首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dynamic stability differences in fall-prone and healthy adults.   总被引:1,自引:0,他引:1  
Typical stability assessments characterize performance in standing balance despite the fact that most falls occur during dynamic activities such as walking. The objective of this study was to identify dynamic stability differences between fall-prone elderly individuals, healthy age-matched adults, and young adults. Three-dimensional video-motion analysis kinematic data were recorded for 35 contiguous steps while subjects walked on a treadmill at three speeds. From this data, we estimated the vector from the center-of-mass to the center of pressure at each foot-strike. Dynamic stability of walking was computed by methods of Poincare analyses of these vectors. Results revealed that the fall-prone group demonstrated poorer dynamic stability than the healthy elderly and young adult groups. Stability was not influenced by walking velocity, indicating that group differences in walking speed could not fully explain the differences in stability. This pilot study supports the need for future investigations using larger population samples to study fall-prone individuals using nonlinear dynamic analyses of movement kinematics.  相似文献   

2.
Nonexercise activity thermogenesis (NEAT) accounts for the vast majority of nonresting metabolic rate and changes in NEAT-predicted susceptibility to fat gain with overfeeding. Measuring physical activity and its components in free-living humans has been a long-standing challenge. In this study, we combine information about lightweight sensors that capture data on body position and motion with laboratory measures of energy expenditure to calculate nonfidgeting NEAT. This measurement of nonfidgeting NEAT was compared with total NEAT measured in a room calorimeter in 11 healthy subjects. The measurement of nonfidgeting NEAT accounted for 85 +/- 9% of total NEAT measured in the room calorimeter. The intraclass correlation coefficient for the two methods was 0.86 (95% confidence interval 0.56, 0.96; P < 0.05). This suggests that 86% of the variance is attributable to between-subject variance and 14% to between-method disagreement. These instruments are applicable to free-living subjects; they are stand-alone, are lightweight, and allow normal daily activities. This novel technology has potential application for not only assessing NEAT but also tracking physical activity in free-living humans.  相似文献   

3.
It is colloquially stated that body size plays a role in the human response to cold, but the magnitude and details of this interaction are unclear. To explore the inherent influence of body size on cold-exposed metabolism, we investigated the relation between body composition and resting metabolic rate in humans at thermoneutrality and during cooling within the nonshivering thermogenesis range. Body composition and resting energy expenditure were measured in 20 lean and 20 overweight men at thermoneutrality and during individualized cold exposure. Metabolic rates as a function of ambient temperature were investigated considering the variability in body mass and composition. We observed an inverse relationship between body size and the lower critical temperature (LCT), i.e. the threshold where thermoneutrality ends and cold activates thermogenesis. LCT was higher in lean than overweight subjects (22.1 ± 0.6 vs 19.5 ± 0.5 °C, p < 0.001). Below LCT, minimum conductance was identical between lean and overweight (100 ± 4 vs 97 ± 3 kcal/°C/day respectively, p = 0.45). Overweight individuals had higher basal metabolic rate (BMR) explained mostly by the higher lean mass, and lower cold-induced thermogenesis (CIT) per degree of cold exposure. Below thermoneutrality, energy expenditure did not scale to lean body mass. Overweight subjects had lower heat loss per body surface area (44.7 ± 1.3 vs 54.7 ± 2.3 kcal/°C/m2/day, p < 0.001). We conclude that larger body sizes possessed reduced LCT as explained by higher BMR related to more lean mass rather than a change in whole-body conductance. Thus, larger individuals with higher lean mass need to be exposed to colder temperatures to activate CIT, not because of increased insulation, but because of a higher basal heat generation. Our study suggests that the distinct effects of body size and composition on energy expenditure should be taken in account when exploring the metabolism of humans exposed to cold.  相似文献   

