首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Though many software packages have been developed to perform label-free quantification of proteins in complex biological samples using peptide intensities generated by LC-MS/MS, two critical issues are generally ignored in this field: (i) peptides have multiple elution patterns across runs in an experiment, and (ii) many peptides cannot be used for protein quantification. To address these two key issues, we have developed a novel alignment method to enable accurate peptide peak retention time determination and multiple filters to eliminate unqualified peptides for protein quantification. Repeatability and linearity have been tested using six very different samples, i.e., standard peptides, kidney tissue lysates, HT29-MTX cell lysates, depleted human serum, human serum albumin-bound proteins, and standard proteins spiked in kidney tissue lysates. At least 90.8% of the proteins (up to 1,390) had CVs ≤ 30% across 10 technical replicates, and at least 93.6% (up to 2,013) had R(2) ≥ 0.9500 across 7 concentrations. Identical amounts of standard protein spiked in complex biological samples achieved a CV of 8.6% across eight injections of two groups. Further assessment was made by comparing mass spectrometric results to immunodetection, and consistent results were obtained. The new approach has novel and specific features enabling accurate label-free quantification.  相似文献   

2.
Selected reaction monitoring (SRM) is an accurate quantitative technique, typically used for small-molecule mass spectrometry (MS). SRM has emerged as an important technique for targeted and hypothesis-driven proteomic research, and is becoming the reference method for protein quantification in complex biological samples. SRM offers high selectivity, a lower limit of detection and improved reproducibility, compared to conventional shot-gun-based tandem MS (LC-MS/MS) methods. Unlike LC-MS/MS, which requires computationally intensive informatic postanalysis, SRM requires preacquisition bioinformatic analysis to determine proteotypic peptides and optimal transitions to uniquely identify and to accurately quantitate proteins of interest. Extensive arrays of bioinformatics software tools, both web-based and stand-alone, have been published to assist researchers to determine optimal peptides and transition sets. The transitions are oftentimes selected based on preferred precursor charge state, peptide molecular weight, hydrophobicity, fragmentation pattern at a given collision energy (CE), and instrumentation chosen. Validation of the selected transitions for each peptide is critical since peptide performance varies depending on the mass spectrometer used. In this review, we provide an overview of open source and commercial bioinformatic tools for analyzing LC-MS data acquired by SRM.  相似文献   

3.
A quantitative method for the determination of proteins in complex biological matrices has been developed based on the selectivity of antibodies for sample purification followed by proteolytic digestion and quantitative mass spectrometry. An immunosorbent of polyclonal anti-bovine serum albumin (BSA) antibodies immobilized on CNBR agarose is used in the on-line mode for selective sample pretreatment. Next, the purified sample is trypsin digested to obtain protein specific peptide markers. Subsequent analysis of the peptide mixture using a desalination procedure and a separation step coupled, on-line to an ion-trap mass spectrometer, reveals that this method enables selective determination of proteins in biological matrices like diluted human plasma. This approach enhances substantially the selectivity compared to common quantitative analysis executed with immunoassays and colorimetry, fluorimetry or luminescence detection. Hyphenation of the immunoaffinity chromatography with on-line digestion and chromatography-mass spectrometry is performed and a completely on-line quantification of the model protein BSA in bovine and human urine was established. A detection limit of 170 nmol/l and a quantification limit of 280 nmol/l is obtained using 50 microl of either standard or spiked biological matrix. The model system allows fully automated absolute quantitative mass spectrometric analysis of intact proteins in biological matrices without time-consuming labeling procedures.  相似文献   

