首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A dramatic paradigm shift in understanding Parkinson's disease (PD) has emerged with implications for Alzheimer's disease (AD) because: (1) Mutations in the alpha‐synuclein (AS) gene cause familial PD, (2) Antibodies to AS detect Lewy bodies (LBs) and dystrophic Lewy neurites in PD, dementia with LBs (DLB), sporadic AD and the LB variant of AD (LBVAD), (3) Insoluble AS filaments are recovered from DLB brains and purified LBs, (4) Recombinant AS assembles into LB‐like filaments and residues 71–82 are essential for filament assembly, (5) AS transgenic mice and flies develop a PD‐like phenotype, (6) Cortical LBs detected with antibodies to AS correlate with dementia in PD, DLB and LBVAD, (7) Antibodies to AS detect LBs in 50% of familial AD, sporadic AD and Down's syndrome brains, (8) AS forms glial cytoplasmic inclusions (GCIs) in multiple system atrophy, (9) Epitopes throughout AS in LBs and GCIs, (10) Filamentous AS aggregates in LBs, GCIs and related lesions contain nitrated tyrosines, (11) Cells transfected with AS and treated with nitric oxide generators develop LB‐like AS inclusions, (12) Bigenic mice overexpressing mutant human APP and AS show an augmentation in AS inclusions. Thus, neurodegenerative diseases characterized by AS pathologies are synucleinopathies, and the filamentous AS lesions in these disorders may result in part from oxidative/nitrative damage to AS. Abnormal interactions of brain proteins may underlie synucleinopathies and other neurodegenerative disorders. Acknowledgements: Supported by NIA/NIH and Alzheimer's Association.  相似文献   

2.
The abnormal aggregation of proteins into fibrillar lesions is a neuropathological hallmark of several sporadic and hereditary neurodegenerative diseases. For example, Lewy bodies (LBs) are intracytoplasmic filamentous inclusions that accumulate primarily in subcortical neurons of patients with Parkinson's disease (PD), or predominantly in neocortical neurons in a subtype of Alzheimer's disease (AD) known as the LB variant of AD (LBVAD) and in dementia with LBs (DLB). Aggregated neurofilament subunits and alpha-synuclein are major protein components of LBs, and these inclusions may contribute mechanistically to the degeneration of neurons in PD, DLB and LBVAD. Here we review recent studies of the protein building blocks of LBs, as well as the role LBs play in the onset and progression of PD, DLB and LBVAD. Increased understanding of the protein composition and pathological significance of LBs may provide insight into mechanisms of neuron dysfunction and death in other neurodegenerative disorders characterized by brain lesions containing massive deposits of proteinacious fibrils.  相似文献   

3.
Luk KC  Hyde EG  Trojanowski JQ  Lee VM 《Biochemistry》2007,46(44):12522-12529
Parkinson's disease (PD) is characterized by the accumulation of fibrillar alpha-synuclein (alpha-Syn) inclusions known as Lewy bodies (LBs) and Lewy neurites. Mutations in the alpha-Syn gene or extra copies thereof cause familial PD or dementia with LBs (DLB) in rare kindreds, but abnormal accumulations of wildtype alpha-Syn also are implicated in the pathogenesis of sporadic PD, the most common movement disorder. Insights into mechanisms underlying alpha-Syn mediated neurodegeneration link alpha-Syn oligomerization and fibrillization to the onset and progression of PD. Thus, inhibiting alpha-Syn oligomer or fibril formation is a compelling target for discovering disease modifying therapies for PD, DLB, and related synucleinopathies. Although amyloid dyes recognize alpha-Syn fibrils, efficient detection of soluble oligomers remains a challenge. Here, we report a novel fluorescence polarization (FP) technique for examining alpha-Syn assembly by monitoring changes in its relative molecular mass during progression of normal alpha-Syn from highly soluble monomers to higher order multimers and thence insoluble amyloid fibrils. We report that FP is more sensitive than conventional amyloid dye methods for the quantification of mature fibrils, and that FP is capable of detecting oligomeric alpha-Syn, allowing for rapid automated screening of potential inhibitors of alpha-Syn oligomerization and fibrillization. Furthermore, FP can be combined with an amyloid dye in a single assay that simultaneously provides two independent biophysical readouts for monitoring alpha-Syn fibrillization. Thus, this FP method holds potential to accelerate discovery of disease modifying therapies for LB PD, DLB, and related neurodegenerative synucleinopathies.  相似文献   