4.
High levels of spontaneous physical activity in lean people and the nonexercise activity thermogenesis (NEAT) derived from that activity appear to protect lean people from obesity during caloric challenge, while obesity in humans is characterized by dramatically reduced spontaneous physical activity. We have similarly demonstrated that obesity-resistant rats have significantly greater spontaneous physical activity than obesity-prone rats, and that spontaneous physical activity predicts body weight gain. Although the energetic cost of activity varies between types of activity and may be regulated, individual level of spontaneous physical activity is important in determining propensity for obesity. We review the current status of knowledge about the brain mechanisms involved in controlling the level of spontaneous physical activity and the NEAT so generated. Focus is on potential neural mediators of spontaneous physical activity and NEAT, including orexin A (also known as hypocretin 1), agouti-related protein, ghrelin, and neuromedin U, in addition to brief mention of neuropeptide Y, corticotrophin releasing hormone, cholecystokinin, estrogen, leptin, and dopamine effects on spontaneous physical activity. We further review evidence that strain differences in orexin stimulation pathways for spontaneous physical activity and NEAT appear to track with the body weight phenotype, thus providing a potential mechanistic explanation for reduced activity and weight gain.  相似文献   

5.
We wanted to examine if spontaneous physical activity contributes to non-shivering thermogenesis. Ten lean, healthy male subjects wore a physical activity, micro-measurement system while the room temperature was randomly altered at two hourly intervals between thermoneutral (72 °F), cool (62 °F) and warm (82 °F) temperatures. Physical activity measured during the thermoneutral, cooling and warming periods was not significantly different. Cooling increased energy expenditure above basal and thermoneutral values 2061±344 kcal/day (p<0.01). Thus, the increase in energy expenditure associated with short-term environmental cooling in lean, healthy males does not appear to be due to increased spontaneous physical activity or fidgeting.  相似文献   

6.
This study tested whether the lower economy of walking in healthy elderly subjects is due to greater gait instability. We compared the energy cost of walking and gait instability (assessed by stride to stride changes in the stride time) in octogenarians (G80, n = 10), 65-yr-olds (G65, n = 10), and young controls (G25, n = 10) walking on a treadmill at six different speeds. The energy cost of walking was higher for G80 than for G25 across the different walking speeds (P < 0.05). Stride time variability at preferred walking speed was significantly greater in G80 (2.31 +/- 0.68%) and G65 (1.93 +/- 0.39%) compared with G25 (1.40 +/- 0.30%; P < 0.05). There was no significant correlation between gait instability and energy cost of walking at preferred walking speed. These findings demonstrated greater energy expenditure in healthy elderly subjects while walking and increased gait instability. However, no relationship was noted between these two variables. The increase in energy cost is probably multifactorial, and our results suggest that gait instability is probably not the main contributing factor in this population. We thus concluded that other mechanisms, such as the energy expenditure associated with walking movements and related to mechanical work, or neuromuscular factors, are more likely involved in the higher cost of walking in elderly people.  相似文献   

7.
Regular exercise and high calcium intake possibly help to preserve bone mass. Little is known, however, about their role in preventing hip fracture. The physical activity and calcium intake of 300 elderly men and women with hip fractures were compared with those of 600 controls matched for age and sex. In both sexes increased daily activity, including standing, walking, climbing stairs, carrying, housework, and gardening protected against fracture. This was independent of other known risk factors, including body mass, cigarette smoking, and alcohol consumption. Strength of grip correlated with activity and was inversely related to the risk of fracture. Calcium intake was not related to the risk of fracture in women. Men with daily calcium intakes above 1g had lower risks. These findings point to the importance of elderly people in Britain maintaining physical activity in their day to day lives.  相似文献   

8.
Objective: As the prevalence of obesity has increased, so has sedentariness. Progressive sedentariness has been attributed to greater use of labor saving devices, such as washing machines, and less nonexercise walking (e.g., walking to work). However, there is a paucity of data to support this conclusion. In this study, we address the hypothesis that domestic mechanization of daily tasks has resulted in less energy expenditure compared with performing the same tasks manually. Research Methods and Procedures: Energy expenditure was measured in four groups of subjects (122 healthy adult men and women total) from Rochester, Minnesota. Energy expenditure was measured using indirect calorimetry while subjects performed structured tasks such as cleaning dishes and clothes, stair climbing, and work‐associated transportation, and these values were compared with the respective mechanized activity. Results: Energy expenditure was significantly greater and numerically substantial when daily domestic tasks were performed without the aid of machines or equipment (clothes washing: 45 ± 14 vs. 27 ± 9 kcal/d; dish washing: 80 ± 28 vs. 54 ± 19 kcal/d; transportation to work: 83 ± 17 vs. 25 ± 3 kcal/d; stair climbing: 11 ± 7 vs. 3 ± 1 kcal/d; p < 0.05). The combined impact of domestic mechanization was substantial and equaled 111 kcal/d. Discussion: The magnitude of the energetic impact of the mechanized tasks we studied was sufficiently great to contribute to the positive energy balance associated with weight gain. Efforts focused on reversing sedentariness have the potential to impact obesity.  相似文献   