4.
Targeted quantitative proteomics by mass spectrometry aims to selectively detect one or a panel of peptides/proteins in a complex sample and is particularly appealing for novel biomarker verification/validation because it does not require specific antibodies. Here, we demonstrated the application of targeted quantitative proteomics in searching, identifying, and quantifying selected peptides in human cerebrospinal spinal fluid (CSF) using a matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometer (MALDI TOF/TOF)-based platform. The approach involved two major components: the use of isotopic-labeled synthetic peptides as references for targeted identification and quantification and a highly selective mass spectrometric analysis based on the unique characteristics of the MALDI instrument. The platform provides high confidence for targeted peptide detection in a complex system and can potentially be developed into a high-throughput system. Using the liquid chromatography (LC) MALDI TOF/TOF platform and the complementary identification strategy, we were able to selectively identify and quantify a panel of targeted peptides in the whole proteome of CSF without prior depletion of abundant proteins. The effectiveness and robustness of the approach associated with different sample complexity, sample preparation strategies, as well as mass spectrometric quantification were evaluated. Other issues related to chromatography separation and the feasibility for high-throughput analysis were also discussed. Finally, we applied targeted quantitative proteomics to analyze a subset of previously identified candidate markers in CSF samples of patients with Parkinson's disease (PD) at different stages and Alzheimer's disease (AD) along with normal controls.  相似文献   

5.
The endocannabinoids anandamide (arachidonoyl ethanolamide, AEA) and 2-arachidonoyl glycerol (2AG) are physiologically occurring, biologically active compounds on CB(1) and CB(2) receptors with multiple physiological functions. AEA and 2AG have been identified and quantified in many mammalian biological fluids and tissues, such as human plasma, adipocytes, tissues and tissue microdialysates, at concentrations in the picomolar-to-nanomolar range under basal conditions. In this article, recently published chromatographic and mass spectrometric analytical methods, i.e., HPLC with fluorescence or ultraviolet detection, LC-MS, LC-MS/MS, GC-MS and GC-MS/MS, are reviewed and discussed, notably from the quantitative point of view. We focus on and emphasize the particular importance of blood sampling, sample storage and work-up including solvent and solid-phase extraction and derivatization procedures, matrix-effects, and stability of analytes. As 2AG spontaneously isomerizes to its CB(1)/CB(2) receptors biologically inactive 1-arachidonoyl glycerol (1AG) by acyl migration, this phenomenon and its particular importance for accurate quantification of 2AG are discussed in detail. Due to the electrical neutrality of AEA and 2AG their solvent extraction by toluene offers the least matrix-effect and minimum isomerization. LC-MS/MS is the most frequently used analytical technique for AEA and 2AG. At present, the utility of the GC-MS/MS methodology seems to be limited to AEA measurement in human plasma, bronchoalveolar liquid (BAL) and microdialysate samples. Despite great instrumental advances in the LC-MS/MS methodology, sampling and sample treatment remains one of the most crucial analytical steps in 2AG analysis. Extension of the LC-MS/MS methodology, for instance to microdialysate and BAL samples from clinical studies, is a big analytical challenge in endocannabinoid analysis in clinical settings. Currently available LC-MS/MS and GC-MS/MS methods should be useful to investigate the metabolism of AEA and 2AG beyond hydrolysis, i.e., by β- and ω-oxidation pathways.  相似文献   

6.
A mass spectrometry-based antibody selection procedure was developed to evaluate optimal 'capture' monoclonal antibodies that can be used in a variety of analytical measurement applications. The isotope-dilution liquid chromatography-tandem mass spectrometry (ID LC-MS/MS) methodology is based on the use of multiple-reaction monitoring of tryptic peptide fragments derived from protein antigens. A panel of monoclonal antibodies (mAb) was evaluated based on a quantitative determination of relative binding affinity to human cardiac troponin I following immunoprecipitation. Dissociation constants (K(d)) were determined for 'bound mAb-antigen' vs. 'unbound antigen' using non-linear regression analysis. Relative quantification of both antigen and antibody was based on the use of stable isotope-labeled synthetic peptides as internal standards. Optimal 'capture' mAbs were determined through evaluation of relative K(d) constants of all monitored peptide transitions. A panel of six pre-screened candidate capture mAbs was concluded to consist of two subsets of mAbs, each with statistically equivalent K(d) constants as determined using NIST Standard Reference Material (SRM) 2921 - Human Cardiac Troponin Complex. This ID LC-MS/MS method is shown to be capable of quantitatively differentiating mAbs based on relative binding affinities. Selection of optimal capture mAbs can be applied toward a number of analytical applications which require metrological traceability and unbiased quantification.  相似文献   

