首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structural changes of peptides containing the azobenzene dye 4-aminomethyl-phenylazobenzoic acid (AMPB) are studied with ultrafast spectroscopy. AMPB peptides are a new class of molecules where the photoisomerizable dye azobenzene is linked to the peptide moiety via a flexible methylene spacer. The ultrafast reactions in the femtosecond to nanosecond time domain are investigated for the optical switch AMPB, a linear and cyclic octapeptide, and a bicyclic octapeptide containing an additional disulfide bridge. These molecules with increasing conformational constraints are studied for the cis to trans and the trans to cis photoreactions. For the cis to trans reaction the isomerization of the chromophore occurs fast in the 1-ps range, whereas it is slower (10-ps range) in the trans to cis reaction. In all peptides the structural changes of the chromophore lead to modifications in the peptide structure in the 10-ps-1-ns time range. The results indicate that the chromophore AMPB acts simultaneously as a fast molecular switch and as a sensor for initial conformational dynamics in the peptide. Experiments in the mid-infrared range where the structural changes of the peptide backbone are directly observed demonstrate that the essential part of the structural dynamics in the bicyclic AMPB peptide occurs faster than 10 ns.  相似文献   

2.
In previous studies we have investigated octapeptides backbone-cyclized by (4-amino)phenyl azobenzoic acid (APB) or (4-aminomethyl)phenylazobenzoic acid (AMPB) and containing the active-site sequence Cys-Ala-Thr-Cys-Asp from the thioredoxin reductase. The conformational and redox properties of these peptides were strongly dependent on the isomeric state of the azobenzene chromophore. Using the same approach we were successful in constructing photoresponsive ligands for alphavbeta3 integrin containing the Arg-Gly-Asp (RGD) sequence as binding motif. For achieving maximal conformational restriction of the peptide a reduced ring size compared to our previous azobenzene peptides was employed in the cyclic peptide c[Asp-D-Phe-Val-AMPB-Lys-Ala-Arg-Gly-]. Conformational properties of the trans and cis isomers of this peptide in solution were investigated by CD and NMR and were found to differ markedly from the thioredoxin derived azobenzene peptides. In a second peptide, c[Asp-D-Phe-Val-Lys-AMPB-Ala-Arg-Gly-], shifting the position of the chromophore lead to a marked decrease in affinity. With the availability of the x-ray structure of a cyclic RGD-pentapeptide bound to alphavbeta3 integrin (PDB entry 1L5G) modeling of possible bound conformations for trans and cis isomers of both azobenzene peptides was possible. Notably, both peptides in either isomeric form share the same overall conformation in the bound state according to our molecular dynamics simulations.  相似文献   

3.
Cross-linking reagents based on an azobenzene core can be used to reversibly photoregulate secondary structure when introduced as intramolecular bridges in peptides and proteins. Photoisomerization of the azobenzene core in the trans to cis direction is triggered by photon absorption but isomerization from cis to trans occurs thermally as well as photochemically. The rate of the thermal process effectively determines the half-life of the cis form as well as the extent to which the trans form can be recovered. We designed and characterized a series of methanethiosulfonate (MTS)-bearing thiol-reactive azo-benzene-based cross-linkers. These cross-linkers are shown to permit photoregulation of helix content in a test peptide with half-lives for the cis conformation ranging from 11 s to 43 h at 25 degrees C. The cross-linkers described here thus broaden the range of reagents available for reversible photocontrol of peptide and protein conformation.  相似文献   

4.
The affinity and selectivity of protein-protein interactions can be fine-tuned by varying the size, flexibility, and amino acid composition of involved surface loops. As a model for such surface loops, we study the conformational landscape of an octapeptide, whose flexibility is chemically steered by a covalent ring closure integrating an azobenzene dye into and by a disulfide bridge additionally constraining the peptide backbone. Because the covalently integrated azobenzene dyes can be switched by light between a bent cis state and an elongated trans state, six cyclic peptide models of strongly different flexibilities are obtained. The conformational states of these peptide models are sampled by NMR and by unconstrained molecular dynamics (MD) simulations. Prototypical conformations and the free-energy landscapes in the high-dimensional space spanned by the phi/psi angles at the peptide backbone are obtained by clustering techniques from the MD trajectories. Multiple open-loop conformations are shown to be predicted by MD particularly in the very flexible cases and are shown to comply with the NMR data despite the fact that such open-loop conformations are missing in the refined NMR structures.  相似文献   