9.
Sedentariness is associated with obesity. We examined whether people with sedentary jobs are equally inactive during their work days and leisure days. We enrolled 21 subjects of varying weight and body fat (11 men:10 women, 38 ± 8 years, 83 ± 17 kg, BMI 28 ± 5 kg/m2, 29 ± 11 fat kg, 35 ± 9% fat). All subjects continued their usual work and leisure‐time activities whilst we measured daily activity and body postures for 10 days. The data supported our hypothesis that people sit more at work compared to leisure (597 ± 122 min/day cf 484 ± 83 min/day; P < 0.0001). The mean difference was 110 ± 99 min/day. Similarly, work days were associated with less standing (341 ± 97 min/day; P = 0.002) than leisure days (417 ± 101 min/day). Although the walking bouts did not differ significantly between work and leisure (46 ± 9 vs. 42 ± 9 walking bouts/day); the mean free‐living velocity of a walk at work was 1.08 ± 0.28 mph and on leisure days was 0.94 ± 0.24 mph (P = 0.03) and the average time spent walking was 322 ± 91 min on work days and 380 ± 108 min on leisure days (P = 0.03). Estimates of the daily energetic cost of walking approximated 527 ± 220 kcal/day for work days and 586 ± 326 kcal/day for leisure days (r = 0.72, P < 0.001). Work days are associated with more sitting and less walking/standing time than leisure days. We suggest a need to develop approaches to free people from their chairs and render them more active.  相似文献   

10.
To gain insight into the mechanical determinants of walking energetics, we investigated the effects of aging and arm swing on the metabolic cost of stabilization. We tested two hypotheses: (1) elderly adults consume more metabolic energy during walking than young adults because they consume more metabolic energy for lateral stabilization, and (2) arm swing reduces the metabolic cost of stabilization during walking in young and elderly adults. To test these hypotheses, we provided external lateral stabilization by applying bilateral forces (10% body weight) to a waist belt via elastic cords while young and elderly subjects walked at 1.3m/s on a motorized treadmill with arm swing and with no arm swing. We found that the external stabilizer reduced the net rate of metabolic energy consumption to a similar extent in elderly and young subjects. This reduction was greater (6-7%) when subjects walked with no arm swing than when they walked normally (3-4%). When young or elderly subjects eliminated arm swing while walking with no external stabilization, net metabolic power increased by 5-6%. We conclude that the greater metabolic cost of walking in elderly adults is not caused by a greater cost of lateral stabilization. Moreover, arm swing reduces the metabolic cost of walking in both young and elderly adults likely by contributing to stability.  相似文献   

11.
Objective: To determine energetic efficiency of walking and stepping in a heterogeneous normal adult population and its association with body fatness and to assess within‐ and between‐individual variations. Research Methods and Procedures: Using a combination of a whole‐room indirect calorimeter and a large precision force platform, we simultaneously measured minute‐by‐minute energy expenditure (EE) and mechanical work during walking and stepping in healthy adult men (n = 60) and women (n = 85). Efficiency was calculated as a ratio (percentage) of mechanical work and EE of activity. Efficiency of walking and stepping performed at various intensities was compared for reproducibility within the same day (morning and afternoon) and correlated with a subject's characteristics. Results: The efficiency of walking was negatively correlated with body fatness in both men and women at 0.9 to 1.2 m/s but positively correlated with body fatness in men and not correlated in women at the slowest speed tested (0.6 m/s). Efficiency of walking and stepping of various intensities was reproducible during the same day. Compared at similar EE levels, walking was more efficient than stepping (26% to 27% vs. 18% to 22%, p < 0.01). Women were significantly (p < 0.01) more efficient than men during stepping. Age, sex, body mass, fat‐free mass, fitness (maximal oxygen uptake), height, and speed variations contributed to the between‐subject differences in efficiency. Discussion: Obese individuals were less efficient than lean individuals during normal‐speed walking. Significant interindividual variations in efficiency of walking and stepping may be attributed to habituation and physical characteristics such as age, sex, and fitness level.  相似文献   