7.
Differential quantification of proteins and peptides by LC-MS is a promising method to acquire knowledge about biological processes, and for finding drug targets and biomarkers. However, differential protein analysis using LC-MS has been held back by the lack of suitable software tools. Large amounts of experimental data are easily generated in protein and peptide profiling experiments, but data analysis is time-consuming and labor-intensive. Here, we present a fully automated method for scanning LC-MS/MS data for biologically significant peptides and proteins, including support for interactive confirmation and further profiling. By studying peptide mixtures of known composition, we demonstrate that peptides present in different amounts in different groups of samples can be automatically screened for using statistical tests. A linear response can be obtained over almost 3 orders of magnitude, facilitating further profiling of peptides and proteins of interest. Furthermore, we apply the method to study the changes of endogenous peptide levels in mouse brain striatum after administration of reserpine, a classical model drug for inducing Parkinson disease symptoms.  相似文献   

8.
A sensitive and selective liquid chromatographic-tandem mass spectrometric (LC-MS/MS) method was developed for the determination of serial chiral novel anticholinergic compounds of phencynonate in rat plasma. After a simple protein-precipitation using methanol, the post-treatment samples were separated on a CAPCELL UG120 column with a mobile phase of a mixture of methanol and water (35:65) containing 0.1% formic acid. The serial chiral analytes and internal standard (IS) were all detected by the use of selected reaction monitoring mode (SRM). The method of all serial chiral analytes developed was validated in rat plasma with a daily working range of 0.5-100 ng/ml with correlation coefficient, R(2) > or = 0.99 and a sensitivity of 0.5 ng/ml as lower limit of quantification, respectively. This method was fully validated for the accuracy, precision and stability studies for all serial chiral analytes. The method proved to be accurate and specific, and was applied to the pharmacokinetic study of serial chiral novel anticholinergic compounds of phencynonate in rat plasma.  相似文献   

9.

Background  

Relative isotope abundance quantification, which can be used for peptide identification and differential peptide quantification, plays an important role in liquid chromatography-mass spectrometry (LC-MS)-based proteomics. However, several major issues exist in the relative isotopic quantification of peptides on time-of-flight (TOF) instruments: LC peak boundary detection, thermal noise suppression, interference removal and mass drift correction. We propose to use the Maximum Ratio Combining (MRC) method to extract MS signal templates for interference detection/removal and LC peak boundary detection. In our method, MRCQuant, MS templates are extracted directly from experimental values, and the mass drift in each LC-MS run is automatically captured and compensated. We compared the quantification accuracy of MRCQuant to that of another representative LC-MS quantification algorithm (msInspect) using datasets downloaded from a public data repository.  相似文献   

10.
In this paper, a brief overview of the most commonly used methods for the separation and analysis of peptides and proteins in stability and bioanalysis studies is presented. To investigate the physical stability of peptides and proteins, size-exclusion chromatography and electrophoretic separation techniques are being used, apart from several other methods. To determine the chemical stability of these compounds, separation systems are also important, with informative detection modes, such as various spectroscopic detections, electrochemical detection and mass spectrometric detection. For the bioanalysis of peptides, separation is the most important factor, while the detection must be done at the highest possible level of sensitivity.  相似文献   

