首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rat Vla vasopressin (rVla) receptor has two putative N-glycosylation sites at 14th and 27th amino acid asparagine in the extracellular N-terminus. In the present study, we examined the possible roles of N-glycosylation of the N-terminus in the receptor function. Three point mutants for deglycosylated rVla receptor were generated in which the 14th and/or the 27th asparagine was replaced with glutamine, namely N14Q, N27Q, and N14:27Q, each tagged with an enhanced green fluorescent protein (EGFP) at their C-termini, and transfected to COS-7 or HEK292 cells. The two single mutants and a double mutant have progressively smaller molecular mass compared to the wild-type receptor as determined by immunoblot analysis, indicating that the two sites are effectively glycosylated in vivo. The maximal ligand binding capacities of three mutant receptors were comparable to that of wild-type (17.02 +/- 1.32 pmol/g protein) with modest changes in ligand binding affinities: N27Q and N14:27Q had decreased binding affinities compared to N14Q and wild-type receptors. The reduced binding affinities of the deglycosylated mutants are not likely due to the impaired intracellular transport since their traffickings were indistinguishable from one another. Taken together, these results suggest that the N-glycosylation at the two sites of the N-terminus of rV1a receptor minimally affects the surface expression and trafficking of the receptor.  相似文献   

2.
The nucleotide binding properties of mutants with alterations to Asp(351) and four of the other residues in the conserved phosphorylation loop, (351)DKTGTLT(357), of sarcoplasmic reticulum Ca(2+)-ATPase were investigated using an assay based on the 2', 3'-O-(2,4,6-trinitrophenyl)-8-azidoadenosine triphosphate (TNP-8N(3)-ATP) photolabeling of Lys(492) and competition with ATP. In selected cases where the competition assay showed extremely high affinity, ATP binding was also measured by a direct filtration assay. At pH 8.5 in the absence of Ca(2+), mutations removing the negative charge of Asp(351) (D351N, D351A, and D351T) produced pumps that bound MgTNP-8N(3)-ATP and MgATP with affinities 20-156-fold higher than wild type (K(D) as low as 0.006 microM), whereas the affinity of mutant D351E was comparable with wild type. Mutations K352R, K352Q, T355A, and T357A lowered the affinity for MgATP and MgTNP-8N(3)-ATP 2-1000- and 1-6-fold, respectively, and mutation L356T completely prevented photolabeling of Lys(492). In the absence of Ca(2+), mutants D351N and D351A exhibited the highest nucleotide affinities in the presence of Mg(2+) and at alkaline pH (E1 state). The affinity of mutant D351A for MgATP was extraordinarily high in the presence of Ca(2+) (K(D) = 0.001 microM), suggesting a transition state like configuration at the active site under these conditions. The mutants with reduced ATP affinity, as well as mutants D351N and D351A, exhibited reduced or zero CrATP-induced Ca(2+) occlusion due to defective CrATP binding.  相似文献   

3.
K A Walsh  K Titani  K Takio  S Kumar  R Hayes  P H Petra 《Biochemistry》1986,25(23):7584-7590
The amino acid sequence of the sex steroid binding protein (SBP) from human plasma has been determined. The SBP subunit consists of a 373-residue polypeptide chain containing two disulfide bonds and three oligosaccharide chains. The sequence was solved primarily by analysis of peptides derived by cleavage at either lysyl or methionyl residues. In our preparations, approximately half of the protein molecules have the amino-terminal sequence Arg-Pro-Val-Leu-Pro; the other half lack Arg-Pro and begin with the valine. Preparations of Hammond et al. [Hammond, G. L., Robinson, P. A., Sugino, H., Ward, D. N., & Finne, J. (1986) J. Steroid Biochem. 24, 815] have an additional leucine at the amino terminus, making a total of 373 residues in the chain. Oligosaccharide chains are placed at Thr-7 and at Asn residues 351 and 367. The two disulfide bonds connect Cys-164 to Cys-188 and Cys-333 to Cys-361. The reported heterogeneity of preparations of the molecule may result in part from the amino-terminal microheterogeneity, in part from variations in the oligosaccharide moieties, and possibly in part from rearrangements involving cyclic imide formation in two Asn-Gly sequences. Certain hydrophobic segments are suggested as possible components of the steroid-binding sites. The protein shows no homology either with the cDNA-derived sequences of the estrogen and glucocorticoid receptors found by others to be homologous with each other or with any other protein sequence in the 1986 data base.  相似文献   

