首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A chromosome doubling technique, involving colchicine treatment of an embryogenic, haploid callus line of maize (Zea mays L., derived through anther culture), was evaluated. Two colchicine levels (0.025% and 0.05%) and three treatment durations (24, 48, and 72 h) were used and compared to untreated controls. Chromosome counts and seed recovery from regenerated plants were determined. No doubled haploid plants were regenerated from calli without colchicine treatment. After treatment with colchicine for 24 h, the callus tissue regenerated about 50% doubled haploid plants. All of the plants regenerated from the calli treated with colchicine for 72 h were doubled haploids, except for a few tetraploid plants. No significant difference in chromosome doubling was observed between the two colchicine levels. Most of the doubled haploid plants produced viable pollen and a total of 107 of 136 doubled haploid plants produced from 1 to 256 seeds. Less extensive studies with two other genotypes gave similar results. These results demonstrate that colchicine treatment of haploid callus tissue can be a very effective and relatively easy method of obtaining a high frequency of doubled haploid plants through anther culture.  相似文献   

2.
Summary We present a strategy for establishing a transgenic doubled haploid maize line from heterozygous transgenic material by means of anther culture. Compared to conventional inbreeding, the in vitro androgenesis technique enables a faster generation of virtually fully homozygous lines. Since the androgenic response is highly genotype-dependent, we crossed transgenic, non-androgenic plants carrying a herbicide resistance marker gene (pat, encoding for phosphinothricin acetyl transferase) with a highly androgenic genotype. The transgenic progenies were used as donor plants for anther culture. One transgenic and three non-transgenic doubled haploid lines have been established within approximately 1 yr. The homozygosity of all four doubled haploid lines was tested by analysis of simple sequence repeat (SSR) markers at 19 different loci. Polymorphisms were found between the lines but not within the lines indicating the homozygous nature of the entire plant genome gained by anther culture. Southern blot analysis revealed that the transgenic donor plants and their doubled haploid progeny exhibited the same integration pattern of the pat gene. No segregation of the herbicide resistance trait has been observed among the progeny of the transgenic doubled haploid line.  相似文献   

3.
Plating rice anthers on a semisolid induction medium containing 250 or 500 mg/l colchicine for 24 or 48 h-incubations followed by transfer to colchicine-free medium and standard anther culture procedures resulted in overall 1.5- to 2.5- fold increases in doubled haploid green plant productions compared to control anther cultures. The addition of colchicine had no detrimental effects on the different anther culture efficiency parameters, but in some treatments led to significant enhancement of anther callusing frequency or callus green plant regenerating ability. The most efficient treatment raised doubled haploid plant recovery from 31% to 65.5%. These results suggest that post-plating colchicine treatment of anthers, since it was found to improve both anther culture efficiency and doubled haploid plant recovery frequency, could be integrated into rice doubled haploid plant production programmes.Abbreviations DH doubled haploid - NAA naphthalenacetic acid - PAS periodic acid Schiff  相似文献   

4.
Development of an efficient and cost-effective doubled haploid production system in flax (Linum usitatissimum L.) is the prerequisite for the application of doubled haploid technology in a practical breeding program. Pre-culture of anthers on a medium containing 15% sucrose for 2–7 days before transfer to the same medium containing 6% sucrose for a total of 28 days culture period significantly increased shoot regeneration for all four genotypes evaluated. Moreover, pre-culture of anthers on medium containing 15% sucrose for 2–7 days was sufficient to dramatically reduce the frequency of shoot regeneration from somatic tissues and thereby to increase the frequency of microspore-derived plants in flax anther culture. Furthermore, replacing 15% sucrose with 6% sucrose and 9% polyethylene glycol (PEG), or 3% sucrose and 12% PEG, in pre-culture medium did not significantly affect callus induction and shoot regeneration. The results indicate that sucrose may act as carbon/energy source as well as an osmotic regulator in flax anther culture. Sucrose as an osmotic regulator may be replaced by a non-metabolizable osmoticum: PEG. The implication of this study in flax anther culture and breeding is discussed.  相似文献   