11.
Mass spectrometry-based quantitative proteomics has become an important component of biological and clinical research. Although such analyses typically assume that a protein's peptide fragments are observed with equal likelihood, only a few so-called 'proteotypic' peptides are repeatedly and consistently identified for any given protein present in a mixture. Using >600,000 peptide identifications generated by four proteomic platforms, we empirically identified >16,000 proteotypic peptides for 4,030 distinct yeast proteins. Characteristic physicochemical properties of these peptides were used to develop a computational tool that can predict proteotypic peptides for any protein from any organism, for a given platform, with >85% cumulative accuracy. Possible applications of proteotypic peptides include validation of protein identifications, absolute quantification of proteins, annotation of coding sequences in genomes, and characterization of the physical principles governing key elements of mass spectrometric workflows (e.g., digestion, chromatography, ionization and fragmentation).  相似文献   

12.
Gas chromatography mass spectrometry has been used for over a decade for the determination of the amino acid sequences of fragment peptides derived from larger parent molecules. The majority of these fragments have from four to seven residues and several different methods of derivatization have been devised. Few reports have been published in which similar techniques have been used for the quantification of such peptides, but there is a growing list of small peptides which have been shown to have biological activity in their own right. This report is concerned with the development of a gas chromatographic mass spectrometric assay for the two eosinophil chemotactic peptides, Val-Gly-Ser-Glu and Ala-Gly-Ser-Glu, which appear to have a role to play in the course of the inflammatory process in skin disorders.  相似文献   

13.
液质联用多反应监测法定量目标多肽或蛋白质   总被引:2,自引:0,他引:2  
为建立优化的血浆内源性多肽提取方法,并且构建目标多肽和蛋白质的质谱定量方 法,本研究考察了超滤法、有机溶剂沉淀法和固相萃取法对血浆内源性多肽的提取效果 ,并通过Tricine-SDS-PAGE对提取效果进行比较.通过液相色谱串联质谱多反应监测 (MRM)分析,建立了多肽标准品ESAT-6定量方法,并将ESAT-6定量建立的液相色谱和质谱条件应用于蛋白质的定量,对多肽和蛋白质MRM定量的标准曲线进行了考 察.Tricine-SDS-PAGE结果表明,乙腈沉淀法是最佳的血浆内源性多肽提取方法,低分子量的多肽可以得到很好的富集,且能有效地去除高分子蛋白质的污染.液相色谱串联 质谱MRM法检测血浆内提取的多肽,标准曲线的线性较好,相关系数为0.999.另外,采 用MRM法对胶内分离的蛋白质进行定量,标准曲线的线性相关系数为0.995.综上所述, 本研究构建了一种简单有效的血浆多肽提取方法,通过液质联用MRM法成功地实现了目标多肽和蛋白质定量测定.该定量方法可以推广应用于复杂样品中的多肽和蛋白质的定 量分析.  相似文献   

14.
AIM: In forensic toxicology it is important to have specific and sensitive analysis for quantification of illicit drugs in biological matrices. This paper describes a quantitative method for determination of cocaine and its major metabolites (ecgonine methyl ester, benzoylecgonine, norcocaine and ethylene cocaine) in whole blood and urine by liquid chromatography coupled with tandem mass spectrometry LC/MS/MS. METHOD: The sample pre-treatment (0.20 g) consisted of acid precipitation, followed by centrifugation and solid phase extraction of supernatant using mixed mode sorbent columns (SPEC MP1 Ansys Diag. Inc.). Chromatographic separation was performed at 30 degrees C on a reverse phase Zorbax C18 column with a gradient system consisting of formic acid, water and acetonitrile. The analysis was performed by positive electrospray ionisation with a triple quadropole mass spectrometer operating in multiple reaction monitoring (MRM) mode. Two MRM transitions of each analyte were established and identification criteria were set up based on the retention time and the ion ratio. The quantification was performed using deuterated internal analytes of cocaine, benzoylecgonine and ecgonine methyl ester. The calibration curves of extracted standards were linear over a working range of 0.001-2.00 mg/kg whole blood for all analytes. The limit of quantification was 0.008 mg/kg; the interday precision (measured by relative standard deviation-%RSD) was less than 10% and the accuracy (BIAS) less than 12% for all analytes in whole blood. Urine samples were estimated semi-quantitatively at a cut-off level of 0.15 mg/kg with an interday precision of 15%. CONCLUSION: A liquid chromatography mass spectrometric (LC/MS/MS) method has been developed for confirmation and quantification of cocaine and its metabolites (ecgonine methyl ester, benzoylecgonine, norcocaine and ethylene cocaine) in whole blood and semi-quantitative in urine. The method is specific and sensitive and offers thereby an excellent alternative to other methods such as GC-MS that involves derivatisation.  相似文献   