4.
We have sequenced a cDNA for sex hormone-binding globulin (SHBG) isolated from a phage lambda gt11 human liver cDNA library. The library was screened with a radiolabeled rat androgen-binding protein (ABP) cDNA, and the abundance of SHBG cDNAs was 1 in 750,000 plaques examined. The largest human SHBG cDNA (1194 base-pairs) contained a reading frame for 381 amino acids. This comprised 8 amino acids of a signal peptide followed by 373 residues starting with the known NH2-terminal sequence of human SHBG, and ending with a termination codon. The predicted polypeptide Mr of SHBG is 40,509, and sites of attachment of one O-linked (residue 7) and two N-linked oligosaccharide (residues 351 and 367) chains were identified. Purified SHBG was photoaffinity-labeled with delta 6-[3H]testosterone and cleaved with trypsin. The labeled tryptic fragment was isolated by reverse-phase HPLC, and its NH2-terminal sequence was determined. The results suggest that a portion of the steroid-binding domain of SHBG is located between residue 296 and the 35 predominantly hydrophilic residues at the C-terminus of the protein.  相似文献   

5.
Nahm MY  Kim SW  Yun D  Lee SY  Cho MJ  Bahk JD 《Plant & cell physiology》2003,44(12):1341-1349
Rab7 is a small GTP-binding protein important in early to late endosome/lysosome vesicular transport in mammalian cells. We have isolated a Rab7 cDNA clone, OsRab7, from a cold-treated rice cDNA library by the subtraction screening method. The cDNA encodes a polypeptide of 206 amino acids with a calculated molecular mass of about 23 kDa. Its predicted amino acid sequence shows significantly high identity with the sequences of other Rab7 proteins. His-tagged OsRab7 bound to radiolabeled GTPgammaS in a specific and stoichiometric manner. Biochemical and structural properties of the Rab7 wild type (WT) protein were compared to those of Q67L and T22N mutants. The detergent 3-([3-cholamidopropyl]dimethylammonio)-1-propane sulfonate (CHAPS) increased the guanine nucleotide binding and hydrolysis activities of Rab7WT. The OsRab7Q67L mutant showed much lower GTPase activity compared to the WT protein untreated with CHAPS, and the T22N mutant showed no GTP binding activity at all. The OsRab7Q67L mutant was constitutively active for guanine nucleotide binding while the T22N mutant (dominant negative) showed no guanine nucleotide binding activity. When bound to GTP, the Rab7WT and the Q67L mutants were protected from tryptic proteolysis. The cleavage pattern of the Rab7T22N mutant, however, was not affected by GTP addition. Northern and Western blot analyses suggested that OsRab7 is distributed in various tissues of rice. Furthermore, expression of a rice Rab7 gene was differentially regulated by various environmental stimuli such as cold, NaCl, dehydration, and ABA. In addition, subcellular localization of OsRab7 was investigated in the Arabidopsis protoplasts by a double-labeling experiment using GFP-fused OsRab7 and FM4-64. GFP-OsRab7 is localized to the vacuolar membrane, suggesting that OsRab7 is implicated in a vesicular transport to the vacuole in plant cells.  相似文献   