4.
Inclusions composed of α-synuclein (α-syn), i.e., Lewy bodies (LBs) and Lewy neurites (LNs), define synucleinopathies including Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Here, we demonstrate that preformed fibrils generated from full-length and truncated recombinant α-syn enter primary neurons, probably by adsorptive-mediated endocytosis, and promote recruitment of soluble endogenous α-syn into insoluble PD-like LBs and LNs. Remarkably, endogenous α-syn was sufficient for formation of these aggregates, and overexpression of wild-type or mutant α-syn was not required. LN-like pathology first developed in axons and propagated to form LB-like inclusions in perikarya. Accumulation of pathologic α-syn led to selective decreases in synaptic proteins, progressive impairments in neuronal excitability and connectivity, and, eventually, neuron death. Thus, our data contribute important insights into the etiology and pathogenesis of PD-like α-syn inclusions and their impact on neuronal functions, and they provide a model for discovering therapeutics targeting pathologic α-syn-mediated neurodegeneration.  相似文献   

5.
Aggregated alpha-synuclein (alpha-syn) fibrils form Lewy bodies (LBs), the signature lesions of Parkinson's disease (PD) and related synucleinopathies, but the pathogenesis and neurodegenerative effects of LBs remain enigmatic. Recent studies have shown that when overexpressed in Saccharomyces cerevisiae, alpha-syn localizes to plasma membranes and forms cytoplasmic accumulations similar to human alpha-syn inclusions. However, the exact nature, composition, temporal evolution, and underlying mechanisms of yeast alpha-syn accumulations and their relevance to human synucleinopathies are unknown. Here we provide ultrastructural evidence that alpha-syn accumulations are not comprised of LB-like fibrils, but are associated with clusters of vesicles. Live-cell imaging showed alpha-syn initially localized to the plasma membrane and subsequently formed accumulations in association with vesicles. Imaging of truncated and mutant forms of alpha-syn revealed the molecular determinants and vesicular trafficking pathways underlying this pathological process. Because vesicular clustering is also found in LB-containing neurons of PD brains, alpha-syn-mediated vesicular accumulation in yeast represents a model system to study specific aspects of neurodegeneration in PD and related synucleinopathies.  相似文献   

6.
Aggregation of α-synuclein plays a crucial role in the pathogenesis of synucleinopathies, a group of neurodegenerative diseases including Parkinson disease (PD), dementia with Lewy bodies (DLB), diffuse Lewy body disease (DLBD) and multiple system atrophy (MSA). The common feature of these diseases is a pathological deposition of protein aggregates, known as Lewy bodies (LBs) in the central nervous system. The major component of these aggregates is α-synuclein, a natively unfolded protein, which may undergo dramatic structural changes resulting in the formation of β-sheet rich assemblies. In vitro studies have shown that recombinant α-synuclein protein may polymerize into amyloidogenic fibrils resembling those found in LBs. These aggregates may be uptaken and propagated between cells in a prion-like manner. Here we present the mechanisms and kinetics of α-synuclein aggregation in vitro, as well as crucial factors affecting this process. We also describe how PD-linked α-synuclein mutations and some exogenous factors modulate in vitro aggregation. Furthermore, we present a current knowledge on the mechanisms by which extracellular aggregates may be internalized and propagated between cells, as well as the mechanisms of their toxicity.  相似文献   

7.
Accumulation of misfolded proteins as insoluble aggregates occurs in several neurodegenerative diseases. In Parkinson's disease (PD) and dementia with Lewy bodies (DLB), alpha-synuclein (alpha S) accumulates in insoluble inclusions. To identify soluble alpha S oligomers that precede insoluble aggregates, we probed the cytosols of mesencephalic neuronal (MES) cells, normal and alpha S-transgenic mouse brains, and normal, PD, and DLB human brains. All contained highly soluble oligomers of alpha S whose detection was enhanced by delipidation. Exposure of living MES neurons to polyunsaturated fatty acids (PUFAs) increased alpha S oligomer levels, whereas saturated FAs decreased them. PUFAs directly promoted oligomerization of recombinant alphaS. Transgenic mice accumulated soluble oligomers with age. PD and DLB brains had elevated amounts of the soluble, lipid-dependent oligomers. We conclude that alpha S interacts with PUFAs in vivo to promote the formation of highly soluble oligomers that precede the insoluble alpha S aggregates associated with neurodegeneration.  相似文献   