5.
Plant regeneration was obtained from cultured anthers and hypocotyl segments of caraway (Carum carvi L.). Microspore- and somatic tissue-derived embryos were compared by observation of the regeneration process under identical induction conditions. Fluorescent microscopy with DAPI staining showed initiation of cell divisions and formation of embryogenic callus and somatic embryos from anther sacs, with production of embryos of both microspore and somatic origin. Induction of somatic embryos from hypocotyl-derived callus was also demonstrated. Isozyme native polyacrylamide gel electrophoresis was used to identify haploids and doubled haploids, and to determine the frequency of spontaneous diploidization of regenerated plants of microspore origin. Donor plants (2n = 20) and their anther-derived derivative plants (n = 10, 2n = 20, 4n = 40) in callus stage or leafy rosette stage were compared. The esterase (EST) band patterns of regenerated plants differed from the heterozygous parental material, suggesting that the regenerated plants were microspore-derived haploid/doubled haploid plants. The similar profile of EST bands between the diploid anther-derived plants and a sample of the donor plants corresponded to a somatic regeneration pathway. Although the selected induction conditions revealed no preference for induction of microspore embryogenesis, the anther culture protocol established for caraway utilizing isozyme segregating EST loci markers is suitable for DH production.  相似文献   

6.
Rice double haploid (DH) plants are produced mainly through anther culture. In order to improve the anther culture protocol, microspores of two japonica rice genotypes (NRVC980385 and H28) were subjected to three growth regulator combinations and four colchicine treatments on induction medium. In addition, a post anther culture procedure using colchicine or oryzalin was tested to induce double haploid plantlets from haploid plantlets. A cold pre-treatment of microspores for 9 days at 10 °C increased callus induction 50-fold in the NRCV980385 genotype. For both genotypes, 2 mg L?1 2,4-D and 1 mg L?1 kinetin on colchicine-free induction medium gave the best culture responses. The culturability of both genotypes changed on colchicine-supplemented induction media. A high genotype dependency was recorded for callus induction, callus regenerating green plantlets and regeneration of green double haploid plantlets. Colchicine at 300 mg L?1 for 48 h enhanced callus induction 100-fold in H28. Colchicine-supplemented media clearly improved green double haploid plantlet regeneration. We showed that the post-anther culture treatment of haploid plantlets at 500 mg L?1 of colchicine permitted fertile double haploid plantlets to be generated. Finally, an enhanced medium-throughput flow cytometry protocol for rice was tested to analyse all the plantlets from anther and post anther culture.  相似文献   

7.
Caraway (Carum carvi L.) is a traditional medicinal and spice cross-pollinated plant species. Although in vitro techniques are recently extensively applied in plant breeding programmes, these are not commonly utilized in caraway. Therefore, based on the protocol for anther culture in carrot (Daucus carota L., a closely related species of caraway in Daucaceae family), in vitro androgenesis in caraway has been studied with the aim to produce completely homozygous inbred lines. Various induction conditions, such as temperature pretreatments, carbon sources and combination of growth regulators in a culture medium as well as the effect of genotype on in vitro androgenesis were examined. Ten breeding lines of winter caraway representing third generation of forced (artificial) self-pollination were used as donor plant material. Cultured anthers produced embryogenic calli, and subsequently two types of regenerated plants were obtained, namely haploids with evident microspore origin, and diploids which may represent somatic (anther wall) regenerants or spontaneous doubled haploids. The ploidy status of regenerated plants was determined by flow cytometry. This is the first report on androgenic doubled haploid production in caraway.  相似文献   

8.
To increase the frequency of stable mutants from cultured anthers of rice, the effects of EMS treatment on callus induction, plant regeneration and mutant induction were investigated according to the timing of treatment after anther inoculation on the medium. The frequency of callus induction was highest in anthers treated with 0.5% EMS 10 days after culture. Anthers treated directly at the initiation of culture exhibited a very low callus induction level, and the such calluses exhibited a poor plant regeneration capacity. The frequency of regeneration of green plants was significantly decreased by EMS treatments immediately after anther inoculation as compared with control. The frequencies of stable mutants were 20.7% and 12.0% in EMS treatments at 10 and 20 days, but unstable mutants were 43.1% and 52.6%, respectively. A total of 14 stable mutants, semidwarf mutants (4 lines), grain-shape mutants (2 lines) and glabrous mutants (8 lines) were selected from doubled haploid lines of the A2 generation. The frequencies of callus induction, green plant regeneration and stable mutants were maximal in anthers treated with 0.5% EMS 10 days after culture.  相似文献   