12.
The effect of daily ambulatory activity on physical fitness has not yet been identified by quantitatively measuring the time spent on the intensity levels of ambulatory activity in elderly women over 75 with different functional capacity levels. The subjects consisted of 147 elderly women over 75 years old (82.8±4.3 years old) who were all capable of performing basic daily activities by themselves. Physical fitness was measured for 7 items (handgrip strength, knee extensor strength, postural stability, stepping, one-legged standing time with eyes open, 10 m walking, and the Timed Up and Go Test). The subjects wore a triaxial accelerometer for 2 consecutive weeks to measure their daily physical activities. The functional capacity level was assessed by the Tokyo Metropolitan Institute of Gerontology Index of Competence. The subjects were divided into two groups, a group with a score ≥10 points (high functional capacity group, n=59) and a score <10 points (low functional capacity group, n=88), and the relationship between physical fitness and physical activity was examined in both groups. In both the high and low functional capacity groups, 10 m walking, the Timed Up and Go Test, and one-legged standing time with eyes open significantly correlated with either the total steps/day or the ambulatory activity intensity. In the high functional capacity group, the knee extensor strength also significantly correlated with the total steps/day and moderate ambulatory activity. It is suggested that very elderly women with a reduced functional capacity should maintain their mobility by simply increasing their daily ambulatory activity.  相似文献   

13.
In sedentary elderly people, a reduced muscle fatty acid oxidative capacity (MFOC) may explain a decrease in whole body fat oxidation. Eleven sedentary and seven regularly exercising subjects (65.6 +/- 4. 5 yr) were characterized for their aerobic fitness [maximal O(2) uptake (VO(2 max))/kg fat free mass (FFM)] and their habitual daily physical activity level [free-living daily energy expenditure divided by sleeping metabolic rate (DEE(FLC)/SMR)]. MFOC was determined by incubating homogenates of vastus lateralis muscle with [1-(14)C]palmitate. Whole body fat oxidation was measured by indirect calorimetry over 24 h. MFOC was 40.4 +/- 14.7 and 44.3 +/- 16.3 nmol palmitate. g wet tissue(-1). min(-1) in the sedentary and regularly exercising individuals, respectively (P = nonsignificant). MFOC was positively correlated with DEE(FLC)/SMR (r = 0.58, P < 0. 05) but not with VO(2 max)/kg FFM (r = 0.35, P = nonsignificant). MFOC was the main determinant of fat oxidation during all time periods including physical activity. Indeed, MFOC explained 19.7 and 30.5% of the variance in fat oxidation during walking and during the alert period, respectively (P < 0.05). Furthermore, MFOC explained 23.0% of the variance in fat oxidation over 24 h (P < 0.05). It was concluded that, in elderly people, MFOC may be influenced more by overall daily physical activity than by regular exercising. MFOC is a major determinant of whole body fat oxidation during physical activities and, consequently, over 24 h.  相似文献   

14.
The incidence of falls in the elderly is increasing with the aging of society and is becoming a major public health issue. From the viewpoint of prevention of falls, it is important to evaluate the stability of the gait in the elderly people. The pelvic movement, which is a critical factor for walking stability, was analyzed using a posture monitoring system equipped with a triaxial accelerometer and a gyroscope. The subjects were 95 elderly people over 60 years of age. The criteria for instability were open-eye standing on one leg for 15s or less, and 11s or more on 3m timed up and go test. Forty subjects who did not meet both of these criteria comprised the stable group, and the remaining 55 subjects comprised the unstable group. Pelvic movement during walking was compared between the two groups. The angle, angular velocity, and acceleration were analyzed based on the wave shape derived from the device worn around the second sacral. The results indicated that pelvic movement was lower in all three directions in the unstable group compared to the stable group, and the changes in the pelvic movement during walking in unstable elderly people were also reduced. This report is the first to evaluate pelvic movement by both a triaxial accelerometer and a triaxial gyroscope simultaneously. The characteristics of pelvic movement during walking can be applied in screening to identify elderly people with instability, which is the main risk factor associated with falls.  相似文献   