6.
Human cyclooxygenase-2 (hCox-2) is a key enzyme in the biosynthesis of prostaglandins and the target of nonsteroidal anti-inflammatory drugs. Recombinant hCox-2 overexpressed in a vaccinia virus (VV)-COS-7 system comprises two glycoforms. Removal of the N-glycosylation consensus sequence at Asn580(N580Q and S582A mutants) resulted in the expression of protein comprising a single glycoform, consistent with the partial N-glycosylation at this site in the wild-type (WT) enzyme. The specific cyclooxygenase activities of the purified WT and N580Q mutant were equivalent (40 ± 3 μmol O2/min/mg) and titrations with diclofenac showed no difference in inhibitor sensitivities of WT and both mutants. Results of the expression of WT and N580Q hCox-2 in aDrosophilaS2 cell system were also consistent with the N-glycosylation at this site, but low levels of activity were obtained. High levels of N-glycosylation heterogeneity are observed in hCox-2 expressed using recombinant baculovirus (BV) in Sf9 cells. Expression of a double N-glycosylation site mutant in Sf9 cells, N580Q/N592Q, resulted in a decrease in glycosylation but no clear decrease in heterogeneity, indicating that the high degree of N-glycosylation heterogeneity observed with the BV-Sf9 system is not due to partial glycosylation of both Asn580and Asn592. N-linked oligosaccharide profiling of purified VV and BV WT and S582A mutant hCox-2 showed the presence of high mannose structures, (Man)n(GlcNAc)2,n= 9, 8, 7, 6. The S582A mutant was the most homogeneous with (Man)9(GlcNAc)2comprising greater than 50% of oligosaccharides present. Analysis of purified VV WT and S582A mutant hCox-2 by liquid chromatography–electrospray ionization–mass spectrometry showed an envelope of peaks separated by approximately 160 Da, corresponding to differences of a single monosaccharide. The difference between the highest mass peaks of the two envelopes, of approximately 1500 Da, is consistent with the wild-type enzyme containing an additional high mannose oligosaccharide.  相似文献   

7.
To study the roles of the catalytic activity, propeptide, and N-glycosylation of the intracellular aspartic proteinase cathepsin E in biosynthesis, processing, and intracellular trafficking, we constructed various rat cathepsin E mutants in which active-site Asp residues were changed to Ala or which lacked propeptides and N-glycosylation. Wild-type cathepsin E expressed in human embryonic kidney 293T cells was mainly found in the LAMP-1-positive endosomal organelles, as determined by immunofluorescence microscopy. Consistently, pulse-chase analysis revealed that the initially synthesized pro-cathepsin E was processed to the mature enzyme within a 24 h chase. This process was completely inhibited by brefeldin A and bafilomycin A, indicating its transport from the endoplasmic reticulum (ER) to the endosomal acidic compartment. Mutants with Asp residues in the two active-site consensus motifs changed to Ala and lacking the propeptide (Leu23-Phe58) and the putative ER-retention sequence (Ser59-Asp98) were neither processed nor transported to the endosomal compartment. The mutant lacking the ER-retention sequence was rapidly degraded in the ER, indicating the importance of this sequence in correct folding. The single (N92Q or N324D) and double (N92Q/N324D) N-glycosylation-deficient mutants were neither processed into a mature form nor transported to the endosomal compartment, but were stably retained in the ER without degradation. These data indicate that the catalytic activity, propeptides, and N-glycosylation of this protein are all essential for its processing, maturation, and trafficking.  相似文献   

8.
ABSTRACT

The placental syncytiotrophoblast, which is formed by the fusion of cytotrophoblast cells, is indispensable for the establishment and maintenance of normal pregnancy. The human endogenous retrovirus envelope glycoprotein syncytin-2 is the most important player in mediating trophoblast cell-cell fusion as a fusogen. We constructed expression plasmids of wild-type and 21 single-amino-acid substitution mutants of syncytin-2, including 10 N-glycosylation sites individually silenced by mutagenizing N to Q, 1 naturally occurring single-nucleotide polymorphism (SNP) N118S that introduced an N-glycosylation site, and another 10 non-synonymous SNPs located within important functional domains. We observed that syncytin-2 was highly fusogenic and that the mutants had different capacities in merging 293T cells. Of the 21 mutants, N133Q, N312Q, N443Q, C46R (in the CXXC motif) and R417H (in the heptad repeat region and immunosuppressive domain) lost their fusogenicity, whereas N332Q, N118S, T367M (in the fusion peptide), V483I (in the transmembrane domain) and T522M (in the cytoplasmic domain) enhanced the fusogenic activity. We also proved that N133, N146, N177, N220, N241, N247, N312, N332 and N443 were all glycosylated in 293T cells. A co-immunoprecipitation assay showed compromised interaction between mutants N443Q, C46R, T367M, R417H and the receptor MFSD2A, whereas N118S was associated with more receptors. We also sequenced the coding sequence of syncytin-2 in 125 severe pre-eclamptic patients and 272 normal pregnant Chinese women. Surprisingly, only 1 non-synonymous SNP T522M was found and the frequencies of heterozygous carriers were not significantly different. Taken together, our results suggest that N-glycans at residues 133, 312, 332 and 443 of syncytin-2 are required for optimal fusion induction, and that SNPs C46R, N118S, T367M, R417H, V483I and T522M can alter the fusogenic function of syncytin-2.  相似文献   