9.
The development of haploid callus, embryos and plantlets from cultured anthers and the various factors affecting androgenesis in Peltophorum pterocarpum (Copper pod), a tropical legume tree is reported. A pretreatment of flower buds at moderate temperature of 14°C for 8 days was most effective for callus production. The colour of the anther was found to be a reliable and efficient indicator for identification of suitable stage of anther for culture. The frequency of anthers which produced callus and shoots was highest when anthers were cultured at mid or late-uninucleate stage. A high sucrose concentration of 10% is a specific media requirement for androgenesis. The haploid nature of the embryos, callus and regenerated plants (n=14) were confirmed by chromosome count.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - KN kinetin - NAA naphthaleneacetic acid - BAP bezylaminopurine  相似文献   

10.
Summary To investigate whether the Hordeum bulbosum system of doubled haploid production generates gametoclonal variation, populations of second generation doubled haploid lines were developed from first generation doubled haploid lines of two barley varieties and three wheat genotypes. In barley, no variation between doubled haploids from doubled haploids was detected for a range of quantitative characters, suggesting the absence of any gametoclonal effects. However, the original selfed-seed stocks were shown to contain cryptic allelic variation for some of the characters investigated. In wheat, gametoclonal variation was detected for ear emergence time, plant height and yield, and its components for two out of the three genotypes investigated. The type and range of variation was similar to that reported from studies of somaclonal variation from immature embryos and gametoclonal variation from anther culture. Generally, the effects appeared to reduce the yield performance of individual lines. The difference in response between the two species and the consequences for the use of the doubled haploid system in breeding programmes are discussed.  相似文献   

11.
R. D. Iyer  S. K. Raina 《Planta》1972,104(2):146-156
Summary Haploidy induction through anther culture has been examined in Datura metel and rice with a view to tracing the precise sequence of development of the pollen, either directly or through an intervening callus, into an embryo and seedling. In D. metel, the vegetative cell of the young pollen grain assumes the major role in formation of embryos whereas the generative cell and its few derivatives degenerate. Embryos and seedlings arising directly from pollen without an intervening callus phase always proved to be haploids, whereas those differentiating from pollen-derived callus gave haploid, diploid and even triploid plants. Cytological analysis of callus tissue showed cells of various ploidy levels ranging from haploid to triploid, and in rare instances even with higher chromosome numbers.In rice anther cultures the embryoids arose from an initial callus phase. Of 15 different rice cultivars tried, only four produced a callus, and in only one, was there differentiation of plants, both haploid and diploid ones. Among other species tried, egg plant has also yielded plantlets through a callus phase whereas only callus production has been achieved in jute, tea and petunia. No response has been obtained in wheat, maize, cotton and coconut.Coconut milk (CM) appears to be the most important component of the medium for the initial induction of embryoids and callus in anther cultures of most of the species tried. However, further growth and differentiation of plants may require a simpler medium; in D. metel, continued culture on CM led to dedifferntiation.Dedicated to the memory of the late Dr. J. P. Nitsch.  相似文献   

12.
Summary Experimental results showed that the use of potato extract as a basic component of culture medium had a promoting effect on producing calli in anther culture of the intergeneric hybrids of Triticum aestivum × Triticum-Agropyron (intermediate type). The induction frequencies of pollen callus on the Potato-II medium containing potato extract as the main component was much higher than that found on N6 and W5 media. The induction frequencies of pollen callus and green plantlets in four intergeneric hybrid material inoculated at the late-uninucleate pollen stage were all higher than those inoculated at the mid-uninucleate stage. Appropriate increases in culture temperature significantly increased pollen callus induction frequencies of the intergeneric hybrids. The genotype and physiological state of anther donor plants also influenced pollen callus and green plantlet induction frequencies.  相似文献   