8.
Alpha-synuclein (alphaS) is an abundant neuronal protein that accumulates in insoluble inclusions in Parkinson's disease (PD) and the related disorder, dementia with Lewy bodies (DLB). A central question about the role of alphaS in the pathogenesis of PD and DLB concerns how this normally soluble protein assembles into insoluble aggregates associated with neuronal dysfunction. We recently detected highly soluble oligomers of alphaS in normal brain supernatants and observed their augmentation in PD and DLB brains. Further, we found that polyunsaturated fatty acids (PUFAs) enhanced alphaS oligomerization in intact mesencephalic neuronal cells. We now report the presence of elevated PUFA levels in PD and DLB brain soluble fractions. Higher PUFA levels were also detected in the supernatants and high-speed membrane fractions of neuronal cells over-expressing wild-type or PD-causing mutant alphaS. This increased PUFA content in the membrane fraction was accompanied by increased membrane fluidity in the alphaS overexpressing neurons. In accord, membrane fluidity and the levels of certain PUFAs were decreased in the brains of mice genetically deleted of alphaS. Together with our earlier observations, these results suggest that alphaS-PUFA interactions help regulate neuronal PUFA levels as well as the oligomerization state of alphaS, both normally and in human synucleinopathies.  相似文献   

9.
α-Synuclein (AS)-positive inclusions are the pathological hallmark of Parkinson’s disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA), all belonging to the category of α-synucleinopathies. α-Synucleinopathies represent progressive neurodegenerative disorders characterised by increasing incidences in the population over the age of 65. The relevance of glial reactivity and dysfunction in α-synucleinopathies is highlighted by numerous experimental evidences. Glial AS inclusion pathology is prominent in oligodendroglia of MSA (glial cytoplasmic inclusions) and is a common finding in astroglial cells of PD and DLB, resulting in specific dysfunctional responses. Involvement of AS-dependent astroglial and microglial activation in neurodegenerative mechanisms, and therefore in disease initiation and progression, has been suggested. The aim of this review is to summarise and discuss the multifaceted responses of glial cells in α-synucleinopathies. The beneficial, as well as detrimental, effects of glial cells on neuronal viability are taken into consideration to draw an integrated picture of glial roles in α-synucleinopathies. Furthermore, an overview on therapeutic approaches outlines the difficulties of translating promising experimental studies into successful clinical trials targeting candidate glial pathomechanisms.  相似文献   

10.
Lee VM  Trojanowski JQ 《Neuron》2006,52(1):33-38
Classic Parkinson's disease (PD) is characterized by fibrillar alpha-synuclein inclusions known as Lewy bodies in the substantia nigra, which are associated with nigrostriatal degeneration. However, alpha-synuclein pathologies accumulate throughout the CNS in areas that also undergo progressive neurodegeneration, leading to dementia and other behavioral impairments in addition to parkinsonism. Although mutations in the alpha-synuclein gene only cause Lewy body PD in rare families, and although there are multiple other, albeit rare, genetic causes of familial parkinsonism, sporadic Lewy body PD is the most common movement disorder, and insights into mechanisms underlying alpha-synuclein-mediated neurodegeneration provide novel targets for the discovery of disease-modifying therapies for PD and related neurodegenerative alpha-synucleinopathies.  相似文献   