5.
In previous studies we have shown that light-induced cis/trans isomerization of the azobenzene moiety in cyclo-[Ala-Cys-Ala-Thr-Cys-Asp-Gly-Phe-AMPB] [AMPB: (4-aminomethyl)phenylazobenzoic acid] leads both in the monocyclic and in the oxidized bicyclic form to markedly differentiated conformational states in DMSO, a fact that lends itself for photomodulation of the redox potential of such bis-cysteinyl-peptides. For this purpose water-soluble systems are required, and this was achieved by replacing three residues outside the Cys-Ala-Thr-Cys active-site motif of thioredoxin reductase with lysines. The resulting cyclo-[Lys-Cys-Ala-Thr-Cys-Asp-Lys-Lys-AMPB] fully retains its photoresponsive properties in water as well assessed by uv and CD measurements. Paralleling results of the previously investigated azobenzene-containing cyclic peptides, the trans --> cis isomerization of the water-soluble monocyclic and oxidized bicyclic peptide is accompanied by a marked transition from a well-defined conformation to an ensemble of possible conformations. However, the conformational preferences are very dissimilar from those of the DMSO-soluble peptides. In fact, hydrogen bonds as well as secondary structure elements were found that change in the mono- and bicyclic peptide upon irradiation. The photo switch between different turn types and hydrogen bonding networks offers the structural rational for the significantly differentiated redox potentials, but also the possibility of monitoring by femtosecond uv-vis and ir spectroscopy fast and ultra fast backbone rearrangement processes following the electronic trans --> cis isomerization.  相似文献   

6.
A monoclonal antibody (Z1H01) for an oligopeptide carrying an azobenzene group, was prepared under conditions where the azobenzene group is in the trans form. The antibody bound the hapten peptide effectively when the hapten peptide is in the trans form (K = 5 x 10(7) M-1), but the antibody released the hapten under irradiation with UV light where the hapten is in the cis form. The antibody bound the hapten again, when the hapten reverted to the trans form after irradiation with visible light.  相似文献   

7.
The thioredoxin reductase active-site fragment H-Ala-Cys-Ala-Thr-Cys-Asp-Gly-Phe-OH [134-141], which is known for its high tendency to assume an almost identical conformation as in the intact enzyme, was backbone cyclized with the photoresponsive (4-amino)phenylazobenzoic acid (APB) to produce a monocyclic and disulfide-bridged bicyclic APB-peptide. Light-induced reversible cis/trans isomerization occurs at identical extents in both the linear and the two cyclic forms. Nuclear magnetic resonance conformational analysis clearly revealed that in the bicyclic APB-peptide both as a trans- and cis-azo-isomer the constraints imparted by the bicyclic structure do not allow the molecule to relax into a defined low energy conformation, thus making the molecule a frustrated system that flip-flops between multiple conformational states. Conversely, the monocyclic APB peptide folds into a well-defined lowest energy structure as a trans-azo-isomer, which upon photoisomerization to the cis-azo configuration relaxes into a less restricted conformational space. First femtosecond spectroscopic analysis of the dynamics of the photoreaction confirm a fast first phase on the femtosecond time scale related to the cis/trans isomerization of the azobenzene moiety followed by a slower phase in the picosecond time scale that involves an adjustment of the peptide backbone. Due to the well- defined photoresponsive two-state transition of this monocyclic peptide molecule, it represents a model system well suited for studying the ultrafast dynamics of conformational transitions by time-resolved spectroscopy.  相似文献   

8.
The search for photoresponsive conformational transitions accompanied by changes in physicochemical and biological properties led us to the design of small cyclic peptides containing azobenzene moieties in the backbone. For this purpose, (4-aminomethyl)phenylazobenzoic acid (H-AMPB-OH) and (4-amino)phenylazobenzoic acid (H-APB-OH) were synthesized and used to cyclize a bis-cysteinyl-octapeptide giving monocyclic derivatives in which additional conformational restriction could be introduced by conversion to bicyclic structures with a disulphide bridge. While synthesis with H-AMPB-OH proceeded smoothly on a chlorotrityl-resin with Fmoc/tBu chemistry, the poor nucleophilicity of the arylamino group of H-APB-OH required special chemistry for satisfactory incorporation into the peptide chain. Additional difficulties were encountered in the reductive cleavage of the S-tert-butylthio group from the cysteine residues since concomitant reduction of the azobenzene moiety took place at competing rates. This difficulty was eventually bypassed by using the S-trityl protection. Side-chain cyclization of the APB-peptide proved to be difficult, suggesting that restricted conformational freedom was already present in the monocyclic form, a fact that was fully confirmed by NMR structural analysis. Conversely, the methylene spacer in the AMPB moiety introduced sufficient flexibility for facile and quantitative side-chain cyclization to the bicyclic form. Both of the monocyclic peptides and both of the bicyclic peptides are photoresponsive molecules which undergo cis/trans isomerization reversibly.  相似文献   