9.
Equine FSH (eFSH) and eCG are members of the glycoprotein hormone family. These proteins are heterodimeric, composed of noncovalently associated alpha and beta subunits. We have previously reported that recombinant eCG has potent LH- and FSH-like activities and that the oligosaccharide at Asn(56) of the alpha subunit plays an indispensable role in expressing LH- but not FSH-like activity. In the present study, we cloned eFSH beta subunit cDNA and expressed wild-type recombinant eFSH and a partially deglycosylated mutant FSH (eFSH alpha56/beta) to investigate the biological role of the oligosaccharide at Asn(56) in FSH activity. The wild-type eFSH and eCG stimulated estradiol production in a dose-dependent manner in the primary cultures of rat granulosa cells, indicating that these equine gonadotropins have FSH activity. Partially deglycosylated eCG (eCG alpha56/beta) also stimulated estradiol production, confirming that the FSH-like activity of eCG is resistant to the removal of the N-linked oligosaccharide. Partially deglycosylated eFSH (eFSH alpha56/beta), however, did not show any FSH activity, indicating that the oligosaccharide at Asn(56) was necessary for eFSH. Thus, FSH-like activities of two gonadotropins, eCG and eFSH, are evoked through the distinct molecular mechanisms regarding the biological role of oligosaccharide at Asn(56) of the alpha subunit.  相似文献   

10.
Secretory human prostatic acid phosphatase (hPAP) is glycosylated at three asparagine residues (N62, N188, N301) and has potent antinociceptive effects when administered to mice. Currently, it is unknown if these N-linked residues are required for hPAP protein stability and activity in vitro or in animal models of chronic pain. Here, we expressed wild-type hPAP and a series of Asn to Gln point mutations in the yeast Pichia pastoris X33 then analyzed protein levels and enzyme activity in cell lysates and in conditioned media. Pichia secreted wild-type recombinant (r)-hPAP into the media (6-7 mg protein/L). This protein was as active as native hPAP in biochemical assays and in mouse models of inflammatory pain and neuropathic pain. In contrast, the N62Q and N188Q single mutants and the N62Q, N188Q double mutant were expressed at lower levels and were less active than wild-type r-hPAP. The purified N62Q, N188Q double mutant protein was also 1.9 fold less active in vivo. The N301Q mutant was not expressed, suggesting a critical role for this residue in protein stability. To explicitly test the importance of secretion, a construct lacking the signal peptide of hPAP was expressed in Pichia and assayed. This "cellular" construct was not expressed at levels detectable by western blotting. Taken together, these data indicate that secretion and post-translational carbohydrate modifications are required for PAP protein stability and catalytic activity. Moreover, our findings indicate that recombinant hPAP can be produced in Pichia--a yeast strain that is used to generate biologics for therapeutic purposes.  相似文献   

11.
Joshi AD  Pajor AM 《Biochemistry》2006,45(13):4231-4239
The Na+/dicarboxylate cotransporter 1 (NaDC1) is a low-affinity transporter for citric acid cycle intermediates such as succinate and citrate. The sequence of NaDC1 contains a number of conserved proline residues in predicted transmembrane helices (TMs) 7 and 10. These transmembrane domains are of particular importance because they may be involved in determining the substrate or cation-binding affinity in NaDC1. Four conserved proline residues in TMs 7 and 10 of rabbit NaDC1 were replaced with alanine to promote ideal alpha helix or glycine to promote free conformation, and the mutant transporters were expressed in the HRPE cell line. Mutations of prolines in TM 10 produced decreased protein expression and activity, whereas mutations of prolines in TM 7 completely abolished protein expression and activity. The chemical chaperone glycerol was found to improve the expression of the Pro-351 mutants in TM 7, suggesting that these mutants had defects in trafficking. The inactive mutant transporters at position 351 could also be rescued by the addition of a proline at a second site. For example, the P351A-F347P mutant had restored activity, although its substrate specificity was altered. We conclude that, in TM 7, Pro-327 may be of particular importance in the function of the transporter, whereas Pro-351 may affect protein targeting. The prolines in TM 10, at positions 523 and 524, may not be directly involved in the transporter function but may be necessary for maintaining structure.  相似文献   