13.
Summary Embryogenic microspore and pollen culture followed by subculture of microspore-derived plantlets enabled the production of clones ofBrassica napus cv. Topas. Flow-cytometric analysis revealed that most microspore- and pollen-derived embryos (pEMs) were haploid initially. Spontaneous diploidization occurred at the globular stage of the pEMs, and was expressed as the relative increase of the 2C and 4C nuclear DNA content. Diploidization occurred throughout various organs of the pEMs and resulted in the formation of haploid and doubled haploid chimerics. In some embryos, nearly all cells were doubled haploid. From early cotyledon stage onward, pure haploid embryos were not observed anymore. At late cotyledon and germination stages, pure doubled haploid embryos and plantlets increased in number. Tetraploid pEMs were found occasionally. A culture regime was established to induce somatic embryos on the pEM-derived young plantlets. The ploidy of the somatic embryos varied highly and tended to be the same as that of the tissue at the initiation site on the pEM-plant. The results show that during the embryogenic development ofB. napus microspores, spontaneous diploidization occurs at globular stage, and increases progressively, resulting in the formation of chimerical haploid and doubled haploid plants as well as pure doubled haploid plants; ploidy neither affects pEM development at embryo developmental stages nor somatic embryogenesis, that starts on young pEM-derived plantlets; doubled haploid somatic embryos can be cloned from single pEM-derived plantlets; and doubled haploid embryos develop to fertile plants.  相似文献   

14.
Anther culture is considered as the most successful method of producing doubled haploid plants in flax. The efficiency of shoot regeneration from anther culture has been improved dramatically by optimizing culture temperature and callus induction medium. However, shoot elongation has become increasingly the limiting factor for further improvement of the overall efficiency of doubled haploid production. The effect of sucrose con- 21 centration on shoot elongation was investigated in this study. The medium containing 10 g l sucrose produced longer and more vigorous shoots than the same medium containing other concentrations of sucrose. The possible physiological basis of sucrose on shoot elongation in flax was discussed.  相似文献   

15.
Development and differentiation of haploid Lycopersicon esculentum (tomato)   总被引:2,自引:0,他引:2  
Summary Haploid callus cultures of selected races of Lycopersicon (tomato) species can be obtained from anther culture. This is a further demonstration of a proposed general method of haploid culture developed with Arabidopsis thaliana. Differentiation of haploid callus of Lycopersicon esculentum can be controlled both in the dark and the light by hormones added to defined minimal media. Development to plantlets is achieved only in the light. Callus cells can be induced to develop into seedless pseudo-fruits. Chromosome counts on callus cells or root-tip cells establishes haploidy (n=12).Haploidy can be maintained in culture on defined minimal media for at least one year.  相似文献   

16.
The pollen development and androgenic ability of 18 kale (Brassica oleracea convar.acephala) genotypes was observed during an anther culture study. Anther culture was successful in 6 of the genotypes and the highest yield obtained was 17 embryos per 100 anthers plated. Two stages of anther development were identified as being responsive to anther culture. The first and most responsive was that corresponding to the late uninucleated stage and the second to the late binucleated stage. These stages correspond with the onset of mitotic events in the microspores. Pollen viability was studied and low viability was noted which declined to zero after 9 days of anther culture. The initial viability level however was not clearly related to androgenic ability. The significance of the production of haploid and dihaploid kale genotypes in the study and breeding of resistance to clubroot is discussed.  相似文献   

17.
Tomato, eggplant, and pepper are three solanaceous crops of outstanding importance worldwide. For hybrid seed production in these species, a fast and cheap method to obtain pure (homozygous) lines is a priority. Traditionally, pure lines are produced by classical inbreeding and selection techniques, which are time consuming (several years) and costly. Alternatively, it has become possible to accelerate the production of homozygous lines through a biotechnological approach: the induction of androgenesis to generate doubled haploid (homozygous) plants. This biotechnological in vitro tool reduces the process to only one generation, which implies important time and costs savings. These facts make androgenic doubled haploids the choice in a number of important crops where the methodology is well set up. Unfortunately, recalcitrant solanaceous crops such as tomato, eggplant, and pepper are still far from an efficient and reliable technology to be applied on a routine basis to different genotypes in breeding programs. In eggplant and pepper, only anther cultures are known to work relatively well. Unfortunately, a more efficient and promising technique, the culture of isolated microspores, is not sufficiently developed yet. In tomato, none of these methods is available nowadays. However, recent advances in the knowledge of embryo development are filling the gaps and opening new ways to achieve the final goal of an efficient protocol in these three recalcitrant species. In this review, we outline the state of the art on androgenic induction in tomato, eggplant, and pepper, and postulate new experimental ways in order to overcome current limitations.  相似文献   