15.
High-performance liquid chromatography (HPLC) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) are generally accepted as the preferred techniques for detecting and quantitating analytes of interest in biological matrices on the basis of the rule that one chemical compound yields one LC-peak with reliable retention time (Rt.). However, in the current study, we have found that under the same LC-MS conditions, the Rt. and shape of LC-peaks of bile acids in urine samples from animals fed dissimilar diets differed significantly among each other. To verify this matrix effect, 17 authentic bile acid standards were dissolved in pure methanol or in methanol containing extracts of urine from pigs consuming either breast milk or infant formula and analyzed by LC-MS/MS. The matrix components in urine from piglets fed formula significantly reduced the LC-peak Rt. and areas of bile acids. This is the first characterization of this matrix effect on Rt. in the literature. Moreover, the matrix effect resulted in an unexpected LC behavior: one single compound yielded two LC-peaks, which broke the rule of one LC-peak for one compound. The three bile acid standards which exhibited this unconventional LC behavior were chenodeoxycholic acid, deoxycholic acid, and glycocholic acid. One possible explanation for this effect is that some matrix components may have loosely bonded to analytes, which changed the time analytes were retained on a chromatography column and interfered with the ionization of analytes in the MS ion source to alter the peak area. This study indicates that a comprehensive understanding of matrix effects is needed towards improving the use of HPLC and LC-MS/MS techniques for qualitative and quantitative analyses of analytes in pharmacokinetics, proteomics/metabolomics, drug development, and sports drug testing, especially when LC-MS/MS data are analyzed by automation software where identification of an analyte is based on its exact molecular weight and Rt.  相似文献   

16.
The detection and quantification of plasma (serum) proteins at or below the ng/ml concentration range are of critical importance for the discovery and evaluation of new protein biomarkers. This has been achieved either by the development of high sensitivity ELISA or other immunoassays for specific proteins or by the extensive fractionation of the plasma proteome followed by the mass spectrometric analysis of the resulting fractions. The first approach is limited by the high cost and time investment for assay development and the requirement of a validated target. The second, although reasonably comprehensive and unbiased, is limited by sample throughput. Here we describe a method for the detection of plasma proteins at concentrations in the ng/ml or sub-ng/ml range and their accurate quantification over 5 orders of magnitude. The method is based on the selective isolation of N-glycosites from the plasma proteome and the detection and quantification of targeted peptides in a quadrupole linear ion trap instrument operated in the multiple reaction monitoring (MRM) mode. The unprecedented sensitivity of the mass spectrometric analysis of minimally fractionated plasma samples is the result of the significantly reduced sample complexity of the isolated N-glycosites compared with whole plasma proteome digests and the selectivity of the MRM process. Precise quantification was achieved via stable isotope dilution by adding (13)C- and/or (15)N-labeled reference analytes. We also demonstrate the possibility of significantly expanding the number of MRM measurements during one single LC-MS run without compromising sensitivity by including elution time constraints for the targeted transitions, thus allowing quantification of large sets of peptides in a single analysis.  相似文献   