12.
The amino acid sequence of the sex steroid-binding protein of rabbit serum   总被引:6,自引:0,他引:6  
The amino acid sequence of the sex steroid-binding protein (SBP or SHBG) of rabbit serum, specific for binding testosterone and 5 alpha-dihydrotestosterone, was determined using a complementary combination of mass spectrometric and Edman degradation techniques. The monomeric unit of the homodimeric protein is a single chain glycopeptide of 367 amino acid residues, with N-linked oligosaccharide side chains at Asn-345 and Asn-361 and disulfide bonds connecting Cys-158 to Cys-182 and Cys-327 to Cys-355. The polypeptide molecular weight of the monomer calculated from the sequence is 39,769. The molecular weight of the homodimer including 9% carbohydrate is 87,404. The sequence contains a relatively hydrophobic segment between Trp-241 and Leu-282, which includes many leucine residues in an alternating pattern. An amino acid sequence repeat is also located within that segment. Both of these patterns are present in human SBP and in the androgen-binding protein of rat epididymis. The sequence data indicate that the previously reported microheterogeneity of rabbit SBP in sodium dodecyl sulfate-polyacrylamide gel electrophoresis reflects variants generated by differential glycosylation of the monomer rather than different gene products. Seventy-nine percent of the amino acids of rabbit SBP are identical to those of human SBP; rabbit SBP thus joins human SBP and rat androgen-binding protein in one gene family that is distinct from the steroid hormone receptor superfamily. It appears that the problem of binding sex steroid hormones has been solved independently in two different gene families that contain completely different steroid-binding domains. Since the nonhomologous steroid-binding domains of both families of proteins recognize essentially the same steroid structure, it will be interesting to determine the structural basis of the two different protein designs that lead to similar steroid-binding specificity.  相似文献   

13.
Mentesana PE  Konopka JB 《Biochemistry》2001,40(32):9685-9694
The alpha-factor mating pheromone receptor (encoded by STE2) activates a G protein signaling pathway that stimulates the conjugation of Saccharomyces cerevisiae yeast cells. The alpha-factor receptor is known to undergo several forms of post-translational modification, including phosphorylation, mono-ubiquitination, and N-linked glycosylation. Since phosphorylation and mono-ubiquitination have been shown previously to play key roles in regulating the signaling activity and membrane trafficking of the alpha-factor receptors, the role of N-linked glycosylation was investigated in this study. The Asn residues in the five consensus sites for N-linked glycosylation present in the extracellular regions of the receptor protein were mutated to prevent carbohydrate attachment at these sites. Mutation of two sites near the receptor N-terminus (N25Q and N32Q) diminished the degree of receptor glycosylation, and the corresponding double mutant was not detectably N-glycosylated. The nonglycosylated receptors displayed normal function and subcellular localization, indicating that glycosylation is not important for wild-type receptor activity. However, mutation of the glycosylation sites resulted in improved plasma membrane localization for the Ste2-3 mutant receptors that are normally retained intracellularly at elevated temperatures. These results suggest that N-glycosylation may be involved in the sorting process for misfolded Ste2 proteins, and may similarly affect certain mutant receptors whose altered trafficking is implicated in human diseases.  相似文献   