18.
Production of haploid plants has been restricted to only a few ornamental species. In this paper an efficient anther culture protocol has been devised for production of haploid plants of Phlox drummondii, a garden ornamental. Anthers with microspores at early- to late-uninucleate stages were inoculated on MS (Murashige and Skoog, Physiol Plant 15:473–479, 1962) basal medium containing 9% sucrose, 10 μM 2,4-D + 5 μM BA in the dark for callus induction. The callus (~2 mm) was transferred to MS medium containing 3% sucrose + 10 μM BA + 5 μM NAA under a 16 h photoperiod for multiplication. Anther-derived callus showed the greatest shoot differentiation (60% with greater than 3 shoots per culture) at 13 weeks after culture initiation when maintained on MS medium supplemented with 3% sucrose and cytokinin (7.5 μM BA). At 68 weeks, only 4.6% of cultures differentiated with less than one shoot per callus. Anther-derived shoots rooted readily on MS medium containing 7.5 μM IAA. Of 60 plants that regenerated from anther callus, 50% were haploid, 30% diploid, and 20% aneuploid. Developed protocol could be useful for the haploid induction of outcrossing ornamental plants for production of their homozygous double haploids.  相似文献   

19.
Male (anther culture) and female (Hordeum bulbosum) derived, doubled haploid populations were used to map the barley genome and thus determine the different recombination rates occurring during meiosis in the F1 hybrid donor plants. The anther culture-derived (male recombination) population showed an 18% overall increase in recombination rate. This increased recombination rate was observed for every chromosome and most of the chromosome arms. Examination of linkage distances between individual markers revealed eight segments with significantly higher recombination in the anther culture-derived population, and one in the Hordeum bulbosum-derived population. Very strong distortions of single locus segregations were observed in the anther culture-derived population, but map distances were not affected significantly by these distortions. There were 1.047 and 0.912 recombinations per chromosome in the anther culture and Hordeum bulbosum-derived doubled haploid populations, respectively.  相似文献   

20.
Abstract

Considerations about our anther cultures of cultivated plants. – One of the main activities performed at the Casaccia Nuclear Centre, in the framework of a contract between CNEN and the European Communities, centers on the induction of haploid plants by anther culture and the subsequent chromosome doubling in order to obtain completely homozygous diploid plants. In tobacco, it is now possible to obtain haploid plants from any cultivar; we perform in vitro culture of internodes from which homozygous diploid plants are regenerated, taking advantage of natural phenomenon of endopolyploidy. In order to try to generalize this method of producing haploid plants in other plant species, we are studying the mechanism involved in haploid embryogenesis which occurs in vitro in the microspores. Datura, Nicotiana and Atropa are among the genera in which a direct embryogenesis from the microspore is observed; it is interesting to note that all three genera belong to the family Solanaceae and are very rich in alkaloids. In almost all the other cases of in vitro induction of haploids, microspores produce calli from which plantlets can be differentiated, but this way of plant regeneration is less interesting because only few plantlets are obtained and it is not sure that each haploid comes from a single microspore. We examined the factors which could influence the transformation of microspores into embryoids in tobacco, namely: the developmental stage of microspore, the degeneration of tapaetal cells, the genotype of microspore, the composition of cultural media, the physiological conditions of the plant from which the anthers were taken. From a practical point of view, it would be desirable to have informations on methods giving a maximum number of haploid plants from one embryogenic anther and the greatest number of embryogenic anthers from the cultured anthers. Our recent experiments on anther culture in liquid shaken medium have yielded good results (about 7,000 embryoids from 25 embryogenic anthers). Further, we are conducting several experiments in order to synchronize the development of the microspores in the anthers; to this end, we analyse the effect of cold treatment, ionizing radiation and gravity force. Experiments are being performed with other cultivated species, beside tobacco, in order to solve some problems of plant breeding more easily and quickly through haploidy. With the aim of introducing, in cultivated tomato, some desirable characters from the wild species, Lycopersicum peruvianum, (self-incompatibility, disease resistance, simultaneous flowering), we have obtained the interspecific hybrid through in vitro culture of young embryos. Haploid production from this hybrid could allow to quickly obtain various genetic recombinations from these two species. For this purpose we are carrying out anther cultures as well as single microspore cultures. In rice, strawberry and L. peruvianum, several diploid and tetraploid plantlets were obtained from our anther cultures. Work is in progress to ascertain the mode of their origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号