11.
Alzheimer's disease (AD) and Parkinson's disease (PD) are the two most common neurodegenerative diseases that occur either in relatively rare, familial forms or in common, sporadic forms. The genetic defects underlying several monogenic familial forms of AD and PD have recently been identified, however, the causes of other AD and PD cases, particularly sporadic cases, remain unclear. To gain insights into the pathogenic mechanisms involved in AD and PD, we used a proteomic approach to identify proteins with altered expression levels and/or oxidative modifications in idiopathic AD and PD brains. Here, we report that the protein level of ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1), a neuronal de-ubiquitinating enzyme whose mutation has been linked to an early-onset familial PD, is down-regulated in idiopathic PD as well as AD brains. By using a combination of two-dimensional gel electrophoresis and mass spectrometry, we have identified three human brain UCH-L1 isoforms, a full-length form and two amino-terminally truncated forms. Our proteomic analyses reveal that the full-length UCH-L1 is a major target of oxidative damage in AD and PD brains, which is extensively modified by carbonyl formation, methionine oxidation, and cysteine oxidation. Furthermore, immunohistochemical studies show that prominent UCH-L1 immunostaining is associated with neurofibrillary tangles and that the level of soluble UCH-L1 protein is inversely proportional to the number of tangles in AD brains. Together, these results provide evidence supporting a direct link between oxidative damage to the neuronal ubiquitination/de-ubiquitination machinery and the pathogenesis of sporadic AD and PD.  相似文献   

12.
Protein misfolding and inclusion formation are common events in neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD) or Huntington's disease (HD). Alpha-synuclein (aSyn) is the main protein component of inclusions called Lewy bodies (LB) which are pathognomic of PD, Dementia with Lewy bodies (DLB), and other diseases collectively known as LB diseases. Heat shock proteins (HSPs) are one class of the cellular quality control system that mediate protein folding, remodeling, and even disaggregation. Here, we investigated the role of the small heat shock proteins Hsp27 and alphaB-crystallin, in LB diseases. We demonstrate, via quantitative PCR, that Hsp27 messenger RNA levels are approximately 2-3-fold higher in DLB cases compared to control. We also show a corresponding increase in Hsp27 protein levels. Furthermore, we found that Hsp27 reduces aSyn-induced toxicity by approximately 80% in a culture model while alphaB-crystallin reduces toxicity by approximately 20%. In addition, intracellular inclusions were immunopositive for endogenous Hsp27, and overexpression of this protein reduced aSyn aggregation in a cell culture model.  相似文献   

13.

Background

Lewy body disease is a heterogeneous group of neurodegenerative disorders characterized by α-synuclein accumulation that includes dementia with Lewy bodies (DLB) and Parkinson''s Disease (PD). Recent evidence suggests that impairment of lysosomal pathways (i.e. autophagy) involved in α-synuclein clearance might play an important role. For this reason, we sought to examine the expression levels of members of the autophagy pathway in brains of patients with DLB and Alzheimer''s Disease (AD) and in α-synuclein transgenic mice.

Methodology/Principal Findings

By immunoblot analysis, compared to controls and AD, in DLB cases levels of mTor were elevated and Atg7 were reduced. Levels of other components of the autophagy pathway such as Atg5, Atg10, Atg12 and Beclin-1 were not different in DLB compared to controls. In DLB brains, mTor was more abundant in neurons displaying α-synuclein accumulation. These neurons also showed abnormal expression of lysosomal markers such as LC3, and ultrastructural analysis revealed the presence of abundant and abnormal autophagosomes. Similar alterations were observed in the brains of α-synuclein transgenic mice. Intra-cerebral infusion of rapamycin, an inhibitor of mTor, or injection of a lentiviral vector expressing Atg7 resulted in reduced accumulation of α-synuclein in transgenic mice and amelioration of associated neurodegenerative alterations.

Conclusions/Significance

This study supports the notion that defects in the autophagy pathway and more specifically in mTor and Atg7 are associated with neurodegeneration in DLB cases and α-synuclein transgenic models and supports the possibility that modulators of the autophagy pathway might have potential therapeutic effects.  相似文献   