17.
In general, mass spectrometric quantification of small molecules in routine laboratory testing utilizes liquid chromatography coupled to low mass resolution triple-quadrupole mass spectrometers (QQQs). Here we introduce high-resolution tandem mass spectrometry (quadrupole-Orbitrap) for the quantification of 25-hydroxy-vitamin D [25(OH)D], a marker of the vitamin D status, because the specificity of 25(OH)D immunoassays is still questionable and mass spectrometric quantification is becoming increasingly important. Liquid chromatography coupled to high-resolution tandem mass spectrometry (LC-MS/HR-MS) was used to quantify 25-hydroxy-cholecalciferol [25(OH)D3], 25-hydroxy-ergocalciferol [25(OH)D2], and their C3-epimers 3-epi-25(OH)D3 and 3-epi-25(OH)D2. The method has a run time of 5 min and was validated according to the US Food and Drug Administration and the European Medicines Agency guidelines. High mass resolution was advantageously applied to separate a quasi-isobaric interference of the internal standard D6-25(OH)D2 with 3-epi-25(OH)D3. All analytes showed an imprecision of below 10% coefficient of variation (CV), trueness between 90% and 110%, and limits of quantification below 10 nM. Concentrations measured by LC-MS/HR-MS are in good agreement with those of the National Institute of Standards and Technology reference methods using LC-MS/MS (QQQ). In conclusion, quantification of 25(OH)D by LC-MS/HR-MS is applicable for routine testing and also holds promise for highly specific quantification of other small molecules.  相似文献   

18.
Isobaric tagging, via TMT or iTRAQ, is widely used in quantitative proteomics. To date, tandem mass spectrometric analysis of isobarically-labeled peptides with hybrid ion trap–orbitrap (LTQ-OT) instruments has been mainly carried out with higher-energy C-trap dissociation (HCD) or pulsed q dissociation (PQD). HCD provides good fragmentation of the reporter-ions, but peptide sequence-ion recovery is generally poor compared to collision-induced dissociation (CID). Herein, we describe an approach where CID and HCD spectra are combined. The approach ensures efficiently both identification and relative quantification of proteins. Tandem mass tags (TMTs) were used to label digests of human plasma and LC-MS/MS was performed with an LTQ-OT instrument. Different HCD collision energies were tested. The benefits to use CID and HCD with respect to HCD alone were demonstrated in terms of number of identifications, subsequent number of quantifiable proteins, and quantification accuracy. A program was developed to merge the peptide sequence-ion m/z range from CID spectra and the reporter-ion m/z range from HCD spectra, and alternatively to separate both spectral data into different files. As parallel CID in the LTQ almost doesn't affect the analysis duty cycle, the procedure should become a standard for quantitative analyses of proteins with isobaric tagging using LTQ-OT instruments.  相似文献   

19.
Over the past decade, a series of experimental strategies for mass spectrometry based quantitative proteomics and corresponding computational methodology for the processing of the resulting data have been generated. We provide here an overview of the main quantification principles and available software solutions for the analysis of data generated by liquid chromatography coupled to mass spectrometry (LC-MS). Three conceptually different methods to perform quantitative LC-MS experiments have been introduced. In the first, quantification is achieved by spectral counting, in the second via differential stable isotopic labeling, and in the third by using the ion current in label-free LC-MS measurements. We discuss here advantages and challenges of each quantification approach and assess available software solutions with respect to their instrument compatibility and processing functionality. This review therefore serves as a starting point for researchers to choose an appropriate software solution for quantitative proteomic experiments based on their experimental and analytical requirements.  相似文献   

20.
Exploiting natural peptide diversity: novel research tools and drug leads   总被引:2,自引:0,他引:2  
During the course of evolution, nature has developed a vast number of peptides in all living and past species that display an exceeding diversity of structure and biological effects, such as hormonal and enzyme-controlling activity, communication between cells, and participation in host defence. Sensitive mass spectrometric technologies have been introduced and facilitate access to new natural peptides, even in trace amounts, and allow the quantitative determination of the peptide status of cells, organs and whole organisms (peptidomics). Among the large number of new biologically active peptides identified from an increasing variety of natural sources, regulators of ion channels, chemoattractants, protease inhibitors, metabolism-related hormones, cytotoxins, and antimicrobials have been found. These novel peptides serve as research tools and have potential as diagnostic biomarkers and for the development of peptide and peptidometic drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号