15.
The effects of sham, bilateral surgical denervation or excision of interscapular brown adipose tissue on body composition and energetic efficiency were studied in young CFLP mice kept at 25 degrees C and fed a laboratory stock diet. A preliminary experiment showed that 15 weeks following surgery, total body fat was increased by 42% in the denervated group and by 72% in the excised group while body protein was unchanged. In another 7-week energy balance experiment, body fat was also significantly higher by 15 and 18% in the denervated and excised group, respectively, but metabolizable energy intake was slightly lower than that of sham controls. Determination of energy expenditure both by the comparative carcass slaughter technique and by measurement of daily oxygen consumption showed that the metabolic rate was reduced in the denervated nd excised groups. The capacity for thermogenesis, as measured by an increase in oxygen consumption following injections of noradrenaline (600 micrograms/kg body weight) was similar in energetic efficiency, and indicates an important role of the sympathetic nervous system in the regulation of animal heat production by brown adipose tissue and in the overall control of thermogenesis.  相似文献   

16.
《IRBM》2020,41(2):80-87
ObjectivesThe number of elderly people is growing rapidly and aging is found to affect activities of daily living. Older adults are found to perform less physical activity when compared to younger ones. In the perspective of movement behavior, it is not well understood how are elderly different from younger ones. It is not known whether they produce only low frequency movement accelerations or the overall number of movements produced are reduced in elderly. It is also not known how elderly and younger ones perform movement transitions throughout the duration of a day and during night-time sleep.Material and methodsIn this study, 10 healthy young and 10 healthy old participants wore inertial measurement unit at their lower back for 3-days. The 24 hours of day were divided into four 6 hour time zones and transitions made by young and elderly were investigated. All participants performed their regular daily activities unhindered and longitudinal multi-day signals for acceleration and angular velocity were analyzed. Time-frequency analysis was performed using wavelet transform and frequency content of each movement performed was computed.ResultsWe found that both young and older adults performed significantly more low amplitude movements than medium and high amplitude movements. Healthy young adults produced significantly more movements at 1.1 Hz than older adults. Healthy young adults were also found to have produced significantly smaller number of transitions in the mid-phases of sleep. They were also found to produce significantly larger accelerations during night-time sleep transitions than their older counterparts.ConclusionThe advantages of collecting longitudinal data about human movement and sleep transition data can lead us to important clinical diagnosis. The information from longitudinal assessment can help develop lifestyle interventions for disease prevention, monitoring of chronic diseases to prevent or slow disease progression among elderly people.  相似文献   

17.
Objective: The main determinants of daily energy expenditure are body size and physical activity. Activity energy expenditure is the most variable component of total energy expenditure. It was assessed whether the physical activity level in confined conditions is an indicator of free‐living physical activity. Research Methods and Procedures: Activity energy expenditure was measured over 1 day in a confined environment of a respiration chamber (floor space, 7.0 m2), where activities were restricted to low‐intensity activities of daily living, and over 2 weeks in a free‐living environment using doubly labeled water. Subjects were 16 women and 29 men (age, 31 ± 10 years; BMI, 24.2 ± 2.7 kg/m2). Results: The free‐living activity level of the subjects, as a multiple of resting energy expenditure, was 1.76 ± 0.13. Activity energy expenditure in the chamber was 47 ± 13% of the value in daily life, and the two values were correlated (r = 0.50, p < 0.001; partial correlation corrected for age, gender, and BMI: 0.40, p < 0.01). The chamber value explained 25% of the total variance in free‐living activity energy expenditure. Discussion: The activity level of a subject under sedentary conditions is an indicator of activity energy expenditure in daily life, showing the importance of nonexercise activity for daily energy expenditure.  相似文献   