14.
Synucleinopathies are a group of neurodegenerative disorders associated with the formation of aberrant amyloid inclusions composed of the normally soluble presynaptic protein α-synuclein (α-syn). Parkinson disease is the most well known of these disorders because it bears α-syn pathological inclusions known as Lewy bodies (LBs). Mutations in the gene for α-syn, including the E46K missense mutation, are sufficient to cause Parkinson disease as well as other synucleinopathies like dementia with LBs. Herein, we describe transgenic mice expressing E46K human α-syn in CNS neurons that develop detrimental age-dependent motor impairments. These animals accumulate age-dependent intracytoplasmic neuronal α-syn inclusions that parallel disease and recapitulate the biochemical, histological, and morphological properties of LBs. Surprisingly, the morphology of α-syn inclusions in E46K human α-syn transgenic mice more closely resemble LBs than the previously described transgenic mice (line M83) that express neuronal A53T human α-syn. E46K human α-syn mice also develop abundant neuronal tau inclusions that resemble neurofibrillary tangles. Subsequent studies on the ability of E46K α-syn to induce tau inclusions in cellular models suggest that both direct and indirect mechanisms of protein aggregation are probably involved in the formation of the tau inclusions observed here in vivo. Re-evaluation of presymptomatic transgenic mice expressing A53T human α-syn reveals that the formation of α-syn inclusions in mice must be synchronized; however, inclusion formation is diffuse within affected areas of the neuroaxis such that there was no clustering of inclusions. Collectively, these findings provide insights in the mechanisms of formation of these aberrant proteinaceous inclusions and support the notion that α-syn aggregates are involved in the pathogenesis of human diseases.  相似文献   

15.
Alzheimer's disease (AD) and dementia with Lewy bodies (DLB) are neurodegenerative disorders that share progressive dementia as the common major clinical symptom. Damages to memory-related brain structures are the likely pathological correlate, and in both illnesses deposition of amyloidogenic proteins are present mainly within these limbic structures. Amyloid-–positive plaques and phospho-tau–positive neurofibrillary tangles are the main feature of AD and -synuclein–positive Lewy bodies and Lewy neurites are found in DLB. Interestingly the associated proteins also interfere with synaptic function and synaptic plasticity. Here, we propose that the same neuronal circuits are disturbed within the hippocampal formation in AD and DLB and that in both diseases the associated proteins might lead to changes in synaptic plasticity and function. Thus both classic neuropathological changes and cellular dysfunctions might contribute to the cognitive impairments in AD and DLB.  相似文献   

16.
F2-isoprostanes (F2-IsoPs) are well-established sensitive and specific markers of oxidative stress in vivo. Isofurans (IsoFs) are also products of lipid peroxidation, but in contrast to F2-IsoPs, their formation is favored when oxygen tension is increased in vitro or in vivo. Mitochondrial dysfunction in Parkinson's disease (PD) may not only lead to oxidative damage to brain tissue but also potentially result in increased intracellular oxygen tension, thereby influencing relative concentrations of F2-IsoPs and IsoFs. In this study, we attempted to compare the levels of F2-IsoPs and IsoFs esterified in phospholipids in the substantia nigra (SN) from patients with PD to those of age-matched controls as well as patients with other neurodegenerative diseases, including dementia with Lewy body disease (DLB), multiple system atrophy (MSA), and Alzheimer's disease (AD). The results demonstrated that IsoFs but not F2-IsoPs in the SN of patients with PD and DLB were significantly higher than those of controls. Levels of IsoFs and F2-IsoPs in the SN of patients with MSA and AD were indistinguishable from those of age-matched controls. This preferential increase in IsoFs in the SN of patients with PD or DLB not only indicates a unique mode of oxidant injury in these two diseases but also suggests different underlying mechanisms of dopaminergic neurodegeneration in PD and DLB from those of MSA.  相似文献   

17.
Intracellular proteinaceous aggregates are hallmarks of many common neurodegenerative disorders, and recent studies have shown that alpha-synuclein is a major component of several pathological intracellular inclusions, including Lewy bodies in Parkinson's disease (PD) and glial cell inclusions in multiple system atrophy. However, the molecular mechanisms underlying alpha-synuclein aggregation into filamentous inclusions remain unknown. Since oxidative and nitrative stresses are potential pathogenic mediators of PD and other neurodegenerative diseases, we asked if oxidative and/or nitrative events alter alpha-synuclein and induce it to aggregate. Here we show that exposure of human recombinant alpha-synuclein to nitrating agents (peroxynitrite/CO(2) or myeloperoxidase/H(2)O(2)/nitrite) induces formation of nitrated alpha-synuclein oligomers that are highly stabilized due to covalent cross-linking via the oxidation of tyrosine to form o,o'-dityrosine. We also demonstrate that oxidation and nitration of pre-assembled alpha-synuclein filaments stabilize these filaments to withstand denaturing conditions and enhance formation of SDS-insoluble, heat-stable high molecular mass aggregates. Thus, these data suggest that oxidative and nitrative stresses are involved in mechanisms underlying the pathogenesis of Lewy bodies and glial cell inclusions in PD and multiple system atrophy, respectively, as well as alpha-synuclein pathologies in other synucleinopathies.  相似文献   