9.
An azobenzene group containing beta-amino acid N-Fmoc-4-aminomethyl phenylazobenzoic acid was synthesized and with the exception of the C-terminal amino acid residue was substituted by solid-phase peptide synthesis into all positions of the FLAG sequence (DYKDDDDK), an octapeptide capable of specific interaction with the monoclonal antibody 4E11. The trans state of the beta-amino acid was thermodynamically more stable than the cis state. However, the molecule could be switched into the cis conformation by illumination at 340 nm. Peptides containing the artificial amino acid also became photoresponsive. In the absence of light, the spontaneous back-isomerization into the trans conformation of the photoresponsive was extremely slow (>8 h no significant increase in trans content). When illuminated with visible light (440 nm), the back-isomerization from the cis to the trans state was accelerated and occurred with a half-life of approximately 10 min. The cis form of the photopeptides was more hydrophilic than the trans form, as evidenced by differences in the retention time of the two isomeric forms in reversed-phase chromatography. Photopeptides that contained the intact sequences responsible for binding of the FLAG tag to the antibody, namely, the DYK motive at the N-terminus, showed binding to the antibody in both a dot blot immunoassay and in Biacore binding studies, albeit with lower affinity than the unmodified FLAG sequence. Peptides with a substitution in positions 4-6 showed differences in binding strength between the trans and the cis form in the Biacore studies, no such difference could be observed for the peptide with a substitution in position 7.  相似文献   

10.
It has been reported that backbone cyclization of octapeptides with the photoresponsive (4-aminomethyl)phenylazobenzoic acid imparts sufficient restraints to induce and stabilize ordered conformations of the peptide backbone in both the cis- and trans-azo-isomers (L. Ulysse, J. Cubillos, and J. Chmielewski, Journal of the American Chemical Society, 1995, Vol. 117, pp. 8466-8467). Correspondingly, the active-site octapeptide fragment H-Ala-Cys-Ala-Thr-Cys-Asp-Gly-Phe-OH [134-141] of thioredoxin reductase, with its high preference for a 3(10)-helix turn conformation centered on the Thr-Cys sequence, was backbone cyclized with this azobenzene moiety in the attempt to design a photoresponsive system where the conformational states of the peptide backbone are dictated by the configuration of the azobenzene and can be further modulated by the disulfide bridge. Nuclear magnetic resonance conformational analysis of the monocyclic compound clearly revealed the presence of two conformational families in both the cis- and trans-azo configuration. Of the higher populated conformational families, the structure of the trans-isomer seems like a pretzel-like folding, while the cis-isomer relaxes into a significantly less defined conformational state that does not exhibit any regular structural elements. Further restrictions imparted by disulfide bridging of the peptide moiety leads to an even better defined conformation for the trans-azo-isomer, whereas the cis-isomer can be described as a frustrated system without pronounced energy minima and thus with little conformational preferences. Our findings would suggest that this photoresponsive peptide template may not be of general usefulness for light-induced conformational transitions between two well-defined conformational states at least under the experimental conditions employed, even in the bicyclic form. However, trans --> cis isomerization of the bicyclic peptide is accompanied by a switch from a well-defined conformation to an ensemble of possible conformations.  相似文献   

11.
Azobenzene derivatives can be used to reversibly photoregulate secondary structure when introduced as intramolecular bridges in peptides and proteins. Here we report the design, synthesis, and characterization of a disubstituted N,N-dialkyl azobenzene derivative that absorbs near 480 nm in aqueous solution and relaxes with a half-life of approximately 50 ms at room temperature. The wavelength of maximum absorbance and the rate of thermal relaxation are solvent-dependent. An increase in the percentage of organic solvent leads, in general, to a blue shift in the absorbance maximum and a slowing of the relaxation rate. In accordance with the design, the thermal relaxation of the azobenzene cross-linker from cis to trans causes an increase in the helix content of one peptide where the linker is attached via cysteine residues spaced at i, i + 11 positions and a decrease in helix content of another peptide with cysteine residues spaced at i, i + 7. This cross-linker design thus expands the possibilities for fast photocontrol of peptide and protein structure.  相似文献   