18.
In subjects who maintain a constant body mass, the increased energy expenditure induced by exercise must be compensated by a similar increase in energy intake. Since leptin has been shown to decrease food intake in animals, it can be expected that physical exercise would increase energy intake by lowering plasma leptin concentrations. This effect may be secondary either to exercise-induced negative energy balance or to other effects of exercise. To delineate the effects of moderate physical activity on plasma leptin concentrations, 11 healthy lean subjects (4 men, 7 women) were studied on three occasions over 3 days; in study 1 they consumed an isoenergetic diet (1.3 times resting energy expenditure) over 3 days with no physical activity; in study 2 the subjects received the same diet as in study 1, but they exercised twice daily during the 3 days (cycling at 60 W for 30 min); in study 3 the subjects exercised twice daily during the 3 days, and their energy intake was increased by 18% to cover the extra energy expenditure induced by the physical activity. Fasting plasma leptin concentration (measured on the morning of day 4) was unaltered by exercise [8.64 (SEM 2.22) 7.17 (SEM 1.66), 7.33 (SEM 1.72) 1 microg x l(-1) in studies 1, 2 and 3, respectively]. It was concluded that a moderate physical activity performed over a 3-day period does not alter plasma leptin concentrations, even when energy balance is slightly negative. This argues against a direct effect of physical exercise on plasma leptin concentrations, when body composition is unaltered.  相似文献   

19.
Animals typically adjust their behaviour to their changing environment throughout the annual cycle, modulating key processes such as the timing of breeding and the onset of migration. Such behavioural changes are commonly manifested in the movements and the energetic balance of individuals in relation to their species‐specific physiological characteristics, habitat attributes and the environmental properties of their distribution ranges. We used GPS and acceleration data collected using transmitters on free‐ranging birds to quantify annual movement patterns and estimate energy expenditure of the Dalmatian Pelican Pelecanus crispus, a large, soaring avian species which performs short‐distance migration and spends its entire annual cycle in mid‐latitudes. To assess the representativeness of our results, the transmitter effect was also tested. We found that daily trends in the overall dynamic body acceleration (ODBA; a proxy for energy expenditure) differed among seasons, with the highest values occurring during spring and the lowest during winter. Long inter‐lake flights were very rare in winter, and the number of flights and ODBA during spring was higher than during summer, suggesting greater motivation to move in spring. Although transmitters may have affected the birds, as none of the tagged birds bred, we found seasonal differences in behaviour and activity level. The observed patterns in differences in activity levels, long‐distance flights and flight characteristics between seasons suggest an annual rhythm of energy expenditure. These findings allow a better understanding of bird phenology, specifically regarding adaptations to wintering in a cold climate by reducing movement‐driven energy expenditure. Finally, the identification of periods with high and low energy expenditure may guide future conservation efforts by adjusting conservation plans in accordance with changing needs during the annual cycle.  相似文献   

20.
Humans tend to prefer walking patterns that minimize energetic cost, but must also maintain stability to avoid falling over. The relative importance of these two goals in determining the preferred gait pattern is not currently clear. We investigated the relationship between energetic cost and stability during downhill walking, a context in which gravitational energy will assist propulsion but may also reduce stability. We hypothesized that humans will not minimize energetic cost when walking downhill, but will instead prefer a gait pattern that increases stability. Simulations of a dynamic walking model were used to determine whether stable downhill gaits could be achieved using a simple control strategy. Experimentally, twelve healthy subjects walked downhill at 1.25 m/s (0, 0.05, 0.10, and 0.15 gradients). For each slope, subjects performed normal and relaxed trials, in which they were instructed to reduce muscle activity and allow gravity to maximally assist their gait. We quantified energetic cost, stride timing, and leg muscle activity. In our model simulations, increase in slope reduced the required actuation but also decreased stability. Experimental subjects behaved more like the model when using the relaxed rather than the normal walking strategy; the relaxed strategy decreased energetic cost at the steeper slopes but increased stride period variability, an indicator of instability. These results indicate that subjects do not take optimal advantage of the propulsion provided by gravity to decrease energetic cost, but instead prefer a more stable and more costly gait pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号