18.
19.
Parkinson's disease (PD) and Dementia with Lewy bodies (DLB) are neurodegenerative diseases that are characterized by intra-neuronal inclusions of Lewy bodies in distinct brain regions. These inclusions consist mainly of aggregated α-synuclein (α-syn) protein. The present study used immunoprecipitation combined with nanoflow liquid chromatography (LC) coupled to high resolution electrospray ionization Fourier transform ion cyclotron resonance tandem mass spectrometry (ESI-FTICR-MS/MS) to determine known and novel isoforms of α-syn in brain tissue homogenates. N-terminally acetylated full-length α-syn (Ac-α-syn?????) and two N-terminally acetylated C-terminally truncated forms of α-syn (Ac-α-syn????? and Ac-α-syn?????) were found. The different forms of α-syn were further studied by Western blotting in brain tissue homogenates from the temporal cortex Brodmann area 36 (BA36) and the dorsolateral prefrontal cortex BA9 derived from controls, patients with DLB and PD with dementia (PDD). Quantification of α-syn in each brain tissue fraction was performed using a novel enzyme-linked immunosorbent assay (ELISA).  相似文献   

20.
The two most frequent synucleinopathies, Parkinson disease (PD) or brainstem predominant type of Lewy body disease, and dementia with Lewy bodies (DLB), are neurodegenerative multisystem disorders with widespread occurrence of α-synuclein containing deposits in the central, peripheral, and autonomic systems. For both Lewy body-related disorders staging/classification systems based on semiquantitative assessment of the distribution and progression pattern of α-synuclein pathology are used that are considered to be linked to clinical dysfunctions. In PD a six-stage system is suggested to indicate a predictable sequence of lesions with ascending progression from medullary and olfactory nuclei to the cortex, the first two presymptomatic stages related to incidental Lewy body disease, stages 3 and 4 presenting with motor symptoms and the last two (cortical) stages frequently associated with cognitive impairment. DLB, according to consensus pathologic guidelines, by semiquantitative scoring of α-synuclein pathology (Lewy body density and distribution) in specific brain regions, is distinguished into three phenotypes (brainstem, transitory/limbic and diffuse cortical), also considering concomitant Alzheimer-related pathology. Recent retrospective clinico-pathologic studies, although largely confirming the staging system, particularly for younger onset PD with long duration, have shown that between 6.3 and 43% of cases did not follow the proposed caudo-rostral progression pattern of α-synuclein pathology. In 7 to 8.3% of clinically manifested PD cases with synuclein inclusions in midbrain and cortex corresponding to LB stages 4–5 the medullary nuclei were spared, whereas mild parkinsonian symptoms were already observed in stages 2 and 3. There is considerable clinical and pathologic overlap between PD (with or without dementia) and DLB, corresponding to Braak LB stages 5 and 6, both frequently associated with variable Alzheimer-type pathology. Dementia often does not correlate with progressed stages of Lewy body pathology, but is related to concomitant Alzheimer lesions or mixed pathologies. There is no relationship between Braak LB stages and clinical severity of PD. Therefore, the predictive validity of this concept is doubtful, since in large unselected autopsy series 30 to 55% of elderly subjects with widespread α-synuclein pathology (Braak stages 5–6) revealed no definite neuropsychiatric symptoms or were not classifiable, indicating compensatory mechanisms of the brain. The causes and molecular basis of rather frequent deviations from the proposed caudo-rostral progression of α-synuclein pathology in PD, its relation to the onset of classical parkinsonian symptoms, the causes for the lack of definite clinical symptoms despite widespread α-synuclein pathology in the nervous system, their relations to Alzheimer-type lesions, and the pathophysiologic impact of both pathologies remain to be further elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号