14.
Chicken ovalbumin (OVA) exists as mono-N-glycosylated form with a carbohydrate chain on Asn-292 in egg white, despite the possession of two potential N-glycosylation sites. To investigate the roles of N-glycosylation of OVA, we constructed a series of N-glycosylation mutants deleted N-glycosylation site and compared the secretion level of the mutants in Pichia pastoris. N292Q and N292/311Q mutants resulted in greater lowering of the secretion level as compared with wild-type, whereas N311Q mutant was secreted in approximately equal amounts to wild-type. However, secretion of wild-type and N311Q mutant was inhibited completely by tunicamycin treatment. All the N-glycosylation mutants have been expressed in the cells, as well as wild-type. Circular dichroism and fluorescence spectra of secreted N311Q mutant were almost identical to those of wild-type, while those of N292Q and N292/311Q mutants were different from wild-type; and, N292Q and N292/311Q mutants showed considerably lower denaturation temperature than wild-type. The results indicate that N-glycosylation at Asn-292 of OVA is required for the folding and secretion.  相似文献   

15.
A honeybee putative general odorant-binding protein ASP2 has been expressed in the methylotrophic yeast Pichia pastoris. It was secreted into the buffered minimal medium using either the alpha-factor preprosequence with and without the Glu-Ala-Glu-Ala spacer peptide of Saccharomyces cerevisiae or its native signal peptide. Whereas ASP2 secreted using the alpha-factor preprosequence with the spacer peptide showed N-terminal heterogeneity, the recombinant protein using the two other secretion peptides was correctly processed. Mass spectrometry showed that the protein secreted using the natural peptide sequence had a mass of 13,695.1 Da, in perfect agreement with the measured molecular mass of the native protein. These data showed a native-like processing and the three disulfide bridges formation confirmed by sulfhydryl titration analysis. After dialysis, the recombinant protein was purified by one-step anion-exchange chromatography in a highly pure form. The final expression yield after 7-day fermentation was approximately 150 mg/liter. To our knowledge, this is the first report of the use of a natural insect leader sequence for secretion with correct processing in P. pastoris. The overproduction of recombinant ASP2 should allow ligand binding and mutational analysis to understand the relationships between structure and biological function of the protein.  相似文献   

16.
Although the function of cellular prion protein (PrPc) and the pathogenesis of prion diseases have been widely described, the mechanisms are not fully clarified. In this study, increases of the portion of non-glycosylated prion protein deposited in the hamster brains infected with scrapie strain 263K were described. To elucidate the pathological role of glycosylation profile of PrP, wild type human PrP (HuPrP) and two genetic engineering generated non-glycosylated PrP mutants (N181Q/N197Q and T183A/T199A) were transiently expressed in human astrocytoma cell line SF126. The results revealed that expressions of non-glycosylated PrP induced significantly more apoptosis cells than that of wild type PrP. It illustrated that Bcl-2 proteins might be involved in the apoptosis pathway of non-glycosylated PrPs. Our data highlights that removal of glycosylation of prion protein provokes cells apoptosis.  相似文献   

17.
Plasmid R64 pilQ gene is essential for the formation of thin pilus, a type IV pilus. The pilQ product contains NTP binding motifs and belongs to the PulE-VirB11 family of NTPases. The pilQ gene was overexpressed with an N-terminal His tag, and PilQ protein was purified. Purified His tag PilQ protein displayed ATPase activity with a V(max) of 0.71 nmol/min/mg of protein and a K(m) of 0.26 mm at pH 6.5. By gel filtration chromatography, PilQ protein was eluted at the position corresponding to 460 kDa, suggesting that PilQ protein forms a homooctamer. To analyze the relationship between structure and function of PilQ protein, amino acid substitutions were introduced within several conserved motifs. Among 11 missense mutants, 7 mutants exhibited various levels of reduced DNA transfer frequencies in liquid matings. Four mutant genes (T234I, K238Q, D263N, and H328A) were overexpressed with a His tag. The purified mutant PilQ proteins contained various levels of reduced ATPase activity. Three mutant PilQ proteins formed stable multimers similar to wild-type PilQ, whereas the PilQ D263N multimer was unstable. PilQ D263N monomer exhibited low ATPase activity, while PilQ D263N multimer did not. These results indicate that ATPase activity of the PilQ multimer is essential for R64 thin pilus biogenesis.  相似文献   