12.
13.
Intramolecular cross-linking of peptides by the light-sensitive compound diiodoacetamideazobenzene has been shown to permit reversible photocontrol of the helix-coil transition. Cross-linking between Cys residues spaced at i and i + 7 positions with the trans form of the linker was found to produce a decreased helix content compared to that of the non-cross-linked peptide. Photoisomerization to the cis form of the linker led to substantially higher helix content than in the non-cross-linked peptide. Detailed conformational analysis of the system leads to the conclusion that photocontrol of helix content does not involve specific interactions between the linker and the peptide. Instead, the change in peptide helix content caused by photoisomerization can be predicted by comparing the length ranges of the cis and trans forms of the linker with the expected distance distribution of the Cys attachment points in the intrinsic conformational ensemble of the peptide. The analysis presented here should help to guide the use of these and related linkers for the conformational control of a variety of peptide and protein systems.  相似文献   

14.
The cis/trans conformational equilibrium of the two Ac-Pro isomers of the beta-turn model dipeptide [13C]-Ac-L-Pro-D-Ala-NHMe, 98% 13C enriched at the acetyl carbonyl atom, was investigated by the use of variable temperature gradient enhanced 1H-nmr, two-dimensional (2D) 1H,1H nuclear Overhauser effect spectroscopy (NOESY), 13C,1H one-dimensional steady-state intermolecular NOE, and molecular dynamics calculations. The temperature dependence of the cis/trans Ala(NH) protons are in the region expected for random-coil peptides in H2O (delta delta/delta T = -9.0 and -8.9 ppb for the cis and trans isomers, respectively). The trans NH(CH3) proton indicates smaller temperature dependence (delta delta/delta T approximately -4.8 ppb) than that of the cis isomer (-7.5 ppb). 2D 1H,1H NOESY experiments at 273 K demonstrate significant NOEs between ProH alpha-AlaNH and AlaNH-NH(R) for the trans isomer. The experimental NOE data, coupled with computational analysis, can be interpreted by assuming that the trans isomer most likely adopts an ensemble of folded conformations. The C-CONH(CH3) fragment exhibits significant conformational flexibility; however, a low-energy conformer resembles closely the beta II-turn folded conformations of the x-ray structure of the related model peptide trans-BuCO-L-Pro-Me-D-Ala-NHMe. On the contrary, the cis isomer adopts open conformations. Steady-state intermolecular solute-solvent (H2O) 13C,1H NOE indicates that the water accessibility of the acetyl carbonyl carbons is nearly the same for both isomers. This is consistent with rapid fluctuations of the conformational ensemble and the absence of a highly shielded acetyl oxygen from the bulk solvent. Variable temperature 1H-nmr studies of the cis/trans conformational equilibrium indicate that the trans form is enthalpically favored (delta H degree = -5.14 kJ mole-1) and entropically (delta S degree = -5.47 J.K-1.mole-1) disfavored relative to the cis form. This demonstrates that, in the absence of strongly stabilizing sequence-specific interresidue interactions involving side chains and/or charged terminal groups, the thermodynamic difference of the cis/trans isomers is due to the combined effect of intramolecular and intermolecular (hydration) induced conformational changes.  相似文献   

15.
多肽和蛋白质中Xaa-Pro片段肽脯酰胺键顺反异构对其构象与功能有重要影响.设计合成了一系列模型多肽及其磷酸化多肽,并采用核磁共振实验和分子动力学模拟的方法,研究了所合成多肽中肽脯酰胺键的顺反异构化.结果表明,对脯氨酸之前的Xaa残基进行侧链O-磷酸化会极大地影响该顺反异构化过程,进而调节肽链构象.此外,磷酸化使得多肽顺式构象比例增加,且当磷酸基团不带负电荷时顺式构象所占比例最大.同时,分子动力学模拟所得结果与核磁共振实验相一致,包括最稳定构象和顺反构象统计分布.磷酸基团所带电荷及其空间位阻可能是影响这类磷酸化多肽构象变化的主要因素.  相似文献   

