells by macrophages can be inhibited by N-acetyl-D-galactosamine, D-galactose and more potently by glycoproteins with terminal N-acetyl-D-galactosamine or D-galactose residues. Tumor cell adhesion is calcium-dependent. The relevant leukemia cell membrane structures which bear terminal beta-D-galactosyl or related residues have been determined as trypsin- and pronase-sensitive, and hence may presumably be glycoproteins. The tumor cell receptor on liver macrophages appears to be a lectin with the carbohydrate specificity N-acetyl-D-galactosamine greater than D-galactose greater than L-fucose.  相似文献   

15.
1. Although glycoproteins with less than 1% of sialic acid (fibrinogen, lipoproteins, gamma-globulins) interact electrostatically with chondromucoprotein to form insoluble complexes, interaction with glycoproteins containing larger amounts of sialic acid (orosomucoid, urine glycoprotein, seromucoid, fraction VI) was electrostatically impossible. Reasons for this are discussed. 2. The latter glycoproteins interacted with chondromucoprotein after mild acid hydrolysis or neuraminidase treatment, complex-formation being inversely related to their sialic acid content. 3. Complex-formation with sialic acid-deficient orosomucoid was maximum at pH3.6 and negligible above its isoelectric point of pH5, and was inhibited by Ca(2+) ions and EDTA. 4. These results are discussed in relation to the carbohydrate composition and biological activities of euglobulin fractions, and of complexes formed by adding chondromucoprotein to abnormal plasmas which may contain sialic acid-deficient glycoproteins owing to faulty carbohydrate metabolism.  相似文献   

16.
A comparison has been made of the membrane glycoproteins and glycopeptides from two enveloped viruses, Sindbis virus and vesicular stomatitis virus (VSV). Glycopeptides isolated from Sindbis virus and VSV grown in the same host appear to differ principally in the number of sialic acid residues per glycopeptide; when sialic acid is removed by mild acid treatment, the glycopeptides of the two viral proteins are indistinguishable by exclusion chromatography. Preliminary evidence argues that the carbohydrate moiety covalently bound to different virus-specified membrane proteins may be specified principally by the host.  相似文献   

17.
A glycoprotein (PAS IV) of apparent Mr 76,000 was purified from bovine milk-fat-globule membrane and partially characterized. PAS IV contained mannose, galactose, and sialic acid as principal sugars (approximately 5.3% total carbohydrate [wt/wt]) and existed in milk in at least four isoelectric variants. The glycoprotein appeared to be an integral membrane protein by several criteria. PAS IV was recovered in the detergent phase of Triton X-114 extracts of milk-fat-globule membrane at room temperature. When bound to membrane, PAS IV was resistant to digestion by a number of proteinases, although after solubilization with non-ionic detergents, the protein was readily degraded. Amino acid analysis of the purified protein revealed a high percentage of amino acids with nonpolar residues. The location of PAS IV was determined in bovine tissues by using immunofluorescence techniques. In mammary tissue, PAS IV was located on both the apical surfaces of secretory epithelial cells and endothelial cells of capillaries. This glycoprotein was also detected in endothelial cells of heart, liver, spleen, pancreas, salivary gland, and small intestine. In addition to mammary epithelial cells, PAS IV was also located in certain other epithelial cells, most notably the bronchiolar epithelial cells of lung. The potential usefulness of this protein as a specific marker of capillary endothelial cells in certain tissues is discussed.  相似文献   

18.
Lectins from peanuts (PNA) and soy beans (SBA) bind terminal residues of galactose (Gal) and N-acetyl-galactosamine (GalNAc) respectively. Galactose oxidase oxidizes the hydroxyl group at C-6 of terminal Gal and GalNAc blocking the binding of PNA and SBA. Binding of these lectins to sugar residues is also severely limited by the existence of terminal residues of sialic acid. In the present study, lectin cytochemistry in combination with enzymatic treatments and quantitative analysis has been applied at light and electron microscopical levels to develop a simple methodology allowing the in situ discrimination between penultimate and terminal Gal/GalNAc residues. The areas selected for the demonstration of the method included rat zona pellucida and acrosomes of rat spermatids, which contain abundant glycoproteins with terminal Gal/GalNAc residues. Zona pellucida was labelled by LFA, PNA and SBA. After galactose oxidase treatment, terminal Gal/GalNAc residues are oxidized, and reactivity to PNA/SBA is abolished. The sequential application of galactose oxidase, neuraminidase and PNA/ SBA has the following effects: (i) oxidation of terminal Gal/GalNAc residues; (ii) elimination of terminal sialic acid residues rendering accessible to the lectins preterminal Gal/GalNAc residues; and (iii) binding of the lectins to the sugar residues. Acrosomes were reactive to PNA and SBA. No LFA reactivity was detected, thus indicating the absence of terminal sialic acid residues. Therefore, no labelling was observed after both galactose oxidase--PNA/SBA and galactose oxidase--neuraminidase--PNA/SBA sequences. In conclusion, the combined application of galactose oxidase, neuraminidase and PNA/SBA cytochemistry is a useful technique for the demonstration of penultimate carbohydrate residues with affinity for these lectins. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

19.
The evidence for neuraminic acid as a constituent of isolated plant glycoproteins was established by colorimetric and enzymic assay, gas-liquid chromatography-mass spectrometry, and radioactive labeling of glycoproteins containing a terminal sialic acid residue in the carbohydrate chains.  相似文献   

20.
Rosetting between thymocytes and autologous erythrocytes is mediated by receptors on thymocytes that primarily recognize self H-2L molecules on erythrocytes. This paper describes preliminary attempts to chemically characterize the receptor and acceptor molecules involved in thisH-2-restricted interaction. On the basis of sugar inhibition studies and the sensitivity of the receptors and acceptors to protease and glycosidase treatments it appears that a protein receptor on thymocytes recognizes the carbohydrate portion of a glycoprotein on erythrocytes. Furthermore, the thymocyte receptor appears to recognize terminal D-galactose, D-mannose and sialic acid residues on a branched-chain carbohydrate structure on erythrocytes, with mouse strains of differentH-2 haplotype expressing carbohydrate structures that differ in the linkage of these three terminal sugars. These findings indicate thatH-2-restricted carbohydrate-protein interactions can occur between cells, a conclusion with important theoretical implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号