18.
Proteins from the extracellular medium of Aeropyrum pernix K1 were separated by two-dimensional electrophoresis and identified using mass spectrometry. Six different substrate-binding proteins (SBPs) from the ATP-binding cassette (ABC) transporter family were identified: (1) ABC transporter SBP (Q9YC61); (2) Branched-chain amino-acid ABC transporter, branched-chain amino-acid-binding protein (Q9YDJ6); (3) Oligopeptide ABC transporter, oligopeptide-binding protein (Q9YBL5); (4) Probable ABC transporter SBP (Q9Y9N4); (5) ABC transporter SBP (Q9YBG7); (6) ABC transporter SBP (Q9YFD7). Based on their orthology, division into the following classes was predicted: (1) multiple sugar-transport system SBPs; (2) peptide/nickel-transport system SBPs; and (3) branched-chain amino-acid-transport system SBPs. Further bioinformatic analyses showed that the identified SBPs differ in motif and in transmembrane-domain and signal-peptide organisation. Additionally, for all of these SBPs, sequence homology was found for archaeal proteins, and homologous proteins in bacteria were also found for the ABC transporter SBP Q9YBG7 and the ABC transporter SBP Q9YFD7. This is the first study, where different ABC SBPs from the extracellular medium of A. pernix have been identified using the combined methodology of two-dimensional electrophoresis and mass spectrometry.  相似文献   

19.
The H(+)(Na(+))-translocating NADH-quinone (Q) oxidoreductase (NDH-1) of Escherichia coli is composed of 13 different subunits (NuoA-N). Subunit NuoA (ND3, Nqo7) is one of the seven membrane domain subunits that are considered to be involved in H(+)(Na(+)) translocation. We demonstrated that in the Paracoccus denitrificans NDH-1 subunit, Nqo7 (ND3) directly interacts with peripheral subunits Nqo6 (PSST) and Nqo4 (49 kDa) by using cross-linkers (Di Bernardo, S., and Yagi, T. (2001) FEBS Lett. 508, 385-388 and Kao, M.-C., Matsuno-Yagi, A., and Yagi, T. (2004) Biochemistry 43, 3750-3755). To investigate the structural and functional roles of conserved charged amino acid residues, a nuoA knock-out mutant and site-specific mutants K46A, E51A, D79N, D79A, E81Q, E81A, and D79N/E81Q were constructed by utilizing chromosomal DNA manipulation. In terms of immunochemical and NADH dehydrogenase activity-staining analyses, all site-specific mutants are similar to the wild type, suggesting that those NuoA site-specific mutations do not significantly affect the assembly of peripheral subunits in situ. In addition, site-specific mutants showed similar deamino-NADH-K(3)Fe(CN)(6) reductase activity to the wild type. The K46A mutation scarcely inhibited deamino-NADH-Q reductase activity. In contrast, E51A, D79A, D79N, E81A, and E81Q mutation partially suppressed deamino-NADH-Q reductase activity to 30, 90, 40, 40, and 50%, respectively. The double mutant D79N/E81Q almost completely lost the energy-transducing NDH-1 activities but did not display any loss of deamino-NADH-K(3)Fe(CN)(6) reductase activity. The possible functional roles of residues Asp-79 and Glu-81 were discussed.  相似文献   

20.
The 5-hydroxytryptamine (5-HT)(7(a)) receptor is a G-protein-coupled receptor critically involved in human psychiatric and neurological disorders. In the present study, we evaluate the presence and the functional role of N-glycosylation of the human 5-HT(7) receptor. Western blot analysis of HEK293T cells transiently expressing the 5-HT(7(a)) receptor in the presence of tunicamycin gave rise to a band shift, indicating the existence of an N-glycosylated form of the 5-HT(7(a)) receptor. To further investigate this, we mutated the two predicted N-glycosylation sites (N5Q and N66Q) and compared the molecular mass of the immunoreactive bands with those of the wild-type receptor, indicating that both asparagines were N-glycosylated. The mutant receptors had the same binding affinity for [(3) H]5-CT and the same potency and efficacy with regard to 5-HT-induced activation of adenylyl cyclase. However, there was a reduction in maximal ligand binding for the single and double mutants compared to the wild-type receptor. Next, membrane labelling and immunocytochemical studies demonstrated that the N-glycosylation mutants were expressed at the cell surface. We conclude that N-glycosylation is not important for cell surface expression of the 5-HT(7) receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号