16.
Immune response suppressors are used in the medical praxis to prevent graft rejection after organ transplantation and in the therapy of some autoimmune diseases. As a continuation of our previous work searching for new, effective suppressors devoid of toxicity, we present the synthesis, conformational analysis, and biological activity of nonapeptides 1-6, analogs of naturally existing immunomodulatory peptide CLA. New CLA analogs were modified with (S)-beta(2)-iso-proline 7 or (S)-beta(3)-homo-proline 8, respectively. The conformational influence of the beta-iso-proline and beta-homo-proline building blocks was analyzed by NMR spectroscopy. Peptides 1-6 exist as a mixture of four isomers due to cis/trans isomerization of the Xxx-Pro peptide bond. The major isomers of peptides 1, 3, and 4 contain all peptide bonds of the trans geometry. The geometry of the proline-proline bond of the second populated isomer of peptides 3 and 4 is cis. The proline-proline peptide bond is cis for the major isomers of peptides 2, 5, and 6. The peptides were tested for their ability to suppress the proliferative response of mouse splenocytes to T- and B-cell mitogens and the secondary humoral immune response to sheep erythrocytes in vitro in parallel with a reference drug-cyclosporine A. The immunoregulatory actions of the peptides depended on the position and content of proline isomers and were, with some exceptions, strongly inhibitory at the highest dose tested (100 microg/ml). In addition, the peptides were practically devoid of toxicity at that dose. In conclusion, the replacement of Pro by beta-Pro may be useful for fine-tuning CLA immunosuppressive potency and undesirable toxicity.  相似文献   

17.
Horseradish peroxidase mutants containing L-p-phenylazophenylalanine (azoAla) at various positions were synthesized by using an Escherichia coli in vitro translation system. Among the 15 mutants examined, four mutants containing a single azoAla unit at the 6th, 68th, 142nd, and 179th positions, respectively, retained the peroxidase activity. The activity of the Phe68azoAla mutant was higher when the azobenzene group was in the cis form than in the trans form. On the contrary, the activity of the Phe179azoAla mutant disappeared when the azobenzene group was photoisomerized to the cis form, but recovered in the trans form. In the latter mutant, therefore, an on/off photoswitching of the peroxidase activity was attained.  相似文献   

18.
We examine the role of the conformational restriction imposed by constrained ends of a protein loop on the determination of a strained loop conformation. The Lys 116-Pro 117 peptide bond of staphylococcal nuclease A exists in equilibrium between the cis and trans isomers. The folded protein favors the strained cis isomer with an occupancy of 90%. This peptide bond is contained in a solvent-exposed, flexible loop of residues 112-117 whose ends are anchored by Val 111 and Asn 118. Asn 118 is constrained by 2 side-chain hydrogen bonds. We investigate the importance of this constraint by replacing Asn 118 with aspartate, alanine, and glycine. We found that removing 1 or more of the hydrogen bonds observed in Asn 118 stabilizes the trans configuration over the cis configuration. By protonating the Asp 118 side chain of N118D through decreased pH, the hydrogen bonding character of Asp 118 approached that of Asn 118 in nuclease A, and the cis configuration was stabilized relative to the trans configuration. These data suggest that the rigid anchoring of the loop end is important in establishing the strained cis conformation. The segment of residues 112-117 in nuclease A provides a promising model system for study of the basic principles that determine polypeptide conformations. Such studies could be useful in the rational design or redesign of protein molecules.  相似文献   

19.
Theoretical conformational analysis of L,D alternating sequences of poly alpha-amino acids is reported in connection with the ability of naturally occurring peptide and depsipeptide having alternating configurations to increase selectively the ion permeability across membranes. The most stable structures of poly(DL-proline), of which the conformational variability is practically limited to the choice between cis and trans conformations of the peptide bonds, were characterized. The all-trans conformation results in a flat helical structure possessing the main features for acting as an ion channel across membranes as actually found experimentally. Random cis-trans conformational sequences provide an alternative mechanism of ion transport intermediate between the ion channel and the ion carrier.  相似文献   

20.
Cis/trans isomerism of the His-Pro peptide bond provides a convenient model for the effect of a slow conformational change which may have wider biological significance. Above the imidazole pK, His-Pro is conformationally analogous to the (isosteric) peptide Phe-Pro. Protonation of the imidazole sidechain is associated with a large decrease in the cis/trans ratio. Detailed 1H and 13C n.m.r. analysis suggests the importance of electrostatic/hydrogen bonding interactions between the charged imidazolium sidechain and the proline carboxyl as the basis for this effect. In contrast to a previous report, cis/trans isomerism in TRH is shown to be related to titration of the imidazole sidechain, exhibiting a pK of 6.1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号